With Additional Series Regulator Patents (Class 323/224)
  • Patent number: 8299765
    Abstract: A power supply control device includes a boost type power supply controller boosting an input voltage, a step down power supply controller reducing an output of the boost type power supply controller to output an output voltage, a first control loop including the boost type power supply controller, and a second control loop including the step down power supply controller, wherein the output voltage is controlled by the second control loop during a predetermined period beginning after the power supply control device enters a power-on state, and wherein the output voltage is controlled by the first control loop after the predetermined period passes.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: October 30, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takeshi Hirano
  • Patent number: 8294445
    Abstract: Techniques for mitigating interference from a switching voltage regulator by intelligently varying the switcher frequency of the switching voltage regulator are provided. In one aspect, the switcher frequency is set by adjusting a frequency setting input to a programmable clock divider. In a further aspect, a processor drives a programmable clock divider which receives a value representative of a dividing factor by which to divide a reference clock frequency signal to generate a desired switcher frequency for the switching voltage regulator. Values of the programmable clock divider are selectively varied to achieve optimal performance and mitigate the effect of switcher frequency spurious content for a given operating condition or conditions.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: October 23, 2012
    Assignee: Qualcomm Incorporated
    Inventor: Sai C. Kwok
  • Patent number: 8294434
    Abstract: A constant current output control type switching regulator that reduces the number of parts, resolves the loss of the current running in the resistor, and eliminates the need to change the time constant of the integrator due to changing the inductor value. The switching regulator creates the adjustment reference voltage by multiplying the proportion of Vout/Vin by the reference voltage, and when the clock signal is high, the current sense voltage is sampled when the current of the initial current value runs in the switching transistor, and when the clock signal is low, the potential difference between the adjustment reference voltage and the sampled current sense voltage is added to the adjustment reference voltage and creates the second reference voltage; and with the signal CPOUT controls the operation of the transistors upon execution of PWM control.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: October 23, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Junji Nishida
  • Patent number: 8294439
    Abstract: The present invention discloses a buck-boost switching regulator, and a control circuit and a method therefor, to convert an input voltage to an output voltage. The control method comprises: obtaining a feedback signal relating to the output voltage; comparing the feedback signal with a reference voltage to generate an error amplified signal; when the error amplified signal is between a first voltage (V1) and a second voltage (V2), causing the switching regulator to operate in a buck conversion mode; when the error amplified signal is between a third voltage (V3) and a fourth voltage (V4), causing the switching regulator to operate in a boost conversion mode; and when the error amplified signal is between the second voltage and the third voltage, causing the switching regulator to operate in a buck-boost conversion mode in which each power switch operates according to a respective predetermined pulse width, wherein V1<V2<V3<V4.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: October 23, 2012
    Assignee: Richtek Technology Corporation
    Inventors: Chien-Ping Lu, Kwan-Jen Chu, Tzu-Huan Chiu
  • Patent number: 8294433
    Abstract: A disclosed constant current supply type switching regulator includes a switching element configured to activate a switch operation depending on an input control signal, an inductor configured to be charged with the input voltage in response to the switching element activating the switch operation, a rectification element configured to discharge the inductor in response to the switching element shifting to a cutoff state, a current detection circuit unit configured to generate a current proportional to a current flowing into the switching element and generate and supply a current sense voltage depending on the proportional current and a control circuit unit configured to average the current sense voltage supplied from the current detection circuit unit and perform PWM (Pulse Width Modulation) control on the switching element for supplying a constant current in order to force the averaged voltage to be equal to a first reference voltage.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: October 23, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Junji Nishida
  • Patent number: 8294506
    Abstract: A driving system for an electrical power conversion equipment includes a driving circuit for driving a switching device provided in the electrical power conversion equipment, and a driving capacity control circuit for controlling a driving capacity of the driving circuit. The driving capacity during a resonant operation of the electrical power conversion equipment becomes higher than that at a start of the resonant operation when the switching device is turned-on.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: October 23, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hidetomo Ohashi
  • Patent number: 8283901
    Abstract: A power converter and method of controlling a power switch therein to improve power conversion efficiency at low output current. In one embodiment, the power converter includes a first power switch coupled to a source of electrical power and a second power switch coupled to the first power switch and to an output terminal of the power converter. The power converter also includes a controller configured to alternately enable conduction of the first and the second power switches with a duty cycle in response to an output characteristic of the power converter. The controller is configured to control a level of current in the first power switch when the second power switch is substantially disabled to conduct.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 9, 2012
    Assignee: Enpirion, Inc.
    Inventors: Douglas D. Lopata, Ashraf W. Lotfi
  • Patent number: 8283902
    Abstract: A voltage regulator has a switch configured to alternately couple and decouple a voltage source through an inductor to a load, feedback circuitry to generate a feedback current, a current sensor configured to measure the feedback current, and a controller configured to receive the feedback current measurement from the current sensor and, in response thereto, to control a duty cycle of the switch. The feedback circuitry includes an amplifier having a first input configured to receive a desired voltage, a second input, and an output, a capacitor connecting the second input to the output of the amplifier, and a resistor connecting the output of the amplifier and the output terminal such that a feedback current proportional to a difference between the desired voltage and an output voltage at an output terminal flows through the resistor.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: October 9, 2012
    Assignee: Volterra Semiconductor Corporation
    Inventors: Seth Kahn, Michael D. McJimsey
  • Publication number: 20120229102
    Abstract: Another embodiment includes a voltage regulator. The voltage regulator includes a series switch element connected between a first voltage supply and a common node, the series switch element comprising an NMOS series switching transistor, a shunt switch element connected between the common node and a second voltage supply, the shunt switch element comprising an NMOS shunt switching transistor. The voltage regulator further includes means for closing the series switch element during a first period by applying a switching gate voltage to a gate of the NMOS series switch transistor of the series switch element, wherein the switching gate voltage has a voltage potential of at least a threshold voltage greater than a voltage potential of the common node, means for closing the shunt switch element during a second period, the shunt switch element comprising an NMOS shunt switching transistor.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Applicant: R2 SEMICONDUCTOR, INC.
    Inventors: Lawrence M. Burns, David Fisher
  • Patent number: 8258769
    Abstract: A circuit may generate a clock signal with a variable period given by a ratio between an initial switching period and a number of phase circuits through which a current of a multi-phase PWM voltage converter flows. The circuit may include an adjustable current generator driven by a signal representing the number of phase circuits through which the current flows and configured to generate a current proportional to the number of phase circuits through which the current flows, and a tank capacitor charged by the adjustable current generator. The circuit may include a comparator of a voltage on the tank capacitor with a threshold value configured to generate a pulse of the clock signal when the threshold value is attained, and a discharge path of the tank capacitor, the discharge path being enabled during the pulses of the clock signal.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: September 4, 2012
    Assignee: STMicroelectronics S.R.L.
    Inventors: Osvaldo Enrico Zambetti, Daniele Giorgetti
  • Patent number: 8248043
    Abstract: A control circuit for a DC-DC converter includes a controller configured to control, based on a feedback voltage, a first switch provided between an inductor and a reference potential and a second switch provided between a coupling node of the first switch and the inductor and an output terminal, a third switch provided between the second switch and the output terminal and turned off when an overcurrent flows in a coupling path between the second switch and the output terminal, and a selector configured to select a voltage of a first position which is located on a side of the second switch in the coupling path as the feedback voltage when the third switch is turned off, or a voltage of a second position which is located on a side of the output terminal in the coupling path as the feedback voltage when the third switch is turned on.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 21, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Koichi Inatomi, Naoki Nagase
  • Patent number: 8248048
    Abstract: A standby power supply circuit includes a pulse width modulation controller, first to fourth metal-oxide-semiconductor field effect transistors (MOSFETs), and an inductor. A gate of the first MOSFET and a gate of the second MOSFET are connected to a first and a second general purpose terminals of a power management chip, respectively. A drain of the first MOSFET is connected to a source of the third MOSFET. A gate of the fourth MOSFET is connected to a lower gate terminal of the controller. A phase terminal of the controller is grounded via the inductor and a capacitor in series. The drain of the second MOSFET is connected to a node between the inductor and the capacitor via a resistor.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: August 21, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ho-Feng Lin
  • Patent number: 8248044
    Abstract: Embodiments for at least one method and apparatus of controlling a bypass resistance of a voltage regulator are disclosed. One method includes generating a regulated output voltage based upon a switching voltage. The switching voltage is generated through controlled closing and opening of a series switch element and a shunt switch element, the series switch element and the shunt switch element being connected between voltages based on an input voltage. A control of a duty cycle of the switching voltage is provided by sensing and feeding back the regulated output voltage. The bypass resistance is controlled based on a parameter related to the duty cycle, wherein the control of the duty cycle is persistent during the control of the bypass resistance.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: August 21, 2012
    Assignee: R2 Semiconductor, Inc.
    Inventors: James E. C. Brown, Bret Rothenberg, Lawrence M. Burns
  • Patent number: 8222873
    Abstract: A circuit for regulating voltage in a power driver, the circuit comprising a current amplifier adapted to measure current flowing through an input resistor, separate AC and DC components of the current flowing through an input resistor, and apply an AC gain factor to the AC component and a DC gain factor to the DC component.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: July 17, 2012
    Assignee: Seagate Technology LLC
    Inventors: Wendong Zhang, Hakam D. Hussein
  • Patent number: 8217633
    Abstract: A switching regulator is provided that includes a step-down circuit configured to output a voltage lower than an input voltage, a step-up circuit configured to output a voltage higher than the input voltage, and a control unit having a voltage detector configured to detect an output voltage and being configured to prohibit operation of the step-up circuit until the output voltage rises to a first voltage lower than the input voltage.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: July 10, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Shinya Shimizu
  • Patent number: 8212536
    Abstract: Embodiments for at least one method and apparatus of generating a regulated voltage are disclosed. One method includes generating the regulated voltage though controlled closing and opening of a series switch element and shunt switch element, the series switch element being connected between a first voltage supply and a common node, and the shunt switch being connected between the common node and a second supply voltage. The series switch element includes an NMOS series switching transistor stacked with an NMOS series protection transistor, and closing the series switch element during a first period includes applying a switching gate voltage to a gate of the NMOS series switch transistor of the series switch element, wherein the switching gate voltage has a voltage potential of at least a threshold voltage greater than a voltage potential of the common node.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 3, 2012
    Assignee: R2 Semiconductor, Inc.
    Inventors: Lawrence M. Burns, David Fisher
  • Patent number: 8207714
    Abstract: A switching regulator integrated circuit (IC) is disclosed that includes a switch circuit that further includes a first switch and a second switch, a mode selector circuit controlled by external circuitry to select between a first mode and a second mode, and a control circuit. In response to a feedback signal from the switch circuit, when the first mode is selected, the control circuit toggles the first switch and the second switch ON and OFF alternately at a fixed first frequency. When a second mode is selected, the control circuit causes the second switch to turn OFF completely and the first switch to switch ON and OFF at a variable second frequency.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 26, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Wei Chen
  • Patent number: 8198880
    Abstract: The present invention discloses a control circuit for constant on-time converter and a control method thereof. The proposed constant on-time DC/DC converter stabilizes the system and improves the performance of the load transient response without large equivalent series resistance of the output capacitor.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: June 12, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Qian Ouyang
  • Patent number: 8198875
    Abstract: Provided is a voltage regulator capable of securely preventing a reverse current from an output terminal (122) with lower current consumption, irrespective of magnitude of a voltage of a VDD terminal (121). Such a configuration is adopted that the voltage of the VDD terminal (121) and a voltage of the output terminal (122) of the voltage regulator are compared with each other with the use of a voltage generated between a transistor and a constant current circuit, to thereby reduce current consumption of a backup battery. Besides, such a configuration is also adopted that a gate of an output transistor is connected with the output terminal (122) based on an output of a comparator circuit, to thereby prevent the reverse current securely.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 12, 2012
    Assignee: Seiko Instruments Inc.
    Inventor: Minoru Sudou
  • Patent number: 8193784
    Abstract: A bidirectional DC to DC converter having a first operational mode and a second operational mode includes a first terminal pair that has a positive terminal and a negative terminal and that connects the converter to a first electric circuit, a second terminal pair that has a positive terminal and a negative terminal and that connects the converter to a second electric circuit, an accumulation element for temporary accumulation of electric energy; and a switching circuit connected to the first terminal pair, the second terminal pair, and the accumulation element. Electric energy is transferred from the first electric circuit to the second electric circuit via the accumulation element in the first operational mode of the bidirectional DC to DC converter and, from the second electric circuit to the first electric circuit via the accumulation element in the second operational mode of the DC to DC converter.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: June 5, 2012
    Assignee: Fisher Controls International LLC
    Inventors: Stephen G. Seberger, Adam J. Wittkop
  • Patent number: 8193786
    Abstract: A driving circuit for a half bridge utilizing bidirectional semiconductor switches in accordance with an embodiment of the present application includes a high side driver operable to control a high side bidirectional semiconductor switch, wherein the high side driver provides a negative bias voltage to the bidirectional semiconductor switch to turn the high side bidirectional semiconductor switch OFF. A low side driver may be operable to control a low side bidirectional semiconductor switch. An external voltage source with a negative terminal of the voltage source connected to the high side driver may be provided. A high side driving switch may be positioned between the negative terminal of the voltage source and the high side driver and operable to connect the high side driver to the negative terminal of the voltage source when the low side driver turns the low side bidirectional semiconductor switch ON.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: June 5, 2012
    Assignee: International Rectifier Corporation
    Inventors: Maurizio Salato, Marco Soldano
  • Patent number: 8193785
    Abstract: A switching regulator for regulating an ac signal, and method of supplying power thereto wherein the regulator includes a positive half cycle part and a negative half-cycle part arranged to regulate the respective parts of an input ac signal. Each half-cycle part includes a modulating transistor, having an associated modulator diode, and a clamping diode arranged to protect the modulating transistor from reverse-bias voltages and having an associated clamp switch. The regulator further has a first switching controller operable to cause the modulating transistors to switch and a second, separate switching controller operable to cause the clamp switches to switch.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: June 5, 2012
    Assignee: Microgen Engine Corporation Holding B.V.
    Inventor: Raymond John Peto
  • Patent number: 8195855
    Abstract: A bus system includes a plurality of stubs; a plurality of connectors, each of which is serially coupled between a corresponding one of the stubs and a corresponding one of memory modules; a plurality of first serial loads, each of which is serially coupled to a corresponding one of the connectors; and a plurality of second serial loads, each of which is serially coupled to characteristic impedance of a transmission line of a corresponding one of the stubs, wherein the first and the second serial loads are determined to be impedance matched at each transmission line terminal of the stubs.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 5, 2012
    Assignees: Hynix Semiconductor Inc., Seoul National University Industry Foundation
    Inventors: Deog-Kyoon Jeong, Suhwan Kim, Woo-Yeol Shin, Dong-Hyuk Lim, Ic-Su Oh
  • Patent number: 8184457
    Abstract: A switch mode power supply (15) employs a rectifier (20), a converter (50) and converter driver (60). The rectifier (20) generates a rectified supply voltage (VRS) based on an in-line voltage (VLN), and the converter driver (60) generates one or more driving voltages (VDR) to facilitate a conversion by the converter (50) of the rectified supply voltage (VRS) to a DC bus voltage (VDC) based on the driving voltage(s) (VDR). The converter (50) may include a transient voltage suppression device (52) to suppress the rectified supply voltage (VRS) in response to an abnormal line condition of the switch mode power supply (15), and the converter driver (60) may include a free-oscillating suppression device (61) to suppress the one or more driving voltages (VDR) in response to a free-oscillating condition of the converter driver (60).
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 22, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Yimin Chen, Yuhong Fang, Romel Panlilio, Arun Ganesh
  • Patent number: 8179105
    Abstract: A power converter can include a high-side switch coupled to a power supply terminal and selectively coupled to ground via a conduction path. During an on state duration, the high-side switch can be enabled and the conduction path can be disabled. During an off state duration, the high-side switch can be disabled and the conduction path can be enabled. During a skip state duration, the high-side switch and the conduction path both can be disabled. A controller coupled to the high-side switch can control the on state duration and the skip state duration based on a current reference. The controller can further generate a first control signal for controlling the high-side switch and the conduction path according to the on state duration and the skip state duration, and adjust an output current of the power converter to the current reference according to the first control signal.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 15, 2012
    Assignee: O2Micro, Inc
    Inventor: Laszlo Lipcsei
  • Patent number: 8179116
    Abstract: An embodiment of an inductor assembly includes a core, a first conductor, and a second conductor. The core includes first and second members, a first group of one or more forms extending between the members, a second group of one or more forms extending between the members, and an isolating region that magnetically isolates the first group of forms from the second group of forms. The first conductor is wound about a first one of the forms in the first group, and the second conductor is wound about a second one of the forms in the second group. Such an inductor assembly may allow both coupled and uncoupled inductors to be disposed on a common core, thus potentially reducing the cost and size of the inductors as compared to the coupled inductors being disposed on one core and the uncoupled inductors being disposed on another core.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: May 15, 2012
    Assignee: Intersil Americas LLC
    Inventors: Jia Wei, Michael Jason Houston
  • Patent number: 8179106
    Abstract: A synchronous-rectifier type DC-DC converter includes a high-side main switch element, a low-side rectifying switch element, and a control drive circuit. The rectifying switch element includes a rectifying transistor element and a rectifying diode element connected in antiparallel with the rectifying transistor element. The control drive circuit detects an input voltage to the main switch element and determines the input voltage or a rate of increase in the input voltage. When the determined value exceeds a predetermined reference value, a complementary ON/OFF operation of the main switch element and the rectifying transistor element is released, and a state where both the main switch element and the rectifying transistor element are kept OFF for a time period that is longer than a dead-time during the complementary ON/OFF operation is set.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: May 15, 2012
    Assignee: Denso Corporation
    Inventors: Norihito Tokura, Hisato Kato, Norikazu Kanatake, Masakiyo Horie
  • Patent number: 8175658
    Abstract: A wireless communication apparatus includes: a wireless communication unit which performs wireless communication; a converter which converts an input voltage into an output voltage in a switched-mode to supply the output voltage to the wireless communication unit; and a frequency adjusting unit which adjusts a frequency of a high frequency noise caused by a parasitic component of the converter, if the converter is switched, to prevent the frequency of the high frequency noise from interfering with a frequency of the wireless communication performed by the wireless communication unit.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: May 8, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-deok Cha
  • Patent number: 8169200
    Abstract: A power converter and method of controlling a power switch therein to improve power conversion efficiency at low output current. In one embodiment, the power converter includes a first power switch coupled to a source of electrical power and a second power switch coupled to the first power switch and to an output terminal of the power converter. The power converter also includes a controller configured to alternately enable conduction of the first and the second power switches with a duty cycle in response to an output characteristic of the power converter. The controller is configured to control a level of current in the first power switch when the second power switch is substantially disabled to conduct.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 1, 2012
    Assignee: Enpirion, Inc.
    Inventors: Douglas D. Lopata, Ashraf W. Lotfi
  • Patent number: 8166329
    Abstract: A circuit for a computer system, includes a pulse width module (PWM) module and a control circuit. The PWM module is capable of converting a first voltage to a second voltage. The first voltage is capable of decreasing slower than the second voltage to have the PWM module entering in an unwanted state when the computer system is changed from a first state to a second state. The PWM module includes a disabling pin capable of locking the PWM module when a voltage of the disabling pin is low. The control circuit includes a control pin connected to the disabling pin, a ground pin connected to ground, and a monitoring pin capable of monitoring the computer system being changed from a first state to a second state to control the control pin and the ground pin to pull the disabling pin low to lock the PWM module to prevent the PWM module from entering in the unwanted state.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 24, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Qi-Jie Chen
  • Patent number: 8159181
    Abstract: This disclosure relates to a voltage converter including a control circuit, a converter sub-circuit, and a single coil, where when the voltage converter can perform bi-directional voltage conversion using the single coil. In other words, the voltage converter can generate one or more regulated output voltages in both directions from one or more input voltages using the same coil.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: April 17, 2012
    Assignee: Infineon Technologies AG
    Inventor: Abraham Carl Greyling
  • Patent number: 8154261
    Abstract: A power converter and method of controlling a power switch therein to improve power conversion efficiency at low output current. In one embodiment, the power converter includes a first power switch coupled to a source of electrical power and a second power switch coupled to the first power switch and to an output terminal of the power converter. The power converter also includes a controller configured to alternately enable conduction of the first and the second power switches with a duty cycle in response to an output characteristic of the power converter. The controller is configured to control a level of current in the first power switch when the second power switch is substantially disabled to conduct.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 10, 2012
    Assignee: Enpirion, Inc.
    Inventors: Douglas D. Lopata, Ashraf W. Lotfi
  • Patent number: 8148964
    Abstract: A power arrangement that includes a monolithically integrated III-nitride power stage having III-nitride power switches and III-nitride driver switches.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: April 3, 2012
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 8138734
    Abstract: A DC-DC converter includes a switching stage and a control circuit coupled to provide an accurate current limit for peak current mode for the DC-DC converter. The control circuit is operative to provide a peak value of the peak current mode.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: March 20, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Xiaoyu Xi, Jian Zhou
  • Patent number: 8138737
    Abstract: A power factor correction circuit includes a first rectifier to rectify an AC voltage, a series circuit connected to an output of the first rectifier and including a step-up reactor and a switching element, a rectifying-smoothing circuit connected to both ends of the switching element and including a second rectifier and a smoothing capacitor, an input voltage detector to detect an output voltage of the first rectifier, an output voltage detector to detect a voltage across the smoothing capacitor, an error amplifier to amplify an error between the output voltage signal and a reference voltage, and a controller to determine an ON/OFF duty ratio of the switching element according to the amplified error signal and a result of a calculation carried out on the input voltage signal and output voltage signal.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 20, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Shohei Osaka
  • Patent number: 8134349
    Abstract: A power supply circuit has a constant voltage circuit, a first MOS transistor, a second MOS transistor, a third MOS transistor, a first voltage dividing circuit that outputs a first divided voltage obtained by dividing the voltage of the output terminal by a first voltage dividing ratio, and a first differential amplifier circuit which is fed with a reference voltage and the first divided voltage and has an output connected to a gate of the second MOS transistor. The first differential amplifier circuit outputs a signal to turn on the second MOS transistor when the first divided voltage is higher than the reference voltage, and the first differential amplifier circuit outputs a signal to turn off the second MOS transistor when the first divided voltage is lower than the reference voltage.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: March 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hidehiro Shiga, Shinichiro Shiratake, Daisaburo Takashima
  • Patent number: 8129961
    Abstract: The present invention relates voltage conversion device in which a regulated output voltage is supplied by current pulses generated by the voltage conversion device from a voltage source. In particular, the invention relates to an improved control of an pulse frequency modulation (PFM) operation mode in which the frequency of the generated current pulses is modulated to regulated the desired output voltage, namely how PFM pulses can be generated without the need for a high-frequency clock of a time controlled system. By having pulse phases are current mode controlled and providing a mode detector to generate the right kind of current pulse, the high-frequency clock is no longer needed. Further, the presented solution allows for a higher PWM as well as PFM frequency, the external components of the converter can be made smaller. Eliminating the need for a high-frequency clock makes the device simpler, smaller and more energy-efficient.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: March 6, 2012
    Assignee: ST-Ericsson SA
    Inventor: Henricus C. J. Buethker
  • Patent number: 8120335
    Abstract: An average current mode switching converter is described for providing a regulated output current independent of load conditions, and a regulated output voltage as a function of the load connected to the converter. The converter includes an inductor, a modulator, a feedback loop, and a precharger. The modulator is configured to provide a regulated current through the inductor The feed back loop is coupled between the inductor and the modulator for regulating the current through the inductor. The precharger is configured and arranged so as to provide and maintain a preset minimum current through the inductor independent of the load so as to improve the recovery time of the converter from a step in the desired regulated output current. Also disclosed is a method of providing a regulated output current independent of load conditions at the output of an average current mode switching converter, and a regulated output voltage as a function of the load connected to the output of converter.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 21, 2012
    Assignee: Linear Technology Corporation
    Inventor: Joshua William Caldwell
  • Patent number: 8120336
    Abstract: A synchronous regulator includes a controller coupled to receive a reference signal and a feedback signal from the regulator and being operable to provide a pulse width modulation (PWM) signal at its output. The regulator includes at least one gate driver coupled to receive the PWM signal and includes a synchronous output switch having a phase node therebetween controlled by the gate driver, and also including regulator input current measurement circuitry. The regulator input current measurement circuitry includes a circuit that provides a signal representative of at least one phase node timing parameter. A sensing circuit is operable to sense inductor or output current provided by the regulator. A calculation circuit is coupled to receive the signal representative of the phase node timing parameters and the inductor or output current and is operable to determine the input current from the phase node timing parameters and the inductor or output current.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: February 21, 2012
    Assignee: Intersil Americas Inc.
    Inventors: Gustavo James Mehas, Naveen Jain, Jayant Vivrekar, Michael Jason Houston
  • Publication number: 20120033747
    Abstract: Embodiments include systems and methods of powering data communications transmitter circuitry using current sinked from biasing circuitry used to bias a transmission line between the data communications transmitter circuitry and data communications receiver circuitry. In some embodiments, the current sinked from the biasing circuitry is sourced by a power supply configured to power the data communications receiver circuitry. The current sinked from the biasing circuitry is then re-used to power the data communications transmitter circuitry. The data communications transmitter circuitry can be operated using less power overall than the prior art by re-using the current first used to bias the transmission line to power the data communications transmitter circuitry. Various embodiments include HDMI transceivers, DVI transceivers, and DisplayPort transceivers.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Inventors: Hongwu Chi, Kewei Yang
  • Patent number: 8111051
    Abstract: An output monitoring comparator outputs an ON signal when an output voltage becomes lower than a reference voltage. A pulse modulator generates a pulse signal at a predetermined level, an ON time-period from when the ON signal is outputted. A driver circuit alternately turns ON, after a dead time, a switching transistor and a synchronous rectification transistor, based on the pulse signal. A light load mode detector compares a switching voltage at a connection point of the switching transistor and the synchronous rectification transistor, and ground potential, and at timing at which the ON signal is outputted from the output monitoring comparator, when the switching voltage is higher than the ground potential, nullifies the ON signal.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: February 7, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Masaru Sakai, Kiyotaka Umemoto
  • Patent number: 8098056
    Abstract: Provided is a bidirectional converter which has flexibility to be applicable in various conditions and performs stable switching of operation mode at high efficiency. An electronic device which supplies power in various conditions and operates with excellent efficiency is also provided. An electronic device is provided with a bidirectional converter, which has a reactor and four switches between power supply input terminals and a secondary battery, and a system circuit is supplied with an operation voltage through the bidirectional converter. A status signal indicating the operation status of the system circuit is transmitted to a microcomputer of the bidirectional converter, and based on the status signal, switching of operation mode of the bidirectional converter is controlled.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Kazuo Yamazaki, Yukihiro Terada, Hidenori Tanaka, Tamiji Nagai, Toshio Nagai, legal representative
  • Patent number: 8089253
    Abstract: Switched-mode power supplies (SMPSs) and their control methods for radio frequency (RF) power amplifiers in battery-powered wireless transmitter devices involve a Boost-type SMPS and a Buck-type SMPS in cascade connection which are controlled so that high efficiency is maintained for various loads and transmission power levels. The Boost SMPS and the Buck SMPS can be controlled based on the mode of operation of the transmitter, such as the actual battery voltage, the needed output power, the selected frequency band, the selected RF power amplifier (PA), the selected modulation method of the transmission signal, and/or the selected PA voltage control method, such as the envelope elimination and restoration (EER) technique, the envelope tracking (ET) technique, or the power-level tracking (PT) technique.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 3, 2012
    Assignee: Nokia Corporation
    Inventor: Simo Murtojärvi
  • Patent number: 8090550
    Abstract: An efficiency monitor for monitoring the efficiency of power transmission by an inductive power outlet. The efficiency monitor includes an input power monitor, for measuring the input power delivered to the primary coil, and an output power monitor, for measuring the output power received by the secondary coil. The input and output powers are used by a processor to determine an index of power-loss. A circuit breaker may be used to disconnect the inductive power outlet in case of excessive power loss.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 3, 2012
    Assignee: Powermat, Ltd.
    Inventors: Yossi Azancot, Amir Ben-Shalom, Oola Greenwald, Arik Rofe
  • Patent number: 8085009
    Abstract: An IGBT/FET-based energy savings device, system and method (1) wherein a predetermined amount of voltage below a nominal line voltage and/or below a nominal appliance voltage is saved, thereby conserving energy. Phase input connections (2) are provided for inputting analog signals into the device and system (1). A magnetic flux concentrator (3) senses the incoming analog signal (20) and a volts zero crossing point detector (5) determines the zero volts crossing point (21) of the signal (20). The positive half cycle (22) and negative half cycle (23) of the signal (20) are identified and routed to a digital signal processor (10) for processing the signal (20). The signal (20) is reduced by pulse width modulation and the reduced amount of energy is outputted, thereby yielding an energy savings for an end user.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: December 27, 2011
    Assignee: The Powerwise Group, Inc.
    Inventor: John L. Lumsden
  • Patent number: 8085010
    Abstract: A TRIAC/SCR-based energy savings device, system and method (1) wherein a predetermined amount of voltage below a nominal line voltage and/or below a nominal appliance voltage is saved, thereby conserving energy. Phase input connections (2) are provided for inputting analog signals into the device and system (1). A magnetic flux concentrator (3) senses the incoming analog signal (20) and a volts zero crossing point detector (5) determines the zero volts crossing point (21) of the signal (20). The positive half cycle (22) and negative half cycle (23) of the signal (20) are identified and routed to a digital signal processor (10) for processing the signal (20). The signal (20) is reduced by pulse width modulation and the reduced amount of energy is outputted, thereby yielding an energy savings for an end user.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: December 27, 2011
    Assignee: The Powerwise Group, Inc.
    Inventor: John L Lumsden
  • Patent number: 8085026
    Abstract: A current sense amplifier sensing current through a main switch of a converter. The amplifier includes first and second switch devices, an amplifier control circuit, a bias circuit, a current generator circuit, and a sense circuit. The main switch is coupled to an input, phase and control nodes. The first and second switch devices are smaller matching versions of the main switch and are both coupled to the main switch and form first and second nodes. The bias circuit is coupled between second and fourth nodes and the amplifier control circuit is coupled between first and third nodes. The current generator develops a first current through the amplifier control circuit and a second current through the bias circuit. The sense circuit has a current path coupled to the first node and is controlled by the third node to develop a sense voltage indicative of current through the main switch.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: December 27, 2011
    Assignee: Intersil Americas Inc.
    Inventor: Stepan Iliasevitch
  • Patent number: 8085007
    Abstract: A switching power supply circuit, which includes: a switch; a coil serving as an energy transmitting element; and a capacitor serving as an output generation circuit that outputs, as an output voltage, the energy transmitted from the coil. The switching power supply circuit also includes an output voltage detection circuit that generates a detection signal according to the output voltage; a PNP transistor serving as a transmission circuit that outputs a transmission signal according to a value of the detection signal; and a controller that controls the switch according to the transmission signal. The switching power supply circuit further includes a diode serving as a rectifying element connected between the transmission circuit (PNP transistor) and the controller.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: December 27, 2011
    Assignee: Panasonic Corporation
    Inventors: Hiroko Sakimura, Kazuhiro Murata
  • Patent number: 8080986
    Abstract: A driving control device and method for power converting system includes power converting circuit and driving control device. The driving control device has an analog/digital convertor, a measuring device, and a control module. The driving control method is the analog/digital convertor receives a inductor current and the parameters of the inductor current from the measuring device, measures the slope parameter of the inductor current according the parameters from Equation 1 and Equation 2, then calculates a duty cycle parameter from the slope parameter of the inductor current and use the duty cycle parameter to generate pulse control signal to perform driving control.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: December 20, 2011
    Assignee: National Taipei University Technology
    Inventors: Yen-Shin Lai, Ye-Then Chang
  • Patent number: 8076922
    Abstract: An embodiment of an inductor assembly includes a core, a first conductor, and a second conductor. The core includes first and second members, a first group of one or more forms extending between the members, a second group of one or more forms extending between the members, and an isolating region that magnetically isolates the first group of forms from the second group of forms. The first conductor is wound about a first one of the forms in the first group, and the second conductor is wound about a second one of the forms in the second group. Such an inductor assembly may allow both coupled and uncoupled inductors to be disposed on a common core, thus potentially reducing the cost and size of the inductors as compared to the coupled inductors being disposed on one core and the uncoupled inductors being disposed on another core.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: December 13, 2011
    Assignee: Intersil Americas Inc.
    Inventors: Jia Wei, Michael Jason Houston