Plural Devices Patents (Class 323/225)
  • Patent number: 10700526
    Abstract: There are provided methods and systems for interfacing converters and solar power arrays. For example, there is provided a method for interfacing a solar power generation apparatus with an electricity grid. The method can include connecting a first level and a second level of the solar power generation apparatus to a two-level converter. Furthermore, the method can include interfacing the two-level converter with the electricity grid via a four-wire connection.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: June 30, 2020
    Assignee: GE Energy Power Conversion Technology LTD.
    Inventors: Robert Gregory Wagoner, Allen Michael Ritter, Anthony William Galbraith
  • Patent number: 10686361
    Abstract: Various embodiments provide a resonant converter that includes a synchronous rectifier driver. The synchronous rectifier driver reduces voltage spikes on drains of transistors within the resonant converter by placing an active clamp between the drains of the transistors and an output terminal of the resonant converter. The active clamp reduces the voltage spikes by sinking current at the drains of the transistors to an output capacitor. By sinking the current to the output terminal, power loss is minimized and efficiency of the resonant converter is improved.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: June 16, 2020
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alberto Iorio, Maurizio Foresta
  • Patent number: 10673231
    Abstract: A regulation method for current limiting control, comprising: S1. regulating a current limiting threshold in real time based on a current limiting action: S2. controlling switch transistors based on the regulated current limiting threshold. By implementing the regulation method and device, it is made possible to regulate a current limiting threshold in real time directly based on a current limiting action, such that a current uprush in a first PWM wave will be significantly suppressed at the time of sudden loading or occurrence of a short circuit. Further, by regulating the current limiting threshold in real time based on the current limiting action and an inductive current, it is not only made possible to satisfy proper load-carrying capability, but also made possible to prevent a current uprush in a first PWM wave from being too high at the time of sudden loading or occurrence of a short circuit.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 2, 2020
    Assignee: Vertiv Corporation
    Inventors: Longyun Zhang, Song Chen
  • Patent number: 10651742
    Abstract: A current measurement linearization circuit for a DC/DC boost converter includes a back-gate sensing transistor and a back-gate reset transistor. The back-gate sensing transistor has a first terminal coupled to a first body contact of a high-side power transistor and a second terminal coupled to a second body contact of a first replica transistor in a valley-current sensing circuit. The back-gate reset transistor has a first terminal coupled to a max reference voltage that is equal to the greater of an input voltage and an output voltage and a second terminal coupled to the second body contact.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: May 12, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Stefan Dietrich, Joerg Kirchner
  • Patent number: 10594221
    Abstract: A power supply device and a power supply method are provided. The power supply device is configured to generate a first feedback signal according to an output power source, and operate in a skip mode (or called burst mode) according to the first feedback signal. The power supply device is configured to obtain an overall efficiency according to an input power and an output power, and obtain a difference between the overall efficiency and a preset efficiency. When an output current value of the output power source is within a predetermined range and the difference is greater than a first value, the power supply device generates a second feedback signal and stops operating in the skip mode according to the second feedback signal.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 17, 2020
    Assignee: Chicony Power Technology Co., Ltd.
    Inventors: Wen-Nan Huang, Shiu-Hui Lee
  • Patent number: 10594214
    Abstract: A DC-DC converter includes: a first switch; a second switch connected to the first switch; a mode selecting circuit to select a converting mode from one of at least a first mode and a second mode based on an input voltage; and a controller to generate a first switching control signal for controlling the first switch based on the converting mode, and a second switching control signal for controlling the second switch based on the converting mode.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 17, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sung-Chun Park
  • Patent number: 10587191
    Abstract: A dc-dc converting circuit and a method for controlling the same are provided. The dc-dc converting circuit includes an output stage, a mode detection circuit, a PWM signal generating circuit and a ramp signal generating circuit. The output stage provides an output voltage. The mode detection circuit provides a mode detection signal. The PWM generating circuit provides a time signal to the output stage. When the dc-dc converting circuit enters a continuous conduction mode from a discontinuous conduction mode, the ramp signal generating circuit provides a second ramp signal to the PWM signal generating circuit in a preset time according to the mode detection signal. The ramp signal generating circuit provides a first ramp signal to the PWM signal generating circuit after the preset time. A slope of the second ramp signal is greater than a slope of the first ramp signal.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 10, 2020
    Assignee: uPI Semiconductor Corp.
    Inventors: Chih-Lien Chang, Min-Rui Lai
  • Patent number: 10566902
    Abstract: Operating buck-boost converters. At least some of the example embodiments are methods including: producing an output voltage and an output current from the buck-boost converter; sensing a feedback parameter by a sensor disposed between an inductor of the buck-boost converter and a load; generating an error signal based on the feedback parameter; running the buck-boost converter in a buck-only mode, the buck-only mode operating at a switching frequency and during periods of time when the error signal is within a first range of values; and changing to a buck-boost mode when the error signal is in a second range of values, the buck-boost mode operating at the switching frequency; and transitioning to a boost-only mode when the error signal is in a third range of values, the boost-only mode operating at the switching frequency.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 18, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Dominique Romeo
  • Patent number: 10560021
    Abstract: A DC-DC converter includes: a first switch; a second switch connected to the first switch; a mode selecting circuit to select a converting mode from one of at least a first mode and a second mode based on an input voltage; and a controller to generate a first switching control signal for controlling the first switch based on the converting mode, and a second switching control signal for controlling the second switch based on the converting mode.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 11, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sung-Chun Park
  • Patent number: 10491104
    Abstract: An ACF power converter uses a soft start operation to reduce overheating and stress on components. The power converter includes a first transistor and second transistor. A high side driver controls the first transistor, and low side driver controls the second transistor. A first operating potential is provided to the low side driver during a first period of time. The second transistor switches based on an oscillator signal having a first rate of frequency change to generate a second operating potential for the high side driver, while attempting to hold the first transistor in the non-conductive state during a second time period. The first and second transistors switch based on the oscillator signal having a second rate of frequency change during a third time period. The power converter is held in ACF mode and inhibited from changing state for a period of time post soft start.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: November 26, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Bryan Wayne McCoy, Ajay Karthik Hari
  • Patent number: 10483853
    Abstract: A DC-DC converter may include a first lower FET and a first upper FET connected in series between a high potential output wiring and a low potential wiring, and a second lower FET and a second upper FET connected in series between the high potential output wiring and the low potential wiring. Diodes may be connected to the upper FETs in parallel. A main reactor may be connected to the high potential input wiring. A first sub-reactor may be connected between the main reactor and the first lower FET. A second sub-reactor may be connected between the main reactor and the second lower FET. The first upper FET and the second upper FET are not turned on during a zero-cross mode.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 19, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ken Toshiyuki, Masaki Okamura
  • Patent number: 10439490
    Abstract: A rectifier, including: a first and a second input terminal, a first output terminal and at least one rectifying circuit. Each rectifying circuit including: a switching circuit including a transistor, and a driving circuit. The driving circuit is coupled to the switching circuit and controls a switching status of the switching circuit, and includes a totem-pole circuit and an input transistor. The totem-pole circuit includes an input terminal and an output terminal coupled to the transistor. The input transistor is coupled between the totem-pole circuit and the switching circuit. The at least one rectifying circuit includes a first and a second rectifying circuit. The transistors of the first rectifying circuit and the second rectifying circuit are coupled to the first output terminal. The input transistors of the first rectifying circuit and the second rectifying circuit are coupled to the first input terminal and the second input terminal, respectively.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 8, 2019
    Assignee: FSP TECHNOLOGY INC.
    Inventor: Kuo-Fan Lin
  • Patent number: 10416378
    Abstract: Techniques and mechanisms for providing a bridge between integrated circuit (IC) chips. In an embodiment, the bridge device comprises a semiconductor substrate having disposed thereon contacts to couple the bridge device to two IC chips. Circuit structures and photonic structures of a bridge link are integrated with the substrate. The structures include an optical waveguide coupled between an electrical-to-optical signal conversion mechanism and an optical-to-electrical conversion mechanism. The bridge device converts signaling from an electrical domain to an optical domain and back to an electrical domain. In another embodiment, optical signals received via different respective contacts of an IC chip are converted by the bridge device, where the optical signals are multiplexed with each other and variously propagated with the same optical waveguide.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: September 17, 2019
    Assignee: Intel Corporation
    Inventors: Zhichao Zhang, Kemal Aygun, Robert L. Sankman
  • Patent number: 10389163
    Abstract: Enhanced reverse boosting detection in a wireless charging scheme is disclosed. In some implementations, a minimum mid-level input voltage regulation (VMID_MIN regulation) loop is provided to regulate an input voltage from a wirelessly coupled power source when a mid-level of the input voltage falls below a predetermined threshold. The input voltage is provided to a buck converter within a wireless charging receiver. An input missing poller signal generator is provided to generate an input missing poller (IMP) signal if the VMID_MIN regulation loop becomes active and the buck converter has entered a discontinuous mode.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 20, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: David Wong, Neal Horovitz, Ta-Tung Yen, Sanghwa Jung, Cheong Kun, Kin Siu Fung
  • Patent number: 10389250
    Abstract: A DC-DC converter includes an inductor, and generates a regulated voltage from a power source. The current flow through the inductor is increased at a first rate in a first interval. In a second interval, the current flow through the inductor is either increased at a second rate or decreased at a third rate depending on whether the regulated voltage is required to be respectively less than or greater than a voltage of the power source. The current flow through the inductor is decreased at a fourth rate in a third interval. The sequence formed by the first interval, the second interval and the third interval is repeated, and followed for all values of the regulated voltage from a lower threshold to higher threshold. The higher threshold has a value greater than the voltage of the power source. The lower threshold is zero volts.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: August 20, 2019
    Assignee: Aura Semiconductor Pvt. Ltd
    Inventors: Hariharan Srinivasan, Arnold J D'Souza, Shyam Somayajula
  • Patent number: 10382086
    Abstract: A high-frequency switch module (10) includes a switch element (20) and an inductor (30). The switch element (20) includes a Hi band common terminal (P10), a Low band common terminal (P20), a plurality of selection target terminals (P11 to P14) that are selectively connected to the common terminal (P10), and a plurality of selection target terminals (P21 to P24) that are selectively connected to the common terminal (P20). The inductor (30) is connected between a first selection target terminal (P14) of the selection target terminals (P11 to P14) and a selection target terminal (P21) of the selection target terminals (P21 to P24). The selection target terminal (P14) and the selection target terminal (P21) are simultaneously used terminals that are used for electric paths through which transmission or reception using a plurality of communication bands is performed at the same time.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: August 13, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Takanori Uejima
  • Patent number: 10381930
    Abstract: The three-port direct current converter comprising: at least one input direct current source; at least one storage battery; a primary side circuit; a secondary side circuit; a first single magnetic component shared by the primary side circuit and the secondary side circuit, wherein the primary side circuit comprises a connection between the at least one input direct current source and the at least one storage battery, the primary side circuit configured for operating as a buck converter; a second magnetic component serially coupled to the first single magnetic component, wherein the first and second magnetic components are configured to perform a voltage step-up, wherein the secondary side circuit comprises a connection between the at least one storage battery and at least one load, the secondary side configured for operating as a tapped boost converter; wherein the three-port direct current converter is configured to operate in two mutually exclusive power flow configurations.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 13, 2019
    Assignee: Danmarks Tekniske Universitet
    Inventor: Maria Del Carmen Mira Albert
  • Patent number: 10355604
    Abstract: The present invention provides a control circuit and a control method for a switch circuit and a switching-mode power supply circuit. The control method comprises following steps: detecting an output voltage or an output current, and adjusting an upper limit value and a lower limit value of an inductor current according to a result of comparing the output voltage or the output current with the corresponding reference; and sampling the inductor current, and controlling a main switch transistor in the circuit to be switched off when a sampling current rises to the upper limit value, and controlling the main switch transistor to be switched on when the sampling current drops to the lower limit value. In the present invention, the inductor current is fast in response without overshoot, the output voltage drops very little, there is no overshoot in a process of voltage recovery, and circuit transient response is fast.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 16, 2019
    Assignee: JOULWATT TECHNOLOGY (HANGZHOU) CO., LTD.
    Inventors: Pitleong Wong, Siopang Chan, Yuancheng Ren, Xunwei Zhou
  • Patent number: 10326351
    Abstract: A switching regulator includes: a controller power ON reset (POR) circuit, a controller post-POR signal generation circuit, and a pulse width modulation (PWM) signal generation circuit. The controller post-POR signal generation circuit switches the controller post-POR signal to a ready level after a controller pre-POR signal is switched to a controller reset-accomplished level and a driver signal starts switching levels to operate a power switch. The PWM signal generation circuit sets a duty ratio of a PWM signal to a predetermined minimum duty ratio after the controller pre-POR signal is switched to the controller reset-accomplished level and before the controller post-POR signal is switched to a ready level.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: June 18, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Li-Di Lo, Isaac Y. Chen, Chien-Fu Tang
  • Patent number: 10320294
    Abstract: A discharging method of a bus capacitor, a controller, a DC-DC converter and an inverter are provided. After a DC-DC converter or an inverter is powered off, in a case that a detected voltage across a bus capacitor of the DC-DC converter or the inverter is determined to meet a preset condition, a switch of the DC-DC converter or the inverter is controlled to be turned on or turned off to cause the bus capacitor, the switch, and a reactor of the DC-DC converter or the inverter to form a current loop, until the voltage does not meet the preset condition. Based on the method, discharging function is achieved for the bus capacitor after the DC-DC converter or the inverter is powered off, without the need for an additional discharging circuit, which solves problems caused by the additional discharging circuit required in the conventional technology.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 11, 2019
    Assignee: SUNGROW POWER SUPPLY CO., LTD.
    Inventors: Tao Jiang, Peng Chen, Xiaofei Wang, Fei Li
  • Patent number: 10312951
    Abstract: According to embodiments of the present disclosure, circuitry (400, 600) and method (800) are provided for controlling a power amplifier (10) in a transmit/receive switching system. The circuitry (400, 600) comprises a load circuit (420, 620) for at least partly reducing a magnitude of a swing of a power supply voltage caused by a variation in load of the transmit/receive switching system that occurs upon initiation of a transmission by the transmit/receive switching system. The circuitry (400, 600) further comprises a first switch (410, 610), coupled in series with the load circuit (420, 620), operable to switch on to couple the power supply voltage to a ground voltage via the load circuit (420, 620). The circuitry (400, 600) further comprises a control circuit (430, 630) configured to switch on the first switch (410, 610) at a first timing, and to switch off the first switch (410, 610) and turn on the power amplifier (10) at a second timing. The first timing is a time interval ahead of the second timing.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: June 4, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Xiaolong Yue, Lei Zhang, Zhanyu Wu, Jiangyan Peng
  • Patent number: 10314156
    Abstract: A RF amplifier is provided that includes a plurality of switch modules connected in a cascade configuration and divided into disjoint sets in accordance with their corresponding distinct peak DC voltages or currents, each switch module including a plurality of switch devices connected in a half-bridge or full-bridge circuit and a DC voltage or current source electrically connected with the half-bridge or full-bridge circuit, and a control circuit configured to determine an output voltage or current of the RF amplifier at the next switching interval, examine the states of the switching devices in the respective switch modules to identify a combination of least-recently-switched switching devices within each set of switch modules that, when switched to an opposite state, will produce the determined output voltage or current, and switch to an opposite state, at the next switching interval, the switching devices in the identified combination.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 4, 2019
    Assignee: Advanced Energy Industries, Inc.
    Inventor: Gideon Van Zyl
  • Patent number: 10298118
    Abstract: Systems and methods for providing self-driven active AC rectification are provided. In particular, a power conversion system for providing self-driven active AC rectification can be provided. The system can include an input for receiving AC power, a first capacitor and a second capacitor electrically connected in series. The first and second capacitors can also be electrically connected in parallel with a rectifier's load. The system can include a low-side switching element and a shunt resistor electrically connected between the rectifier's load and a system ground. The power conversion system can also include a low-side feedback control loop configured to obtain a low-side feedback signal based on a voltage across the shunt resistor and the low-side feedback control loop can be further configured to control the low-side switching element based, at least in part, on the low-side feedback signal.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 21, 2019
    Assignee: Haier US Appliance Solutions, Inc.
    Inventor: Isaac Nam
  • Patent number: 10298131
    Abstract: An apparatus for controlling a switching DC-DC converter with a first half-bridge circuit including a first switch and a second switch, with a second half-bridge circuit including a third switch and a fourth switch and with an inductance connected between the center taps of the first and the second half-bridge circuit includes, according to embodiments, a control unit that is configured to adapt, in dependence on an input voltage and an output voltage at the switching DC-DC converter, a switching frequency of the switches of the DC-DC converter, the duty cycles of the first and fourth switch and the time delay between switching on the first and the fourth switch. The control unit is configured to determine the switching frequency, the first duty cycle, the second duty cycle and the time delay based on an output current of the switching DC-DC converter.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 21, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Zhe Yu, Holger Kapels, Klaus F. Hoffmann
  • Patent number: 10277218
    Abstract: The present invention concerns a system comprising a multi-die power module composed of dies and a controller receiving plural consecutive input patterns for activating the dies of the multi-die power module. The dies are grouped into plural clusters of dies and the controller comprises means for outputting one gate to source signals for each cluster of dies, each outputted gate to source signal being different from the other gate to source signals and at least one first outputted gate to source signal reducing the activation of dies during at least one input pattern among the plural input patterns.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: April 30, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Jeffrey Ewanchuk, Stefan Mollov, Nicolas Voyer
  • Patent number: 10268260
    Abstract: An ATX dual-output power supply unit with buck detection compensation ability has a voltage compensation unit connected to a first motherboard and a second motherboard. The power supply unit includes a circuit buck detection unit, a switch buck detection unit, a summarizing unit and a gain-lag comparison unit. The circuit buck detection unit serves to detect the circuit voltage loss between the first and second motherboards to output a circuit loss signal. The switch buck detection unit serves to detect the switch voltage loss between the power supply unit and the first and second motherboards to output a switch loss signal. The summarizing unit serves to summarize the circuit loss signal and the switch loss signal to generate a total buck loss signal. According to the total buck loss signal, the gain-lag comparison unit drives the voltage compensation unit to perform voltage compensation.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 23, 2019
    Assignee: Ryantek Co., Ltd.
    Inventor: Liang-Chun Lu
  • Patent number: 10270439
    Abstract: A device to drive a plurality of power switches in a power converter with an input voltage port having an input voltage includes a drive resonant tank, a switch network, a control block configured to control the turn-on and turn-off of drive switches, and an output port. The drive resonant tank has a resonant inductor, and a resonant capacitor which includes an input capacitance of a power switch. The switch network has a plurality of drive switches, which are controlled such that the drive resonant tank goes through a resonant state and a pseudo clamp state consecutively during a switching period. A gate drive voltage of a power switch fluctuates slightly during the pseudo clamp state. The output port has two terminals coupled to a gate and a source of a power switch respectively.
    Type: Grant
    Filed: April 9, 2016
    Date of Patent: April 23, 2019
    Inventors: Hengchun Mao, Xuezhong Jia
  • Patent number: 10256720
    Abstract: Circuits and methods to achieve a hysteretic buck-boost converter system, separating buck and boost pulses based on monitoring a difference between the output voltage of the buck-boost converter and a reference voltage (error voltage) or alternatively based on monitoring additionally coil current or load current or both currents have been disclosed. The performance of the buck-boost converter can be further improved by using an optional output voltage change block monitoring if the output voltage rises or falls. The buck-boost converter disclosed has a very simple topology without a modulator block, which is regulating the duty cycle and without frequency compensation.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 9, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Kemal Ozanoglu, Guillaume de Cremoux, Pier Cavallini, Martin Faerber
  • Patent number: 10248145
    Abstract: A voltage regulator to provide a load current at an output node is presented. The voltage regulator has a pass transistor for providing the load current at the output node from an input node. The voltage regulator contains a driver stage to set a gate voltage at a gate of the pass transistor based on a drive voltage at a gate of a drive transistor. The voltage regulator has voltage regulation means to set the drive voltage in dependence of an indication of the output voltage at the output node and in dependence of a reference voltage for the output voltage. The driver stage has the drive transistor and a diode transistor, wherein the diode transistor forms a current mirror with the pass transistor. The driver stage has a current amplifier amplifies a drive current through the drive transistor to provide an amplified current through the diode transistor.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: April 2, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Dan Ciomaga, Mihail Jefremow, Stephan Drebinger, Fabio Rigoni
  • Patent number: 10211741
    Abstract: Systems and methods are provided for voltage regulation of power conversion systems. An example system controller includes: a first sampling component configured to sample a sensing signal and determine a compensation signal based on at least in part on the sensing signal, the sensing signal being associated with a first current flowing through a primary winding of a power conversion system; a signal processing component configured to receive a feedback signal and the compensation signal and generate a first signal based at least in part on the feedback signal and the compensation signal, the feedback signal being associated with an auxiliary winding coupled with a secondary winding of the power conversion system; an error amplifier configured to receive the first signal and a reference signal and generate an amplified signal based at least in part on the first signal and the reference signal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: February 19, 2019
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Yuan Lin, Zhiqiang Sun, Weihua Wang, Lieyi Fang
  • Patent number: 10205321
    Abstract: An electrical accumulator arrangement includes a plurality of energy storage modules having source and return leads. The source lead of a first energy storage module is connected to the return lead of a second energy storage module. The return lead of the first energy storage module is electrically isolated from the source lead of the second energy storage module to pulse voltage across rails of a multi-level direct current power bus.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: February 12, 2019
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Matthew L. Wilhide, Christopher J. Courtney
  • Patent number: 10175632
    Abstract: A power supply includes a first switching unit, a power restriction unit connected between the first switching unit and a load, a second switching unit connected between the power restriction unit and the load, a controller configured to output a control signal to the first switching unit and the second switching unit, and an adjusting unit configured to adjust input of the control signal to the second switching unit, and the second switching unit is operated selectively in accordance with the control signal.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: January 8, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryo Matsumura, Hiroshi Yadoiwa
  • Patent number: 10164534
    Abstract: A converter can include: (i) a first switch having a first terminal for receiving an input voltage, and a second terminal coupled to a first terminal of a second switch; (ii) an inductor having a first terminal coupled to a common node of the first and second switches, and a second terminal coupled to a first terminal of a third switch, where second terminals of the second and third switches are coupled to ground; and (iii) a plurality of output channels coupled to a common node of the inductor and the third switch, where the converter operates in a buck-boost mode, a buck mode, or a boost mode based on the relationship between the input voltage and output voltages of the plurality of output channels.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 25, 2018
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Kailang Hang, Liangwei Sun
  • Patent number: 10158350
    Abstract: The double pulse generator of the level shifter circuit takes out the rising edge and falling edge of the pulse width modulation signal PWM_H and generates corresponding narrow pulse signals. The two narrow pulse signals respectively pass through the pulse shaper to control the two field effect transistors in the switching circuit. The pulse width of the narrow pulse signal is not enough to completely switch on the two field effect transistors, so the generated waveform is a sawtooth wave; the drains of the two field effect transistors are respectively connected to the hysteresis-adjustable Schmidt trigger to restore the narrow pulse signal to the rising edge and falling edge pulse signal of the pulse width modulation signal PWM_HS with respect to the floating side VS, and then the signal is restored to the level-shifted pulse width modulation signal PWM HS after passing through the RS latch.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: December 18, 2018
    Assignees: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, INSTITUTE OF ELECTRONIC AND INFORMATION ENGINEERING OF UESTC IN GUANGDONG
    Inventors: Zehong Li, Xiao Zeng, Yuzhou Wu, Jiali Wan
  • Patent number: 10135342
    Abstract: A DC-to-DC converter and a power allocation method thereof are provided. The DC-to-DC converter includes a switching circuit and a power allocation circuit. The switching circuit is coupled to a DC power source to receive a DC input voltage and controlled by a first control signal to generate a pulse voltage. The power allocation circuit is coupled to the switching circuit to receive the pulse voltage and store an electrical energy. The power allocation circuit is further coupled to the DC power source. The power allocation circuit is controlled by a second control signal to convert the electrical energy into a DC output voltage and provides the DC output voltage to a load, or the power allocation circuit is controlled by the second control signal to recuperate the electrical energy to the DC power source.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: November 20, 2018
    Assignee: ACTRON TECHNOLOGY CORPORATION
    Inventor: Chia-Sung Yu
  • Patent number: 10121428
    Abstract: A power supply module includes a source driver power supply circuit, a gate driver power supply circuit, a first capacitor group, a second capacitor group and a switch module. The source driver power supply circuit and the gate driver power supply circuit are utilized for driving a source driver and a gate driver of a display device, respectively. The first capacitor group includes at least one first storage capacitor for storing electric charges for driving source driving signals, and at least one first flying capacitor. The second capacitor group includes at least one second storage capacitor for storing electric charges for driving gate driving signals, and at least one second flying capacitor. The switch module is utilized for switching the first capacitor group to be used for the gate driver power supply circuit or switching the second capacitor group to be used for the source driver power supply circuit.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: November 6, 2018
    Assignee: Sitronix Technology Corp.
    Inventors: Tsun-Sen Lin, Min-Nan Liao
  • Patent number: 10097089
    Abstract: A voltage converter includes a high side transistor, a low side transistor coupled to the high side transistor at a switching node, and an inductor coupled to the switching node and providing an output node. A controller is provided that is coupled to the high side transistor and the low side transistor. The controller is configured to selectively turn on and off the high and low side transistors in a repeat cycle. The controller is configured to control the high and low side transistors to cause a sequence of packets of charge to be delivered to the inductor. Also included is an adaptive timer circuit coupled to the output node and the controller and configured to adaptively adjust the amount of charge in each packet based on the voltage ripple of the output node.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: October 9, 2018
    Assignee: Texas Instruments Incorporated
    Inventors: Reza Sharifi, Kevin Scoones, Orlando Lazaro
  • Patent number: 10050531
    Abstract: Systems and methods related to controlling flux through an inductor of a power converter are described. For example, a control system is configured to control a multi-level converter having a first leg, a second leg, and at least one inductor. The control system includes a processor operatively coupled to a memory. The processor receives a reference signal. The processor determine flux through at least one inductor of a converter. The processor controls a temporal distribution of the flux through the at least one inductor based on the flux through the at least one inductor according to the reference signal.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: August 14, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Di Zhang, Ruxi Wang, Satish Prabhakaran
  • Patent number: 10050532
    Abstract: The DC-DC converter includes: a switching element connected between an inductor and a power supply terminal; a pseudo ripple generation circuit configured to generate a pseudo ripple voltage depending on a ripple component that is generated in the output voltage, and a smoothed voltage by smoothing the pseudo ripple voltage; a comparison circuit configured to combine a first comparison result obtained by comparing the pseudo ripple voltage and the smoothed voltage to each other, and a second comparison result obtained by comparing a reference voltage and a feedback voltage obtained by dividing the output voltage to each other, and output a comparison result signal; and an output control circuit configured to control the switching element to be turned on and off based on the comparison result signal. The comparison circuit is configured to output only the second comparison result, as the comparison result signal, when a load becomes lighter.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 14, 2018
    Assignee: ABLIC INC.
    Inventors: Akihiro Kawano, Katsuya Goto
  • Patent number: 10042375
    Abstract: A system for providing one or more voltages at predetermined magnitudes. The system may be supplied with power having a range of voltage magnitudes without affecting the predetermined magnitudes of the one or more voltages provided by the system and without a need to change circuitry of the system. The system may be connected, for example, from 28 VDC to 250 VAC without affecting the predetermined magnitudes of the output voltage or voltages. This system is protected from a mistaken power hook-up thought to be for 28 VDC but actually being connected to 250 VAC, which could be a disaster for a system not having the present circuitry. The system may be used for supplying power for opto-couplers in relay detection and other applications. The system may incorporate lightning and reverse polarity protection, reference and regulated voltages, an output driver, and input isolation circuitry.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: August 7, 2018
    Assignee: Honeywell International Inc.
    Inventors: Rick Solosky, John Evers
  • Patent number: 10044272
    Abstract: A transmitting device including: a modem configured to generate a baseband signal and an envelope data corresponding to the baseband signal; a supply modulator including a first switched-mode power supplier and a second switched-mode power supplier, the supply modulator configured to provide a modulated voltage to an output node based on the envelope data; and a power amplifier configured to amplify a carrier wave signal by using the modulated voltages, the carrier wave signal being associated with the baseband signal, wherein the first switched-mode power supplier includes: a pulse input node to receive a pulse signal generated in association with the envelope data; and a plurality of stages sequentially connected between the pulse input node and the output node, the plurality of stages configured to adjust the modulated voltage by filtering certain frequency band of the pulse signal, and the plurality of stages includes at least one variable impedance.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 7, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji Seon Paek, Dongsu Kim, Younghwan Choo
  • Patent number: 10038382
    Abstract: A voltage regulator including a converter and a modulator. The converter includes a switching circuit coupled to an inductor for converting an input voltage to an output voltage. The modulator controls the switching circuit in a buck mode of operation, a boost mode of operation, and an intermediate buck-boost mode of operation. During the buck-boost mode of operation, the modulator controls the switching circuit during each switching cycle to sequentially switch between three different switching states, including a first switching state that applies the input voltage across the inductor, a second switching state that applies a difference between the input and output voltages across the inductor, and a third switching state that applies the output voltage across the inductor. The modulator is controlled based on voltage applied across or current flowing through the inductor to regulate the output voltage to a target level.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: July 31, 2018
    Assignee: Intersil Americas LLC
    Inventors: M. Jason Houston, Eric M. Solie
  • Patent number: 10033279
    Abstract: A DC-DC voltage converter and associated control method capable of dynamically adjusting upper boundary of the inductor current are provided. The DC-DC voltage converter is electrically connected to an input terminal having an input voltage and an output terminal having an output voltage. The DC-DC voltage converter converts the input voltage to the output voltage, and the DC-DC voltage converter operates in a pulse frequency modulation mode. The DC-DC voltage converter includes an inductor and a converting circuit, which are electrically connected to each other. An inductor current flows through the inductor. The converting circuit adjusts the inductor current according to a setting signal so that the inductor current is less than or equivalent to an upper boundary of the inductor current.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: July 24, 2018
    Assignee: MEDIATEK SINGAPORE PTE. LTD.
    Inventors: Tun-Shih Chen, Fan Yang
  • Patent number: 9972998
    Abstract: Buck converters with self-protection against short circuit at the buck converter outputs and intrinsic soft start-up circuitry are disclosed. The methods and circuits disclosed are applicable for PFM and PWM modulated converters. The methods disclosed are also applicable for boost converters against shorts between boosted voltage and supply voltage.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 15, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Vincenzo Bisogno
  • Patent number: 9948240
    Abstract: Dual-output power converter circuitry includes an input node, a first output node, a second output node, a number of capacitive elements, and a number of switching elements. The switching elements are coupled between the input node, the first output node, the second output node, and the capacitive elements. In operation, the switching elements charge and discharge the capacitive elements such that a power supply output voltage is provided asynchronously to the first output node and the second output node.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: April 17, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay
  • Patent number: 9929639
    Abstract: The present invention is directed toward a switching power supply and improvements thereof. In accordance with an embodiment, a switching power supply is provided.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 27, 2018
    Assignee: Champion Microelectronic Corporation
    Inventor: Jeffrey Hwang
  • Patent number: 9898021
    Abstract: The present disclosure illustrates a dual-mode regulator circuit comprising: a first output terminal; a second output terminal; a switching regulator circuit coupled to the first output terminal and comprising a first transistor coupled between the first output terminal and ground; a linear regulator circuit coupled to the second output terminal and comprising a second transistor coupled between the second output terminal and a power source; a detection circuit configured to turn on the first transistor in order to connect the first output terminal to ground, turn on the second transistor in order to connect the second output terminal to the power source, and then generate a detection signal indicating whether an inductor is connected between the first and second output terminals; and a logic circuit configured to activate the switching regulator circuit or the linear regulator circuit according to the detection signal.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: February 20, 2018
    Assignee: Nuvoton Technology Corporation
    Inventor: Chung-Ming Hsieh
  • Patent number: 9882471
    Abstract: An apparatus for processing electric power includes a power-converter having a path for power flow between first and second power-converter terminals. During operation the first and second power-converter terminals are maintained at respective first and second voltages. Two regulating-circuits and a switching network are disposed on the path. The first regulating-circuit includes a magnetic-storage element and a first-regulating-circuit terminal. The second regulating-circuit includes a second-regulating-circuit terminal. The first-regulating-circuit terminal is connected to the first switching-network-terminal and the second-regulating-circuit terminal is connected to the second switching-network-terminal. The switching network is transitions between a first switch-configuration and a second switch-configuration. In the first switch-configuration, charge accumulates in the first charge-storage-element at a first rate.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: January 30, 2018
    Assignee: Peregrine Semiconductor Corporation
    Inventor: David Giuliano
  • Patent number: 9837927
    Abstract: A power supply device includes a main unit and a power switching module. The main unit includes a primary circuit board, a transformer including a primary and a secondary coil, a primary-side circuit and a secondary-side circuit. The power switching module includes a separate PCB formed with at least two connection pads and two conductive tracks, and at least one power switching element disposed on the PCB and having two terminals respectively connected to the two connection pads through the two conductive tracks. The power switching module is in the form of a separate PCB that is electrically connected to the primary- or secondary-side circuits through the two connection pads.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: December 5, 2017
    Assignees: Lite-On Electronics (Guangzhou) Limited, Lite-On Technology Corp.
    Inventors: Wei-Cheng Yu, Chi-Che Wu, Liang-Hong Wang
  • Patent number: 9825525
    Abstract: A tunable DC voltage generating circuit includes: a resonance circuit including an inductor and an input capacitor coupled in a series connection, and arranged to operably receive an input signal and to operably generate a resonance signal at an output node between the inductor and the input capacitor; a rectifying circuit coupled with the output node and arranged to operably rectify the resonance signal; a current control unit coupled with an input of the rectifying circuit and coupled with the inductor or the input capacitor in a parallel connection; a stabilizing capacitor coupled with an output of the rectifying circuit and arranged to operably provide a DC output signal having a voltage level greater than that of the input signal; and a control circuit arranged to operably adjust a current passing through the current control unit according to a setting signal to thereby manipulate the DC output signal.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: November 21, 2017
    Assignee: Richtek Technology Corporation
    Inventors: Kuo-Chi Liu, Wei-Hsin Wei