Including Pre Or Post Regulation Patents (Class 323/266)
  • Patent number: 8633680
    Abstract: In one general aspect, an apparatus can include a controller, and a power stage coupled to the controller and configured to be coupled to a power source. The power stage is configured to deliver an output voltage to a load module in response to the controller. The apparatus also includes a reference voltage circuit coupled to the controller and configured to be grounded to a first ground voltage different from a second ground voltage associated with the load module.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: January 21, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Bin Zhao, Jack Cornish, Victor Lee
  • Patent number: 8610411
    Abstract: The disclosed embodiments relate to a power-supply circuit, an electronic device that includes the power-supply circuit, and a method for generating high-voltage DC power from AC line power using the power-supply circuit. This power-supply circuit includes a voltage multiplier and a low dropout (LDO) regulator, and does not include a step-up transformer. Conventional power supplies often use a custom step-up transformer, which is expensive unless the power supplies are manufactured in high quantities. In contrast, one embodiment of the present disclosure provides a solid-state implementation of a 700 V regulated power supply that can take up to a 1020 V input from an 6× voltage multiplier powered from the AC mains. Hence, the disclosed power-supply circuit eliminates the need for large, heavy and expensive step-up transformers and chokes that are used in conventional high-voltage DC power supplies.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: December 17, 2013
    Assignee: Apple Inc.
    Inventors: Eric Smith, P. Jeffrey Ungar, Heather R. Sullens
  • Patent number: 8587282
    Abstract: An integrated circuit device for a switching regulator, includes: a controller configured to generate a digital duty signal for a current mode control of the switching regulator based on an output voltage to be supplied from the switching regulator to a load circuit; and a switching pulse generating section configured to set a time ratio of a switching pulse signal for controlling turning-on and turning-off of a switching circuit which is provided in the switching regulator, based on the digital duty signal. The controller is a digital circuit which operates based on a master clock of the same frequency as a switching frequency of the switching circuit.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: November 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroyuki Ooba
  • Patent number: 8581561
    Abstract: Disclosed herein are a DC-DC boost converter circuit, which is capable of preventing power loss and stabilizing switching elements by implementing soft switching and improving efficiency by adding a charge pumping function, and a method for driving the same. The DC-DC boost converter circuit, in which an inductor and an output diode are connected in series and an output capacitor and a load are connected to an output port of the output diode in parallel, includes an output stabilization circuit in which first and second switching elements, a transformer, a plurality of boost capacitors, and a plurality of diodes are connected in series/parallel between the inductor and the output diode.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 12, 2013
    Assignees: LG Display Co., Ltd., Postech Academy-Industry Foundation
    Inventors: Jae-Jung Yun, Jung-Jae Kim, Bong-Koo Kang, Young-Ho Hwang, Hyung-Jin Choe
  • Patent number: 8581560
    Abstract: A voltage regulator circuit comprises active and standby amplifiers, first and second transistors, and a capacitor. The active amplifier has a negative input connected to a first reference voltage, and the standby amplifier has a negative input connected to a second reference voltage. The first reference voltage is greater than the second reference voltage. The first transistor has a gate connected to an output of the active amplifier and a drain connected to a voltage regulated output, and the second transistor has a gate connected to an output of the standby amplifier and a drain connected to the voltage regulated output. The capacitor is connected between a chip enable signal and the voltage regulated output.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 12, 2013
    Assignee: Elite Semiconductor Memory Technology Inc.
    Inventor: Chung-Zen Chen
  • Patent number: 8582333
    Abstract: Switched capacitor networks for power delivery to packaged integrated circuits. In certain embodiments, the switched capacitor network is employed in place of at least one stage of a cascaded buck converter for power delivery. In accordance with particular embodiments of the present invention, a two-stage power delivery network comprising both switched capacitor stage and a buck regulator stage deliver power to a microprocessor or other packaged integrated circuit (IC). In further embodiments, a switched capacitor stage is implemented with a series switch module comprising low voltage MOS transistors that is then integrated onto a package of at least one IC to be powered. In certain embodiments, a switched capacitor stage is implemented with capacitors formed on a motherboard, embedded into an IC package or integrated into a series switch module.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 12, 2013
    Assignee: Intel Corporation
    Inventors: Bradley S. Oraw, Telesphor Kamgaing
  • Patent number: 8575997
    Abstract: A circuit for downscaling voltage comprising: a voltage regulator; a voltage reference register configured to provide a voltage reference value; a voltage comparator configured to output a logical one if a supply voltage of the voltage regulator is greater than the voltage reference value, wherein a first input of the voltage comparator is coupled to output of the voltage regulator and a second input of the voltage comparator is coupled to output of the voltage reference register; an AND gate, where a first input of the AND gate is coupled to output of the voltage comparator and a second input of the AND gate is coupled to a voltage reference ready signal; a switch configured to close based on output of logical one from the AND gate; and a pull-down resistor configured to couple to the output of the voltage regulator only if the switch is closed.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: November 5, 2013
    Assignee: Atmel Corporation
    Inventors: Mickael Le Dily, Moise Carcaud
  • Patent number: 8570006
    Abstract: A circuit, device, and method for controlling a buck-boost circuit includes a bootstrap capacitor voltage regulator circuit and a comparator circuit. The bootstrap capacitor voltage regulator circuit is electrically coupled to a buck-mode bootstrap capacitor of the buck-boost converter and to a boost-mode bootstrap capacitor of the buck-boost converter. The comparator circuit is configured to control the bootstrap capacitor voltage regulator circuit to maintain a voltage of the bootstrap capacitors above a reference threshold voltage by transferring an amount energy from one of the bootstrap capacitors to the other bootstrap capacitors based on the particular mode of operation of the buck-boost converter.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 29, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Zaki Moussaoui, Jun Liu
  • Patent number: 8564261
    Abstract: A power converting apparatus is provided with a step-up chopper circuit (2) that steps-up an input voltage (Vi) from a distributed power supply, an inverter circuit (3) that converts the output voltage (Vd) of the step-up chopper circuit (2) into alternating current, a first control circuit for controlling the output voltage (Vd), and a second control circuit for controlling the chopper input current (Ii). The first control circuit generates a target current value (Ir) so as to make the output voltage (Vd) become a target output voltage value (Vr). The second control circuit controls the step-up chopper circuit (2) so as to make the chopper input current (Ii) become the target current value (Ir). The first control circuit also has a low-pass filter (23a) that removes ripple components included in the output voltage (Vd).
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 22, 2013
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Fumiiki Yoneda
  • Patent number: 8564260
    Abstract: A circuit converts an input voltage to an output voltage. The circuit includes a first stage voltage converter that receives the input voltage and converts the input voltage. The first stage voltage converter includes a first buck converter having a double rail output: a first rail at a high intermediate voltage and a second rail at a low intermediate voltage. The circuit also includes a second stage voltage converter that receives the output rails and produces the output voltage.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 22, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Francesco Carobolante, Aleksandar Prodic
  • Patent number: 8564982
    Abstract: A power supply circuit to detect whether or not abnormal current is generated in a power factor compensation circuit and forcibly stop an operation of an interleaved power factor compensation circuit controller if abnormal current is generated. The power supply circuit includes a rectifier, a power factor compensation circuit including a plurality of reactors, a plurality of switches and a plurality of current detectors, a power factor compensation circuit controller to control switching of the switches and to control a power factor compensation operation, and a power factor compensation circuit protection circuit to receive the voltages output from the plurality of current detectors and to stop the operation of the power factor compensation circuit controller if at least one of the voltages output from the plurality of current detectors is abnormal. Thus, it is possible to prevent failure of the switches and the current detectors due to abnormal current.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: October 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho Gul Song, Kyoung Hoe Kim, Jong Hun Ha, Dae Hee Han, Yong Wook Kim
  • Patent number: 8559201
    Abstract: A grid-connected inverter includes first and second power conversion circuits, a contactor and a control circuit. The first conversion circuit converts a first DC voltage to a second DC voltage. The second conversion circuit converts the second DC voltage to an AC voltage. The contactor connects an output side of the second conversion circuit to a power system. The control circuit includes a decision circuit and controls start and stop operations of the conversion circuits, and opening and closing of the contactor. The decision circuit decides whether a condition of the contactor is abnormal by detecting, after the control circuit controls the contactor to be open, whether or not a value of the second DC voltage is less than a threshold value, and if the value of the second DC voltage is detected to be not less than the threshold value, decides that the condition of the contactor is abnormal.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: October 15, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kansuke Fujii, Toshiya Yamada, Masaki Katoh
  • Patent number: 8552699
    Abstract: An EMI reduction network for a converter, the converter including upper and lower power switches provided between an input voltage node and a reference node. An inductance is coupled between the input voltage node and the upper switch at a first node, a capacitance and an auxiliary power switch are coupled in series between the first and reference nodes, and a controller is provided to control switching. The controller switches the upper switch based on a PWM signal. The controller keeps the lower switch turned on until the phase node goes positive while the upper switch is on. The controller turns the auxiliary switch on after the lower power switch is turned off and turns the auxiliary switch off after the upper power switch is turned off. The lower and auxiliary switches may be zero voltage switched, and the upper switch may be zero current switched.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 8, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Zaki Moussaoui, Jifeng Qin, Colm Brazil
  • Patent number: 8547073
    Abstract: A DC power supply system delivers a DC output that has a neutral point and is higher than the input voltage of a single DC power supply, by a circuit with series-connected switching elements. The DC power supply system addresses the problem of imbalance between the voltage between a positive terminal and the neutral point and the voltage between a negative terminal and the neutral point. In operational control of the DC power supply system, a capacitor voltage between the neutral point and the positive terminal and a capacitor voltage between the neutral point and the negative terminal are compared, and four switching elements are operated to equalize the two capacitor voltages.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 1, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Kansuke Fujii
  • Patent number: 8542001
    Abstract: In a power circuit for reducing standby power consumption, a power supply is defined to include a primary power system and a stationary power system. The stationary power system outputs a stationary power after obtaining an input power. A control unit controls ON/OFF of the primary power system, obtains the stationary power as the required power, and receives a PS ON/OFF signal for triggering the control unit, so that the control unit controls the primary power system to supply a primary output power. The power supply includes a switch unit having two ends connected to a power circuit for outputting the stationary power and a virtual load respectively. The PS ON/OFF signal is provided for controlling the switch unit. If the switch unit does not receive the PS ON/OFF signal, it is OFF in a standby mode to avoid unnecessary power consumption of the virtual load.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 24, 2013
    Assignee: Zippy Technology Corp.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Yi-Hua Wang, Heng-Chia Chang
  • Patent number: 8531150
    Abstract: A DCDC converter includes a switching circuit, to an input end of which an input filer circuit is connected, a smoothing filter circuit connected to an output end of the switching circuit and including a reactor and a capacitor, and a control unit that feeds back a state amount of the smoothing filter circuit and turns the switching circuit on and off. The control unit includes a damping control unit that calculates, based on the voltage of the capacitor, a damping operation amount for adjusting a state amount of the smoothing filter circuit.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: September 10, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hidetoshi Kitanaka
  • Patent number: 8531164
    Abstract: An operational transconductance amplifier used in conjunction with a multiple chip voltage feedback technique allows multiple strings of LEDs and current sinks to be efficiently powered by a simple feedback oriented voltage regulator within an appliance. A connected series of differential amplifiers or multiplexors are used to monitor the voltages between the connected LEDs and the current sinks, in order to progressively determine the lowest voltage. The operational transconductance amplifier compares this voltage to a reference voltage and injects or removes current from the feedback node of a voltage regulator, thereby altering the voltage present at the feedback node. This causes the voltage regulator to adjust its output, ensuring that the current sinks of the LED strings have adequate voltage with which to function, even as the LEDs have different forward voltages and the strings are asynchronously enabled and disabled.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: September 10, 2013
    Assignee: Advanced Analogic Technologies Incorporated
    Inventor: Kevin D'Angelo
  • Patent number: 8525495
    Abstract: A control circuit for a buck-boost circuit includes an inductor current sensor and an input current generator. The input current generator accepts a signal from the inductor current sensor and outputs a synthesized and integrated signal representing the average input current to the buck-boost circuit. The input current generator averages the inductor current signal or a zero signal based on the state of the buck switch in the buck-boost circuit.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: September 3, 2013
    Assignee: Lincoln Global, Inc.
    Inventors: Paul Werle, Todd E Kooken
  • Patent number: 8506771
    Abstract: A bipolar pulsed power supply which supplies power in a bipolar pulsed mode at a predetermined frequency to a pair of electrodes that come into contact with a plasma is arranged to reduce the switching loss of the switching elements in a bridge circuit, and also to attain a high durability without using high-performance switching elements. The bipolar pulsed power supply has: a bridge circuit constituted by switching elements SW1 through SW4 connected to positive and negative DC outputs from a DC power supply source; and a control means for controlling switching ON or OFF of each of the switching elements in the bridge circuit. An output-short-circuiting switching element SW0 is disposed between the positive and the negative DC outputs from the DC power supply source such that, in a short-circuited state of the output-short-circuiting switching element, each of the switching elements in the bridge circuit is switched by the control means.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: August 13, 2013
    Assignee: ULVAC, Inc.
    Inventors: Yoshikuni Horishita, Atsushi Ono, Wataru Oshima
  • Patent number: 8508195
    Abstract: A PFC converter that prevents and reduces switching losses by controlling ripple of inductor current and enables application for high power usage, includes a switching device that is turned off when an inductor current flowing through an inductor reaches a first threshold value, and turned on when the inductor current reaches a second threshold value. A switching control circuit sets a reference value of the inductor current using results from an input voltage detection circuit and an output voltage detection circuit. The first threshold value is produced by adding a predetermined value to the reference value, and the second threshold value is produced by subtracting the predetermined value from the reference value.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 13, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshiyuki Uno
  • Patent number: 8493137
    Abstract: Devices and circuits for voltage reference architectures that can increase the PSRR parameter by improving the saturation margin for an output transistor. For example, a device can include a current source coupled between a first power supply line and a circuit node, a voltage production circuit coupled between the circuit node and a second power supply line to produce a plurality of voltages respectively at voltage nodes thereof, a multiplexer coupled to the voltage nodes of the voltage production circuit and the output node and configured to select and output one of the voltages to the output node, and a control circuit configured to supply the one of the voltages to the circuit node.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 23, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Marco Passerini, Francesco Mannino, Chiara Missiroli
  • Publication number: 20130169246
    Abstract: A linear voltage regulating circuit adaptable to a logic system is disclosed. A first linear voltage regulator receives an input voltage and a first reference voltage. A second linear voltage regulator has a load driving capability lower than the first linear voltage regulator, and the second linear voltage regulator receives the input voltage and a second reference voltage. An output node of the first linear voltage regulator and an output node of the second linear voltage regulator are directly connected at a single common output node. A single common capacitor is connected between the common output node and a ground.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: SKYMEDI CORPORATION
    Inventor: Wen-Pin Shao
  • Publication number: 20130170608
    Abstract: Among other things, one or more techniques and/or systems are described for reducing a voltage ripple in an electric signal. In this way, in radiographic imaging modalities, for example, undesired fluctuations in an output of a radiation source (e.g., undesirable fluctuations in an energy level of emitted photons) may be reduced. To reduce the voltage ripple, a (ripple reducing) electric signal is generated that comprises properties substantially similar to the voltage ripple, but opposite in phase. The (ripple reducing) electric signal is then combined with the original electric signal to generate a combined electric signal with a voltage ripple that is reduced relative to the voltage ripple of the electric signal as initially generated.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: Analogic Corporation
    Inventor: Hans J. Weedon
  • Patent number: 8471544
    Abstract: A power controller including a processor which outputs a first output signal based on a first voltage in response to a clock signal, a selector which receives the first output signal via a first input terminal, and outputs a second output signal, a holding circuit which outputs a third output signal and holding data, based on the second output signal, a determination circuit which outputs a selector signal based on the holding data, and a control circuit which controls an output of the clock signal based on the selector signal. The selector receives the third output signal via a second input terminal, and outputs the first output signal or the third output signal as the second output signal.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 25, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hideyuki Takahashi
  • Patent number: 8471409
    Abstract: The present invention discloses a power conversion circuit. A control module controls a pulse width modulation regulator to regulate a duty cycle of a DC-DC converter according to the direct current link voltage of the DC-DC converter and the output current and voltage of a renewable power supply. The control module also controls the pulse width modulation regulator to regulate a duty cycle of a DC-AC inverter according to the direct current link voltage of the DC-DC converter, output voltage of a utility power supply, and the output current and voltage of the renewable power supply.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 25, 2013
    Assignee: Chung-Hsin Electric and Machinery Manufacturing Corp.
    Inventors: Jin-Ming Chang, Zhan-Yi Lin, Chen-Kun Chou, Yu-Ming Sun, Chi-Bin Wu
  • Patent number: 8467197
    Abstract: Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: June 18, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Milun Perisic, Ray M. Ransom, Lateef A. Kajouke
  • Patent number: 8467211
    Abstract: A bipolar pulsed power supply is provided in which, while effectively restricting the rise in current at the time of arcing which directly leads to the generation of splashes and particles, the occurrence of overvoltage at the time of polarity reversal is prevented. The power supply has a bridge circuit constituted by switching elements SW1 through SW4 connected to positive and negative DC outputs from a DC power supply source. The operation of the switching elements is controlled to output in a bipolar pulsed mode at a predetermined frequency to a pair of electrodes which come into contact with a plasma. There is provided an output-characteristics-switching circuit which switches the output such that, when outputting to the electrodes, the output to the electrodes has initially constant-voltage characteristics and subsequent output to the electrodes has constant-current characteristics.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: June 18, 2013
    Assignee: Ulvac, Inc.
    Inventors: Yoshikuni Horishita, Shinobu Matsubara, Atsushi Ono
  • Patent number: 8462470
    Abstract: An automatic power-off and actuation circuit for a fan comprises a drive unit, a detection unit, a voltage-modulating unit, a comparison unit, an auto-restart unit, a regulation unit and a controlled IC, wherein the detection unit is electrically connected to the drive unit, the voltage-modulating unit is electrically connected to the detection unit, the comparison unit is electrically connected to the voltage-modulating unit, the auto-restart unit is electrically connected to the comparison unit, the regulation unit is electrically connected to the auto-restart unit and the drive unit, and the controlled IC is electrically connected to the regulation unit and the drive unit.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: June 11, 2013
    Assignee: ADDA Corp.
    Inventors: Ching-Cheng Ma, Ting-Cheng Lan
  • Patent number: 8456145
    Abstract: The embodiments of the present invention disclose a single board energy-saving device, which includes: a power calculation module, configured to detect the input current of the single board, and calculate the real-time power of the single board according to the detected input current and a previously measured and obtained input voltage of the single board; a single board energy-saving control module, configured to determine the load condition of the single board according to the real-time power of the single board and send a voltage adjustment command according to the load condition; a power supply adjustment module, configured to receive the voltage adjustment command and adjust the bus voltage of the single board according to the voltage adjustment command. The corresponding embodiments of the present invention also disclose a single board energy-saving method and a single board. Through the foregoing technical solutions, energy-saving is realized for the single board.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 4, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Qingyin Fang
  • Patent number: 8456142
    Abstract: Power is supplied to an information handling system chipset with a single voltage regulator having dual phases. A first phase of the voltage regulator provides power to a low power state power rail in an independent mode to support a low power state, such as a suspend or hibernate state. A second phase of the voltage regulator provides power to a run power state power rail in combination with the first phase by activation of a switch, such as a MOSFET load switch, that connects the low power state power rail and the run power state power rail. Voltage sensed from both power rails is applied to control voltage output so that the run power state power rail is maintained within more precise constraints than the low power state power rail.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: June 4, 2013
    Assignee: Dell Products L.P.
    Inventors: Guangyong Zhu, Merle J. Wood, Joseph A. Clegg
  • Patent number: 8446134
    Abstract: A power supply for converting AC to a regulated DC output current, utilizing two serial switched mode power supplies, the first providing an intermediate DC output voltage with only moderate ripple properties, this output being input to the second, which operates as a DC/DC converter to provide the desired output with low ripple and good regulation. The diode rectifier assembly has no reservoir/smoothing capacitor, or one of much smaller capacitance than in prior art power supplies. The large resulting rectifier output ripple is overcome by use of the two power supply units, at least the first having a smoothing capacitor at its output. A majority of the energy stored in this capacitor is utilized during each AC half cycle. Such power supplies also provide improved hold-up times. The power supply is also constructed to have low standby power consumption, by use of a double burst configuration.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: May 21, 2013
    Assignee: Techtium Ltd.
    Inventors: Dror Manor, Pascal Lebens, Ronny Van Rooij
  • Patent number: 8436593
    Abstract: A boost circuit is used for power factor correction (PFC). In a low power application, transition mode control is utilized. However, switching frequency varies with different input voltages, and over a wide input voltage range, the switching frequency can become too high to be practical. To address this issue, a boost circuit is provided whose effective inductance changes as a function of input voltage. By changing the inductance, control is exercised over switching frequency.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 7, 2013
    Assignee: STMicroelectronics, Inc.
    Inventors: Jianwen Shao, Thomas Lea R. Hopkins
  • Patent number: 8432744
    Abstract: A semiconductor storage device according to an embodiment includes multiple memory cells which electrically rewrite data, a well control circuit which outputs an erasure voltage to be applied to a well through an output terminal, a first pump circuit which outputs a voltage set by boosting an input voltage to the output terminal, a second pump circuit which outputs a voltage set by boosting the input voltage to the output terminal and outputs a voltage higher than an output voltage of the first pump circuit, a pump switching detecting circuit which outputs an assist signal to perform a boosting operation on at least one of the first pump circuit and the second pump circuit and an erase pulse control circuit which sets target voltages of the first pump circuit and the second pump circuit, on the basis of setting values to set a target voltage of the erasure voltage.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 30, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Umezawa, Noriyasu Kumazaki, Daisuke Arizono, Mami Kakoi
  • Patent number: 8432142
    Abstract: Power over Ethernet (PoE) communication systems provide power and data communications over the same communications link, where a power source device (PSE) provides DC power (for example, 48 volts DC) to a powered device (PD). The DC power is transmitted simultaneously over the same communications medium with the high speed data from one node to the other node. The PSE typically includes a controller that controls the DC power provided to the PD at the second node of the communications link. The PSE controller measures the voltage, current, and temperature of the outgoing and incoming DC supply lines to characterize the power requirements of the PD. In addition, the PSE controller may detect and validate a compatible PD, determine a power classification signature for the validated PD, supply power to the PD, monitor the power, and reduce or remove the power from the PD when the power is no longer requested or required.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: April 30, 2013
    Assignee: Broadcom Corporation
    Inventors: Pieter Vorenkamp, Agnes Woo, Anil Tammineedi, Ichiro Fujimori, David Chin, John Perzow
  • Patent number: 8427120
    Abstract: The present invention is directed to a coupled inductor output filter to be used with DC/DC switched mode power supply topologies. This new output filter changes the inherent power sharing capability of most DC/DC converter topologies, enabling the overall converter to operate as a truly modular block with no inter-module communication required to accomplish power/current sharing on a multi-module configuration. The coupled-inductor output filter uses a split inductor, Lout1 and Lout2, a main output capacitor, Cout, and a DC blocking capacitor, CDC Block.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 23, 2013
    Assignee: Arkansas Power Electronics International, Inc.
    Inventor: Edgar Cilio
  • Patent number: 8422251
    Abstract: A circuit for operating a household appliance, wherein the circuit includes a switched-mode power supply for converting the power supply of a public power supply network into direct supply voltage. The circuit also includes a controller that is connected to the switched-mode power supply for being supplied with the direct supply voltage and for controlling processes of the household appliance. An EMC filter is provided to protect the public supply network from interference signals from the household appliance. The EMC filter includes a condenser that is connected between a phase conductor pole and a neutral conductor pole of the public power supply network; a bleeder resistor that is connected in parallel with the condenser; and a switch that can be activated by the controller to connect the condenser and the bleeder resistor to the neutral conductor pole.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: April 16, 2013
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Martin Bischoff, Lothar Knopp, Thomas Ludenia, Guido Sattler
  • Patent number: 8417980
    Abstract: A power supply connected to an electrical load that supplies an output voltage to the electrical load. The power supply includes a first portion having a fast transient response topology that supplies a first part of an output current, and a second portion having a slow transient response topology that supplies a second part of the output current, such that the second part of the output current does not increase or decrease as fast as the first part of the output current. Advantageously, embodiments of the invention provide a more efficient power supply design that converts part of the total power supply output current using a fast transient response portion and part using a slow transient response portion of the power supply. Additionally, embodiments of the invention provide an alternate current path for transporting large amounts of current to a GPU, while maintaining the efficiency of the overall current path.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: April 9, 2013
    Assignee: Nvidia Corporation
    Inventor: Ludger Mimberg
  • Patent number: 8415935
    Abstract: A power regulation scheme includes a first voltage regulation portion having a first voltage regulator, a second voltage regulator, and a switching system. The first voltage regulation portion is connected in parallel with a second voltage regulation portion. The second voltage regulation portion regulates an input voltage if an open condition occurs within the first voltage regulation portion. The switching system forces the second voltage regulator to regulate the input voltage if a short condition occurs within the first voltage regulator.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Patrick K. Egan, Jordan R. Keuseman, Michael L. Miller
  • Patent number: 8400135
    Abstract: A self-oscillating switch circuit is configured for use in a switching DC-DC converter (switched mode power supply (SMPS)). The self-oscillating switch circuit comprises an input terminal (Tin1, Tin2) for receiving power from a power supply (51) and an output terminal (Tont1, Tont2) for supplying power to a load. The load may be a high-power LED, for example. The self-oscillating switch circuit further comprises a power switch semi-> conductor device (Q1) having a control terminal and a control semi-conductor device (Q2) coupled to the power switch semi-conductor device. The power switch semi-conductor device is configured for controlling a load current between the input terminal and the output terminal and the control semi-conductor device is configured for supplying a control signal to the control terminal of the power switch semi-conductor device for controlling switching of the power switch semi-conductor device.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: March 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Jeroen Snelten
  • Patent number: 8400121
    Abstract: The present invention realized miniaturization of a power supply device using a multiphase system. The power supply device includes, for example, a common control unit, a plurality of PWM-equipped drive units, and a plurality of inductors. The common control unit outputs clock signals respectively different in phase to the PWM-equipped drive units. The clock signals are controllable in voltage state individually respectively. For example, the clock signal can be brought to a high impedance state. In this case, the PWM-equipped drive unit detects this high impedance state and stops its own operation. It is thus possible to set the number of phases in multiphase arbitrarily without using another enable signal or the like.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Ryotaro Kudo
  • Patent number: 8378647
    Abstract: A power supply unit includes multiple input terminals to which alternating-current power is input; a positive terminal and a negative terminal for outputting direct-current power; a rectifier circuit configured to rectify the input alternating-current power; a first inductor connected to the rectifier circuit; a first capacitor connected between the positive terminal and the negative terminal; a first rectifying device connected between the output terminal of the first inductor and the positive terminal and having a rectification direction in a direction from the output terminal of the first inductor toward the positive terminal; a switching device connected between an input terminal of the first rectifying device and the negative terminal; a second rectifying device and a second capacitor connected in parallel to the switching device; and a second inductor connected between a connection of the second rectifying device and the second capacitor and the positive terminal.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 19, 2013
    Assignee: Fujitsu Limited
    Inventors: Yu Yonezawa, Yoshiyasu Nakashima
  • Patent number: 8368789
    Abstract: Systems and methods for providing one or more reference currents with respective negative temperature coefficients are provided. A first voltage is divided to provide a divided voltage, which is compared to a reference voltage (e.g., a bandgap reference voltage) to provide a control voltage. The first voltage and the one or more reference currents are based on the control voltage.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 5, 2013
    Assignee: Aptina Imaging Corporation
    Inventors: Chen Xu, Yaowu Mo
  • Patent number: 8362753
    Abstract: A switching power supply circuit includes a power circuit, a switching circuit and a load. The switching circuit includes a first filter module, a power processing unit, a stability module, and a second filter module. The first filter module receives a voltage signal from the power circuit and sends a filtered first voltage signal to the power processing unit; the power processing unit outputs a second voltage signal, the stability module stabilizes the second voltage signal and sends a third voltage signal to the second filter module; the second filter module filters the third voltage signal and sends a drive voltage to the load. In response to the second voltage signal instantaneously changing from high to low or low to high, during the change in current, power of the second voltage signal is stored in the stability module and released through the second filter module.
    Type: Grant
    Filed: March 21, 2010
    Date of Patent: January 29, 2013
    Assignees: Innocom Technology (Shenzhen) Co., Ltd., Chimei Innolux Corporation
    Inventor: Jie-Jian Zheng
  • Publication number: 20130015827
    Abstract: A power management circuit and method are described. In the method, whether a first voltage and/or a voltage source are present is determined. Based on a first result of the determination, the first voltage is converted to a second voltage. A boost converter is used to convert the second voltage to a third voltage, Alternatively, based on a second result of the determination, a buck converter is used to convert the third voltage to the second voltage.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Justin SHI
  • Patent number: 8354828
    Abstract: A power supply with synchronized clocks includes a transformer for transforming an AC input voltage into a DC input voltage, a delay unit for delaying phase of a standard clock signal to generate a plurality of synchronization clock signals, a major DC-DC converter for adjusting voltage level and phase of the DC input voltage according to one of the plurality of synchronization clock signals to generate a major output voltage, and a plurality of parallel DC-DC converters each for adjusting voltage level and phase of the major output voltage according to one of the plurality of synchronization clock signals to generate a minor output voltage.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 15, 2013
    Assignee: Anpec Electronics Corporation
    Inventors: Wen-Hsiu Huang, Chih-Kuang Wu, De-Chin Lan
  • Patent number: 8350544
    Abstract: A voltage conversion device capable of enhancing conversion efficiency includes a charge pump for generating output voltage linear to input voltage according to the input voltage, a feedback unit for generating a feedback signal according to the output voltage generated by the charge pump, and a regulating unit for outputting and adjusting the input voltage according to the feedback signal provided by the feedback unit, so as to keep the output voltage unchanged.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 8, 2013
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Chih-Jen Yen, Tsung-Yin Yu
  • Patent number: 8350549
    Abstract: A converter utilizing synchronous rectification comprises a first switch, a second switch connected in series to the first switch, and a gate drive circuit controlling each switch to switch to on/off-state using pulse-width modulation. Each switch includes a channel region that is conductive in both forward and reverse directions in on-state and is not conductive in the forward direction in off-state, and a unipolar diode region conductive only in the reverse direction. The gate drive circuit synchronizes output timing for signal with which the first switch switches to on-state with output timing for signal with which the second switch switches to off-state, and synchronizes output timing for signal with which the first switch switches to off-state with output timing for signal with which the second switch switches to on-state.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 8, 2013
    Assignee: Panasonic Corporation
    Inventor: Makoto Kitabatake
  • Patent number: 8350541
    Abstract: There is provided a control circuit including a sampling controller configured to sample an output voltage of a power converter at an appropriate time slot by opening a control loop. A soft-start circuit configured to enable soft-starting of an internal soft-start reference voltage to start from the sampled output voltage and to control the internal soft-start reference voltage to a predetermined target value in order to pre-charge the output voltage close to an input voltage level, or to continue charging the output voltage to a predetermined output voltage value.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: January 8, 2013
    Assignee: Nokia Corporation
    Inventors: Martti Ojanen, Janne Tiisanoja
  • Publication number: 20130002213
    Abstract: A regulator structure includes a first differential amplifier having a first input coupled to a reference voltage node. A second differential amplifier has a first input coupled to the output of the first differential amplifier. A third differential amplifier has a first input coupled to the output of the first differential amplifier. A first pmos transistor has its gate coupled to the second differential amplifier output, and its drain coupled to a second input of each of the first and second differential amplifiers. A second pmos transistor has its gate coupled to the third differential amplifier output, and its drain configured to output a regulated voltage which is also a second input of the third differential amplifier. A circuit is configured to replicate the regulated voltage and couple the replicated regulated voltage to the drain of the first pmos transistor.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: STMICROELECTRONICS PVT. LTD.
    Inventors: Rupesh Khare, Nitin Bansal
  • Patent number: 8339115
    Abstract: Embodiments for at least one method and apparatus of controlling a bypass resistance of a voltage regulator are disclosed. One method includes generating a regulated output voltage based upon a switching voltage. The switching voltage is generated through controlled closing and opening of a series switch element and a shunt switch element, the series switch element and the shunt switch element being connected between voltages based on an input voltage. Control of a duty cycle of the switching voltage is provided by sensing and feeding back the regulated output voltage. The bypass resistance is controlled based on an integration of a difference between the duty cycle and a maximum duty cycle.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: December 25, 2012
    Assignee: R2 Semiconductor, Inc.
    Inventors: James E. C. Brown, Bret Rothenberg, Lawrence M. Burns