Calibration Patents (Class 324/202)
  • Patent number: 6501262
    Abstract: The invention relates to a method for applying to a carrier a marking serving to measure length, angle cr the like, such as, for example, a magnetic tape (4), by means of which the accuracy of the measurements is improved. In the case of such methods, in one marking step a means for producing a track with markings, for example a writing head (9), is guided over the carrier and, by virtue of the fact that the carrier is acted upon, markings, for example magnetic north and south poles, are applied therein at predetermined positions of the carrier.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: December 31, 2002
    Assignee: Schneeberger Holding AG
    Inventors: Hans-Martin Schneeberger, Frederic L. Way
  • Patent number: 6498474
    Abstract: A rotational sensor system for detecting rotational velocity and rotational direction of a rotating member, such as a vehicle axle, including a tone ring mounted to the rotating member. The system includes a pair of active sensors mounted adjacent to the tone ring and spaced from one another, which, when activated, produce an electric signal in response to movements in the tone wheel. A processor receives the electric signals from the sensors and generates a signal indicative of rotational velocity and rotational direction of the rotating member. Also, preferably, an output signal is created that uses square waves with different amplitude levels for the signal highs and lows depending upon the direction of rotation.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: December 24, 2002
    Assignee: Kelsey-Hayes Company
    Inventor: Jason D. Turner
  • Patent number: 6486654
    Abstract: A method for calibrating magnetic force microscopes (MFM) or scanning Hall probe microscopes (SHPM) is disclosed, wherein an instrument response function IRF is determined for correcting arbitrary raw MFM- or SHPM-images Si. According to one aspect of the invention a sample with an irregular magnetization pattern M over an extended area is provided, a raw MFM- or SHPM-image S is measured, an approximate sample magnetization pattern M0 and therefrom an approximate magnetic stray field distribution H0 are determined and an instrument response function IRF is calculated using the raw MFM- or SHPM-image S and the approximate magnetic stray field distribution H0. Other aspects of the calibration method consist in that the instrument response function IRF is calculated in Fourier space as IRF(k)=S(k)H0(k) and/or that averages or iterative calculations of instrument response functions IRFj (j=1 . . . m) are performed.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: November 26, 2002
    Assignee: Triple-O Microscopy GmbH
    Inventors: Hans Josef Hug, Petrus Johannes Antonius Van Schendel
  • Patent number: 6483301
    Abstract: A method for compensating mechanical stresses in measuring the magnetic field strength by Hall sensors is disclosed. It is proceeded in a manner that the electric resistance and/or a measuring quantity proportional to the electric resistance of the Hall sensor is determined in at least two different directions, that the mean value of the determined resistances and/or measuring quantities proportional thereto is calculated, and that the current conducted through the Hall sensor is chosen to be proportional to the mean value calculated.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: November 19, 2002
    Assignee: Austria Mikro Systeme International Aktiengesellschaft
    Inventor: Volker Kempe
  • Patent number: 6479986
    Abstract: A time/analog converter for adjusting the zero point and amplification of the output characteristic of a sensor includes an integrator whose output is connected to the input of a holding member. A reference voltage and the output voltage of the holding member occur at the input of the integrator. A control means actuates switches connecting the integrator to the holding member and applying the reference voltage and the output voltage to the input of the integrator so that the reference voltage is at the integrator input for a first time interval and the holding member output voltage is at the integrator input for a second time interval. The integrator output voltage is applied to the holding member for a third time interval. A controllable pulse shaper is connected to one of the switches and can close it for a required time interval. A related method is also described.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: November 12, 2002
    Assignee: ASM Automation Sensorik Messtechnik GmbH
    Inventors: Klaus-Manfred Steinich, Peter Wirth
  • Patent number: 6479993
    Abstract: An apparatus for detecting the presence or absence of foreign matter in a product is provided which includes a reaction signal generating circuit 2 for outputting a reaction signal associated with the product by detecting a change in pattern of distribution of magnetic fluxes when the product P is passed through an alternating magnetic field; a determining circuit 10 for comparing a value of the reaction signal at a predetermined phase point p1 with a threshold value SH to thereby determine the presence or absence of the foreign matter in the product; and a sensitivity adjusting circuit 12A for adjusting a sensitivity of the reaction signal generating circuit 2 so that the value of a first test reaction signal A at the predetermined phase point p1, which is obtained when a product P added with foreign matter of a minimum size to be detected is passed through the alternating magnetic field, attains a desired level relative to the threshold value SH.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: November 12, 2002
    Assignee: Ishida Co., Ltd.
    Inventor: Harunori Tokutsu
  • Patent number: 6476605
    Abstract: Inductive sensor for non-contact detection of discontinuities of a conductive or ferromagnetic target for determination of target position, movement and speed, or generally of a magnetic image, including a plurality of receiving secondary windings associated with each exciting primary winding, configured to obtain electric signals optimized as a function of the discontinuities of the target. The sensor, combined with a suitable electric measuring circuit, allows global analysis of the signals provided by the secondary windings and configuration of a network in accordance with a predefined selection. An adaptive circuit allows auto-calibration of the sensor.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: November 5, 2002
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA
    Inventor: Yves de Coulon
  • Patent number: 6472777
    Abstract: In a stage assembly, for instance a fine stage using a pair of push-pull electro-magnetic actuators to move the stage back and forth along an axis, there is typically a sensor to determine the actual stage location. This sensor's home position must correspond to the actual stage position where the two opposed actuators are observed to exert forces of the same magnitude but opposing directions on this stage. Since the actuators depend on the sensor reading to exert their forces correctly, misalignment of the home position will decrease system performance. The calibration of this sensor is accomplished using actual system feedback signals, which are the currents drawn by the two opposed actuators, during run time conditions. The sensor is considered calibrated (meaning a virtual “null” position) when each of the two opposed actuators draws the same amount of current. If this is not the case a feedback process calibrates the sensor.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: October 29, 2002
    Assignee: Nikon Corporation
    Inventors: Ting-Chien Teng, Bausan Yuan
  • Patent number: 6456069
    Abstract: A magnetic field sensor, for sensing the transverse component of the magnetic field intensity H, is based on fluxgate magnetometric principles and includes an “E”-shaped magnetic core. A drive winding is wound about the medial leg of the “E” shape. A sense winding is wound about the base of the “E” shape at the two locations between the medial leg and the extreme legs. A calibration winding is wound about each leg. Another magnetic field sensor, for sensing the normal component of the magnetic induction B, is also based on fluxgate magnetometric principles and includes a magnetic core having a sort of coaxial double cylindrical configuration wherein a basket-shaped cylinder encloses a smaller, solid cylinder. A drive winding, then a sense winding, then a calibration winding are wound over the solid cylinder.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: September 24, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: John F. Scarzello, John J. Holmes, Edward C. O'Keefe
  • Patent number: 6452380
    Abstract: A calibration rod (1) with grooved track (2) and a testing apparatus (17) for magnetic rolls that produces an accurate homing location and probe-to-probe reference for repeated test verification at many testing locations. The grooved track calibration rod can be transported to different equipment to verify that equipment is performing similarly, has improved accuracy, has temperature compensation, uses a circumferential drive movement from one end of a roll magnet and verifies angular position from the other end, eliminates the possibility of angular inaccuracy from twisting of the part being measured during clamping and provides for improved accuracy of several degrees. A high order polynomial curve fit of the data is used to determine the true value of the Gauss level being measured during 360 degree revolution. The apparatus takes measurements to accurately measure magnetic differences which define differences in probe operation.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: September 17, 2002
    Assignee: Lexmark International, Inc.
    Inventors: Wayne Gerard Fieseler, Mark Duane Foster, Robert Edward Hackett, Calvin Dale Murphy, James Edward Nichols
  • Patent number: 6445178
    Abstract: A magnetic level sensor is adapted for interconnecting with a vertically moving component of a vehicle such that the level sensor determines a vertical orientation of the component of the vehicle relative to the frame or chassis of the vehicle. The magnetic level sensor includes a magnetic angular measurement device interconnected to the component of the vehicle such that vertical movement of the component causes a corresponding relative rotational movement of a magnetic element associated with the angular measurement device. An electronic control is included for analyzing an output of the angular measurement device and determining an angle of rotation of the magnetic element and thus a vertical movement of the component. The control further determines an error or offset in the output of the angular measurement device and adjusts an output of the control in response to the error or offset.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: September 3, 2002
    Assignee: Donnelly Corporation
    Inventor: Eric J. Hoekstra
  • Patent number: 6433541
    Abstract: Disclosed is a method of obtaining information in-situ regarding a film of a sample using an eddy probe during a process for removing the film. The eddy probe has at least one sensing coil. An AC voltage is applied to the sensing coil(s) of the eddy probe. One or more first signals are measured in the sensing coil(s) of the eddy probe when the sensing coil(s) are positioned proximate the film of the sample. One or more second signals are measured in the sensing coil(s) of the eddy probe when the sensing coil(s) are positioned proximate to a reference material having a fixed composition and/or distance from the sensing coil. The first signals are calibrated based on the second signals so that undesired gain and/or phase changes within the first signals are corrected. A property value of the film is determined based on the calibrated first signals. An apparatus for performing the above described method is also disclosed.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: August 13, 2002
    Assignee: KLA-Tencor Corporation
    Inventors: Kurt R. Lehman, Shing M. Lee, Walter Halmer Johnson, III, John Fielden
  • Patent number: 6429646
    Abstract: The invention relates to a method for calibrating the initial sensitivity of the eddy current roll-flaw detecting apparatus and an eddy current roll-flaw detecting apparatus which can be calibrated by the method. The method comprises the following steps: a) detecting an artificial defect sample to obtain a first vector; b) generating an analogue artificial defect signal; c) adjusting the analogue artificial defect signal to make it equal the first vector; and d) inputting the analogue artificial defect signal into the eddy current roll-flaw detecting apparatus, and adjusting the eddy current roll-flaw detecting apparatus to enable it to give a warning, wherein steps a) and c) are both implemented by means of the impedance analyzing unit having the function of displaying the impedance vector built in the eddy current roll-flaw detecting apparatus.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: August 6, 2002
    Assignee: Baoshan Iron and Steel Corporation
    Inventor: Shiquan Han
  • Patent number: 6424145
    Abstract: An omega-shaped core is wrapped with two coils arranged to be responsive to magnetic permeable metal and conductive metal objects. The omega core allows the proximity sensor to operate as a saturated core sensor, a variable reluctance sensor or an eddy current loss sensor. The core is made from a thin, highly permeable metal that is preferably formed from a single piece of sheet metal, and comprises a substantially flat, rectangular member bent in four locations to form a head portion, two legs, and two feet. The bends form right angles so that the head portion is perpendicular to the two legs, and the two legs are perpendicular to the two feet. The two feet are parallel to each other and also parallel to the head portion. The core is positioned in a housing with two inductive coils, each coil being positioned around a leg portion of the core. A calibration bolt can be placed through the center of the core to change the level of inductance measured from the two inductive coils.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: July 23, 2002
    Assignee: Eldec Corporation
    Inventors: Kevin Woolsey, Jeff Lamping, John Marler, Bernie Burreson, Steve Knudson
  • Publication number: 20020092338
    Abstract: A device for calibrating drag test drives comprises a disk drive unit, a non conductive, non magnetic disk, and a magnet placed substantially planar to the non magnetic disk wherein the disk can spin in the disk drive through a magnetic field produced by the magnet. The device also comprises a current measuring device wherein the device measures the amount of current the disk drive motor draws while spinning the disk.
    Type: Application
    Filed: January 15, 2001
    Publication date: July 18, 2002
    Inventors: Michael V. Andersen, S. Dennis Evans, Michael J. Scoresby, Wayne A. Sumner, Charles Hudson
  • Publication number: 20020093332
    Abstract: A circuit and method of providing desired response from magnetic field sensors to a predetermined magnetic function. Typically, magnetic field sensors, such as magnetoresistive devices and Hall effect sensors, provide an output which is a characteristic function of the magnetic field density, and so they do not generate a linear response in relation to any predetermined magnetic function, such as is required within numerous position or angle resolving circuits. The present invention utilizes two or more magnetically sensitive devices to tailor the overall sensor output signal to any desired function of the magnetic field density. The devices are connected in such a way that they mutually effect each other's voltages or currents to render the final desired output characteristic.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventors: Thaddeus Schroeder, Dale Lee Partin, Joseph Pierre Heremans
  • Publication number: 20020084780
    Abstract: A system and method for programming a Hall effect sensor while the sensor is connected into the circuitry for a given application. The system includes a fixture for receiving the printed circuit board to which the sensor is mounted. A plurality of contacts, such as pogo pins, are arranged to contact the circuit board at desired pads that permit programming of the sensor, reduction of the voltage applied to the overall circuit during programming, and measurement of the sensor and circuit output. The system includes a voltage limiting circuitry that is electrically connected, via appropriate pogo pins, to the circuitry intermediate the subject sensor and potentially damaged circuit components.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 4, 2002
    Inventors: Daniel J. Bolda, Steven T. Haensgen, John L. Sheele, Craig Muschinski
  • Patent number: 6414480
    Abstract: Calibration of an eddy current inspection system having an eddy current probe and a rotatable turntable is accomplished using a circular calibration standard having a notch of known dimensions formed therein. The calibration standard is mounted on the turntable for rotation therewith. The eddy current probe is positioned adjacent to the calibration standard, and the calibration standard is then rotated so that the probe scans the notch. By providing a rotating scan of the calibration standard, higher scan speeds and more accurate calibrations are achieved.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: July 2, 2002
    Assignee: General Electric Company
    Inventor: Joseph Anthony Traxler
  • Patent number: 6414481
    Abstract: An apparatus is provided for testing and calibrating a sensor of a complex machine tool while the sensor is completely separated from the machine tool. The sensor, which is typically a gear tooth sensor, can typically comprise a sensing head and a printed circuit board which contains an electronic circuit designed to manipulate signals received from the sensing head. A movable target, such as a gear tooth wheel, is driven by an air motor, and the sensing head is attached to a support structure with the operative surface of the sensing head being located a preselected distance from the discontinuities of the target simulator. A signal receiver, such as oscilloscope is easily connected in signal communication with the printed circuit board so that an operator can adjust the amplitude and offset of the signals as the target simulator is operated.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: July 2, 2002
    Assignee: Brunswick Corporation
    Inventor: Michael J. Butzen
  • Patent number: 6411102
    Abstract: The design of an electro-magnetic radiation suppression shield and cooling housing for a computer, server or other electronic device having a computer processor may be greatly enhanced and expedited by a test apparatus that permits the placement of electro-magnetic radiation suppression plates at differing locations, spacings and alignments, which allows a variance in positioning the electro-magnetic radiation source. The test apparatus not only has an air flow cooling opening in which an electro-magnetic radiation suppression panel forms cooling air flow holes but also a fixture for disposing a second similar electromagnetic radiation suppression panel at a distance from the first electro-magnetic radiation suppression panel. Each of the panels may be substituted to test various designs.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: June 25, 2002
    Assignee: International Business Machines Corporation
    Inventors: Don Alan Gilliland, Maurice Francis Holahan, James Larry Peacock
  • Patent number: 6407546
    Abstract: A method and system for identifying thicknesses of inspection samples, such as semiconductor wafers is presented. The method and system includes a probe housing, comprising an eddy current sense coil and a linear motion controller, and a computer that controls the linear motion controller and the eddy current sense coil. The computer may be configured to identify a thickness of the inspection sample by a method comprising the generation of a natural intercepting curve based on resistance and reactance measurements of at least two data points. Then, a plurality of corresponding resistance and reactance measurements of a location on the inspection sample is obtained with the eddy current sensor, where the eddy current sensor makes a first measurement at a first distance from the inspection sample, and makes each of the remaining plurality of measurements at a distance that is incrementally further away from the inspection surface.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: June 18, 2002
    Inventors: Cuong Duy Le, Anh The Ngo
  • Patent number: 6369565
    Abstract: In a method for determining a thickness of a layer of electromagnetically conductive material, the measurement errors resulting from different quality of the basic material are eliminated. For each basic material, one dimensionless characteristic value (K) is ascertained. With the aid of a characteristic calibration curve, each characteristic value (K) can be assigned a correction factor (F), with which the measured value of the layer thickness (DM) can be converted into a real value of the layer thickness (D). Different electrical and magnetic properties, dictated by the different quality of the basic material, can thus be largely eliminated.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 9, 2002
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Dobler, Hansjoerg Hachtel, Reinhard Dimke, Franz Auf Der Heide, Richard Blattert, Josef Weber
  • Patent number: 6356069
    Abstract: A calibration standard for calibrating an eddy current inspection probe sized and shaped to inspect a preselected non-planar feature of a manufactured part. The feature extends in a longitudinal direction and in a lateral direction. Further, the feature has an end profile as viewed in the longitudinal direction having a substantially invariant shape and orientation. The calibration standard includes a body having a non-planar surface extending in a longitudinal direction and in a lateral direction. The standard also has an end profile as viewed in the longitudinal direction of the surface substantially identical to the profile of the feature. The surface of the body has an elongate narrow opening extending into the body substantially normal to the surface and traversing the surface of the body at a substantially constant angle with respect to the longitudinal direction of the surface as viewed normal to the surface.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: March 12, 2002
    Assignee: General Electric Company
    Inventors: Richard L. Trantow, Francis H. Little, Gigi O. Gambrell, John W. Ertel
  • Patent number: 6351116
    Abstract: A system and method for programming a Hall effect sensor while the sensor is connected into the circuitry for a given application. The system includes a fixture for receiving the printed circuit board to which the sensor is mounted. A plurality of contacts, such as pogo pins, are arranged to contact the circuit board at desired pads that permit programming of the sensor, reduction of the voltage applied to the overall circuit during programming, and measurement of the sensor and circuit output. The system includes a voltage limiting circuitry that is electrically connected, via appropriate pogo pins, to the circuitry intermediate the subject sensor and potentially damaged circuit components.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: February 26, 2002
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Daniel J. Bolda, Steven T. Haensgen, John L. Scheele, Craig Muschinski
  • Patent number: 6335617
    Abstract: A method for calibrating a magnetic field generator, including fixing one or more magnetic field sensors to a probe in known positions and orientations and selecting one or more known locations in the vicinity of the magnetic field generator. The magnetic field generator is driven so as to generate a magnetic field. The probe is moved in a predetermined, known orientation to each of the one or more locations, and signals are received from the one or more sensors at each of the one or more locations. The signals are processed to measure the amplitude and direction of the magnetic field, at the respective positions of the one or more sensors and to determine calibration factors relating to the amplitude and direction of the magnetic field in the vicinity of the magnetic field generator.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: January 1, 2002
    Assignee: Biosense, Inc.
    Inventors: Daniel Osadchy, Assaf Govari
  • Patent number: 6336081
    Abstract: An arrangement for measuring the direction of the geomagnetic field {right arrow over (B)}E, in the proximity of a magnetic jamming device with a magnetic field direction variable as a function of time, which is distinguished by the fact that at least two magnetic field measuring devices are provided, each of which measures all three vector components of the total magnetic field ({right arrow over (B)}1,{right arrow over (B)}2), the magnetic field measuring devices have a position, ({right arrow over (r)}0,{right arrow over (r)}1,{right arrow over (r)}2) which is invariable as a function of time and is fixed relative to one another and relative to the jamming device, and the measured values can be called up synchronously and can be evaluated according to {right arrow over (B)}E=({right arrow over (B)}1+{right arrow over (B)}2)/2+P·({right arrow over (B)}1−{right arrow over (B)}2), P({right arrow over (r)}0,{right arrow over (r)}1,{right arrow over (r)}2) describing the geometric
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: January 1, 2002
    Assignee: Leica Geosystems AG
    Inventors: Silvio Gnepf, Ernst Ramseier
  • Patent number: 6304074
    Abstract: For the offset calibration of a magnetoresistive angle sensor for the determination of the directions of magnetic fields, the sensor includes a Wheatstone bridge with at least four magnetoresistive resistors. The Wheatstone bridge receives an input signal at its input side, in particular an input voltage, and supplies an angle signal at its output side, in particular an angle voltage, in dependence on the direction of a magnetic field which acts on the Wheatstone bridge. The Wheatstone bridge includes a first and a second pair of mutually opposed, substantially parallel magnetoresistive resistors, the first and the second pair being arranged substantially at right angles to one another, while the direction of the magnetic field can be determined from the angle signal supplied by the Wheatstone bridge by means of an evaluation circuit.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: October 16, 2001
    Assignee: U.S. Philips Corporation
    Inventor: Eberhard Waffenschmidt
  • Patent number: 6297631
    Abstract: A magnetic signal reproducing apparatus which can lessen fluctuation of reproduced outputs in reproducing magnetic signals recorded in a magnetic tape by a magneto-resistance effect type magnetic head even if a magnetic tape sliding face of the magneto-resistance effect type magnetic head is abraded. A current value of a sense current when a voltage fluctuation level of the sense current caused when a magnetic field in the normal direction is applied to a magneto-resistance effect element of the magneto-resistance effect type magnetic head is equal with a voltage fluctuation level of the sense current caused when a magnetic field in the opposite direction is applied thereto is set to a predetermined value I0. Then, the current value of the sense current supplied to the magneto-resistance effect element of the magneto-resistance effect type magnetic head is set to be greater than I0 in reproducing the magnetic signals recorded in the magnetic tape.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: October 2, 2001
    Assignee: Sony Corporation
    Inventors: Tadashi Ozue, Toshio Shirai, Yoshiteru Kamatani, Tomohiro Ikegami, Takehiko Saito
  • Publication number: 20010019264
    Abstract: A cancellation circuit removes interfering signals from desired signals in electrical systems having antennas or other electromagnetic pickup systems. The cancellation circuit provides amplitude adjustment and phase adjustment to electrical signals induced in an electrical system by received electromagnetic signals. The amplitude-adjusted and phase-adjusted signals are combined to cancel the effects of electromagnetic interference. In an electromagnetic receiver, a plurality of receiver elements provide the cancellation circuit with different proportions of desired and interfering signals to enable removal of the interfering signals. An electromagnetic-wave transmitter having multiple transmitter elements is provided with a cancellation circuit for canceling electromagnetic signals in at least one predetermined region of space.
    Type: Application
    Filed: March 29, 2001
    Publication date: September 6, 2001
    Inventor: Steven J. Shattil
  • Patent number: 6285183
    Abstract: The present invention provides a method for the direct measurement and quantification of the material volume loss on the surface of a substrate and thus provides an accurate depiction of the surface profile of the surface. The method of the invention comprises inducing eddy currents in a test substrate, measuring the magnitude of the eddy current produced within the substrate at a plurality of locations on the surface of the substrate, and converting the measured eddy current magnitudes at the locations to corresponding volume losses on the test surface using the eddy current magnitude measurements of a reference substrate having defects of predetermined volume loss. Typically, the measurements of the eddy current magnitude on the test surface are converted to actual volume losses by multiplying the measured eddy current magnitude for a sector of the test substrate by the area of the sector and a calibration factor (Cf) representing the volume per unit area eddy current magnitude.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: September 4, 2001
    Assignee: McDonnell Douglas Corporation
    Inventors: Michael R. Collingwood, Steven G. Keener
  • Patent number: 6279375
    Abstract: The sensor configuration has a sensor and a calibration circuit, which self-calibrates the system by setting its switching points. The calibration circuit is located in the output circuit of the sensor. The method utilizes the calibration circuit to set an offset in the output circuit using an offset D/A converter in such a way that the switching points coincide with reference values. The offset D/A converter is driven with a calibration logic unit.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: August 28, 2001
    Assignee: Siemens Aktiengesellschaft
    Inventor: Dieter Draxelmayr
  • Patent number: 6281675
    Abstract: The present specification discloses a preferred method, apparatus, and system for calibrating a magnetic tape system. The magnetic tape system comprises at least one head mounted within a head drum, a magnetic tape that has a data region and a no data region, the magnetic tape being contiguous with the head, and a device for providing a relative motion between the magnetic tape and the head. A preferred embodiment of the present invention has the following. A reference track provided on the magnetic tape. The reference track is located in the no data region, at a constant distance from the data region. A processor programmed to determine the time required for the head to travel from the provided reference track to the data region.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: August 28, 2001
    Assignee: Seagate Technology, Inc.
    Inventor: Turguy Goker
  • Patent number: 6275029
    Abstract: A spacing between a transducer head and disk surface in a disk drive's head-disk interface is monitored. The transducer head includes a magneto resistive element. The surface of the disk includes a region containing at least one asperity extending from the surface to have a height. The transducer head is placed over the region containing the at least one asperity, and the disk is rotated. A determination is then made as to whether the transducer head contacts the at least one asperity.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: August 14, 2001
    Assignee: Seagate Technology LLC
    Inventor: Michael D. Schaff
  • Patent number: 6265866
    Abstract: A measuring device for determining the position of a control element, such as a throttle valve in which a temperature-resistant Hal sensor (4) cooperates with a permanent magnet (2), which is connected to the control element by a spindle (3), in order to obviate the need for a conventional mechanical potentiometer. By virtue of the Hall effect, the Hall sensor (4) produces during movement of the control element and thus of the position of the permanent magnet (2) relative to the Hall sensor (4), an output signal (Ua) that is preferably linearly proportional to the movement of the control element. The Hall sensor (4) is programmed to correct temperature, related measurement errors in the permanent magnet.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 24, 2001
    Assignee: Pierburg AG
    Inventors: Norbert Ludwig, Frank Bürger
  • Patent number: 6265863
    Abstract: A wheel rotating speed detector for detecting a wheel rotating speed of a motor vehicle, comprising: a magnetism generator provided either at wheel of the motor vehicle or a rotary member integrally rotatable with the wheel; a magnetism detector for detecting magnetism generated by the magnetism generator; a change-over switch enabling the magnetism detector to change over from a normal magnetism detecting mode to a low magnetism detecting mode or vice versa.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: July 24, 2001
    Assignee: Pioneer Electronic Corporation
    Inventor: Hitoshi Kaneko
  • Patent number: 6255815
    Abstract: A device for measuring and calibrating the strength of magnetic fields is provided. The device includes a coil of wire and either conductive pads or an ammeter/voltmeter attached to the coil of wire. The coil is disposed in the interior of a housing, and a locator window is formed in the housing in a position internal to the coil. The locator window allows the user to see through the device and thus position the device properly with respect to the source of the magnetic field. Preferably, a microprocessor is provided which converts a value of voltage or current induced in the coil into a value of magnetic field strength. The microprocessor transmits the value of magnetic field strength to the display.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: July 3, 2001
    Assignee: Neotonus, Inc.
    Inventor: Kent R. Davey
  • Patent number: 6252393
    Abstract: The invention provides a system and method for normalizing and calibrating a sensor array. The sensor array can comprise differential element sensors, such as for example eddy current sensors, or absolute sensors. A single test specimen is used to normalize and calibrate the sensor array using one or more scans of the test specimen. Notably, only one alignment of the sensor array to the test specimen is required. The test specimen is preferably made of the same or similar type of material as the part to be tested and is of a similar geometric shape that can have a simple flat surface or a more complex surface. A linear feature and several notches are machined into the surface of the specimen by using, for example, electro-discharge machining methods, to provide the necessary signals when scanned by the sensor array. Signals from the linear feature on the test specimen are used to remove any bias and to normalize the dynamic ranges of all of the sensors in the array.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: June 26, 2001
    Assignee: General Electric Company
    Inventor: Kristina Helena Valborg Hedengren
  • Patent number: 6242906
    Abstract: Methods and systems for calibrating an absolute position encoder where a read head is moved relative to a scale of the absolute position encoder and the absolute position encoder is comprised of a fine scale and a coarse scale. An absolute position of a coarse scale is determined which corresponds to the measurement in a fine wavelength. An ideal coarse absolute position is determined from the fine scale measurements. A deviation between the determined coarse absolute position and the ideal coarse absolute position is then determined. The mean of the maximum positive and negative deviations from the ideal coarse scale absolute position for different intervals of the scale are then stored for the entirety of a measured range. These stored correction values are then used to correct the coarse scale values. The concept can be utilized also in a system with more than two wavelengths, for instance a fine wavelength, a medium wavelength and a coarse wavelength.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: June 5, 2001
    Assignee: Mitutoyo Corporation
    Inventor: Nils Ingvar Andermo
  • Patent number: 6236200
    Abstract: A magnetic metal sensor having a high response speed and which can detect small-sized metal pieces and can elongate the separation from the metal pieces. A magnetic metal sensor 2 has a core 22 defining a substantially U-shaped open magnetic path and coils 23, 24 of the same polarity mounted on the core 22. A uniform magnetic field along the direction of magnetic sensitivity is applied by a magnet 25 across the coils 24, 24. If magnetic metal approaches to a open magnetic path portion of the core 22 of the magnetic metal sensor 2, the magnetic reluctance of the magnetic circuit formed by the core and air is changed, as a result of which the impedance of the cores 23, 24 is changed. The magnetic metal sensor 2 detects the possible presence of magnetic metal or its displacement based on impedance changes of the paired coils 23, 24.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: May 22, 2001
    Assignee: Sony Precision Technology, Inc.
    Inventors: Yasuo Nekado, Masaaki Kusumi
  • Patent number: 6229306
    Abstract: The method for measuring magnetic properties of sheet material is able to deliver reliable signals at both low and high magnetic particle density in the sheet material. First a measuring head converts the magnetic properties of the sheet material into electric signals. The electric signals produced by the measuring head are amplified in a certain signal range such that the lower-amplitude electric signals produced by the areas with low magnetic particle density of the sheet material are amplified to a greater extent than the electric higher-amplitude signals produced by the areas with high magnetic particle density of the sheet material. For this purpose the signal range is divided into at least three ranges which are each amplified constantly. The amplification in the two outer ranges is selected equal, and the amplification in the middle range greater than the amplification in the outer ranges.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: May 8, 2001
    Assignee: Giesecke & Devrient GmbH
    Inventors: Dieter Stein, Lothar Schütt
  • Patent number: 6211662
    Abstract: A hidden object sensor is described which senses and locates hidden objects hidden behind a surface of an architectural structure. The sensor includes sensing elements for sensing live wires behind the accessible surface, and separate sensing elements for respectively sensing metal and non-metallic objects behind the tested surface. A microprocessor alternates between the use of the various sensing elements and their associated circuits to detect live wires, metal objects, or wood studs. Visible and audible indicators are provided for indicating the device's mode of operation and the locations of sensed hidden objects. If a live wire is sensed, the processor may preclude an indication of a metal object or wood stud.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: April 3, 2001
    Assignee: The Stanley Works
    Inventors: Viresh Bijawat, David L. Wakefield, Russell H. Powers, Ronald Yim
  • Patent number: 6208133
    Abstract: A method and apparatus for calibrating the output signal of a linear position detector without accessing the interior of the detector housing is provided. According to one exemplary embodiment, a magnet is selectively movable toward and away from the exterior of the electronics housing, and a sensor is provided within the housing for sensing the presence of the magnet. According to this embodiment, the linear position detector is calibrated by setting a movable marker at the desired position and pushing the magnet toward the housing. The sensor then detects the presence of the magnet, and a processor saves the position of the marker as a reference point. All future positions of the marker can then be scaled based upon the reference point. Thus, the linear position detector can be calibrated without the need for opening the electronics housing and potentially exposing the electronics components to moisture, contaminants, and/or static electricity.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: March 27, 2001
    Assignee: Balluff, Inc.
    Inventors: Ernst Ehling, Ernst Gass, Andreas Ullrich, Martin Kurz
  • Patent number: 6208135
    Abstract: A cancellation circuit provides active electromagnetic shielding for canceling inductive noise in electrical circuits caused by electromagnetic flux. The cancellation circuit includes amplitude-adjustment and phase-adjustment circuits for adjusting the amplitude and phase of electrical signals, and a combining circuit for combining electrical signals such that the effects of electromagnetic induction cancel. An electromagnetic pickup is provided with a cancellation circuit for canceling its response to electromagnetic flux. An electromagnetic drive coil is provided with a cancellation circuit for canceling electromagnetic flux in a predetermined region of space, and a compensation circuit compensates for frequency-dependent phase and amplitude variations in electrical pickup signals and transmitted electromagnetic flux. The cancellation and compensation circuits may be combined to provide a device that can simultaneously transmit and receive electromagnetic radiation.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: March 27, 2001
    Inventor: Steve J. Shattil
  • Patent number: 6198278
    Abstract: A process for determining a thickness of a layer of electrically conductive material, any measurement errors are converted into dimensionless norm values with the aid of a normalization process. In this conversion, measurement errors, for example due to temperature drift and different electrical and magnetic properties of the base material of the carrying body can be largely eliminated. These norm values are converted into layer thickness values with the aid of a calibration curve.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: March 6, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Dobler, Hansjoerg Hachtel, Reinhard Dimke, Franz Auf der Heide, Richard Blattert, Josef Weber
  • Patent number: 6188218
    Abstract: An instrument and method for providing accurate and reproducible measurement of absolute properties of a material under test without using conductivity or crack calibration standards. The instrument has a sensor designed to minimize unmodeled parasitic effects. To accomplish this, the sensor has one or more of the following features: dummy secondary elements located at the ends of a primary winding meandering, setting back of the sensing element from a connecting portion of the primary winding, or various grouping of secondary elements. The sensing elements of the sensor can be connected individually or in differential mode to gather absolute or differential sensitivity measurements. In addition, the instrumentation is configured such that a significant portion of the instrumentation electronics is placed as close to the sensor head to provide independently controllable amplification of the measurement signals therein reducing noise and other non-modeled effects.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: February 13, 2001
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Andrew P. Washabaugh
  • Patent number: 6142006
    Abstract: A method and apparatus for calibrating a glide head and detector system performs a pre-screening to ensure the quality of the glide head and the piezoelectric sensor in the detection system. The glide head and the piezoelectric sensor detect a signal when the glide head makes contact with the disk, such as a magnetic recording disk. Calibration of the detection system utilizes a specially made bump disk that has asperities of desired height and size that protrude out of a flat disk surface. The glide head is flown over the bump disk, and by gradually reducing the disk spinning velocity, the head is brought closer to the disk and eventually into contact with the asperity. The onset of contact, as detected by the piezoelectric sensor, defines a disk spinning velocity for the head to fly at the desired height.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: November 7, 2000
    Assignee: Seagate Technology LLC
    Inventors: Bruno Jean Marchon, David Shiao-Min Kuo, Wei Hsin Yao, Chiao-Ping Ku
  • Patent number: 6130534
    Abstract: A method of calibrating a three-axis magnetometer is provided. In accordance with the method, calibration is effected by first establishing a three-axis magnetic field simulator having a center position portion. Suitable measures are taken to substantially compensate for the earth's magnetic field at least at that center position portion. A three-axis magnetometer is then disposed in the magnetic field simulator and successively actuated in predetermined manner to generate a set of measured parameter values. The measured parameter values are normalized using a predetermined standard output factor, and a square pre-calibration matrix C is generated from the normalized measured parameter values. An inverse matrix operation is thereafter performed upon the pre-calibration matrix C to generate a square calibration matrix D having a plurality of coefficients respectively indicative of orthonormal compensation coefficients.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: October 10, 2000
    Assignee: Chung Shan Institute of Science and Technology
    Inventors: Shih-Chu Huang, Chung-Sung Tsay, Heng-Shan Hsu
  • Patent number: 6127821
    Abstract: A proximity detector that employs a Hall-effect flux sensor disposed between the like poles of two magnets. The opposing fields of the magnets define a null flux field at a sensing plane of the Hall-effect sensor. A proximate ferrous object will deflect the null point and will therefore apply flux to the sensor. The sensor generates a signal indicative of the presence or absence of the ferrous object. In manufacturing a preferred spatial position of the null point with respect to the Hall-effect sensor is defined by adjusting the field strength of at least one of the opposed magnets.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 3, 2000
    Assignee: The Cherry Corporation
    Inventors: Edward A. Ramsden, Bradley S. Beiermann
  • Patent number: 6104187
    Abstract: The contactless magneto-resistive angle sensing device (1) includes two sensor components (10,11) oriented at a fixed angle relative to each other, a controllable power supply (PW) to heat and maintain the sensor components (10,11) at different temperatures, a magnet (MG) producing a magnetic field (B) in which the sensor components are arranged and an evaluating device (12) to receive output signals (U1,U2) from the sensor components (10,11). Each sensor component (10,11) includes magneto-resistive resistors (MR) connected in a respective bridge (B1,B2) having input terminals (I1,I1';I2,I2') for supply of current and output terminals (O1,O1';O2,O2') for the output signal (U1,U2).
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: August 15, 2000
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Marx, Franz Jost
  • Patent number: 6051971
    Abstract: An opto-electronic scale reading apparatus includes a scale 10 and a readhead 14 movable one relative to another. The readhead produces a pair of quadrature pulses which enable the generation of an incremental count corresponding to the displacement of the readhead 14 relative to a reference mark 80. The reference mark 80 is a permanent magnet mounted on the scale substrate inside a non-ferromagnetic casing 90. A pair of differential Hall sensors 62A,B within the readhead, and associated processing circuitry generate a step-change ZERO pulse when the readhead 14 and scale 10 are in a particular relative position. This relative position can be adjusted to enable corresponding adjustment of the relative phase of the quadrature pulses emitted from the readhead and the ZERO pulse, by means of a ferromagnetic adjusting screw 92.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: April 18, 2000
    Assignee: Renishaw PLC
    Inventor: Peter G Holden