Magnetic Patents (Class 324/200)
  • Patent number: 10366316
    Abstract: A fluid treatment cartridge includes a housing having a fluid inlet and a fluid outlet with a treatment media contained within the housing. The fluid treatment cartridge includes a detection member comprising at least one closed electrically conductive loop having at least two spatially separate sections. Each of the sections generates a magnetic response when at least one section is electromagnetically excited. The magnetic response of each section is predetermined by the physical shape of the section and comprises at least one of a predetermined magnetic phase response and a predetermined magnetic amplitude response. The predetermined magnetic response of at least one other section of the closed electrically conductive loop corresponds to at least a one digit code.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 30, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew P. Bonifas, Brock A. Hable, Ronald D. Jesme, Nicholas G. Amell
  • Patent number: 10346652
    Abstract: A method for the rehabilitation of a pipeline with a lining element made of a resin-absorbing material, comprising the following steps: Impregnating the lining element with a hardenable resin; inserting the lining element into the pipeline and positioning the lining element at the pipeline section to be rehabilitated; pressing the lining element against the inner wall of the pipeline; hardening the lining element; and applying at least one information parameter to the lining element subsequent to its hardening.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: July 9, 2019
    Assignee: TRELLEBORG PIPE SEALS DUSIBURG GMBH
    Inventors: Andreas Bichler, Hendrik Willem Hagenberg
  • Patent number: 10317498
    Abstract: Methods and apparatus for characterizing biological micro structure in a voxel based, at least in part, on a set of diffusion-weighted magnetic resonance (MR) data. A multi-compartment parametric model is used to predict a diffusion signal for the voxel using information from the set of diffusion-weighted MR data. Predicting the diffusion signal comprises determining, based on the set of diffusion-weighted MR data, a first set of parameters describing isotropic diffusion in a first compartment of the multi-compartment model and a second set of parameters describing anisotropic diffusion due to the presence of at least one white matter fascicle in a second compartment of the multi-compartment model. At least one first dataset of the set of diffusion-weighted MR data is associated with a first non-zero b-value and at least one second dataset of the set of diffusion-weighted MR data is associated with a second non-zero b-value different than the first non-zero b-value.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 11, 2019
    Assignee: Children's Medical Center Corporation
    Inventors: Simon K. Warfield, Benoit Scherrer, Maxime Taquet
  • Patent number: 10203383
    Abstract: A magnet unit for a magnetic resonance apparatus has a superconducting basic field magnet, a vacuum vessel, within which the superconducting basic field magnet is situated, and a cylindrical magnet housing. The magnet housing has a housing surface having a first sub-area and a second sub-area, with the first sub-area inwardly offset from the outside, in the direction of a longitudinal extent of the magnet unit, in relation to the second sub-area.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: February 12, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Bernd Maciejewski
  • Patent number: 10132878
    Abstract: An electromagnetic impedance sensing device includes a substrate, a first patterned conductive layer, a second patterned conductive layer, a magneto-conductive wire and an encapsulation layer. The substrate has a surface and a trench extending into thereof. The first patterned conductive layer is formed on the surface, as well as a bottom and sidewalls of the trench. The magneto-conductive wire is disposed in the trench. The second patterned conductive layer extending across the trench and electrically in contact with the first patterned conductive layer is formed on the first patterned conductive layer to make the magneto-conductive wire sandwiched between the first and the second patterned conductive layers. The magneto-conductive wire is encapsulated by the encapsulation layer to make the magneto-conductive wire electrically isolated from the first and second patterned conductive layers.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 20, 2018
    Assignee: PROLIFIC TECHNOLOGY INC.
    Inventors: Hung-Ta Li, Po-Feng Lee
  • Patent number: 10120031
    Abstract: A charge and discharge test probe for a secondary battery includes: an inner plunger moved up and down by elastic force of a spring; a head having a central through hole through which the inner plunger passes to protrude from an upper end of the head; and a first conductive elastic member mounted to the head.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 6, 2018
    Assignee: MEGATOUCH CO., LTD.
    Inventors: Woo Yong Choi, Byung Il Lee, Hyeon Sik Kim
  • Patent number: 10067003
    Abstract: A method and a device determine a surface temperature of an inductively heated roller shell. A current is induced in the roller shell by an induction coil. An actual value of the surface temperature is determined from at least one measured parameter of an electrical circuit of the induction coil by means of stored data. In order to be able to determine shell temperatures of the roller shell that are as exact as possible without large dispersion, the induction coil is connected to a capacitor in the electrical circuit in order to form an oscillating circuit, wherein the oscillating circuit is operated at an alternating-voltage frequency in the range of 3000 Hz to 30,000 Hz.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: September 4, 2018
    Assignee: Oerlikon Textile GmbH & Co. KG
    Inventor: Dirk Zenzen
  • Patent number: 10001516
    Abstract: Frequency division multiplexing-based techniques for FET-based sensor arrays are provided. In one aspect, a sensor device includes: an array of FET-based sensors, wherein the sensors are grouped into multiple channels, and wherein each of the sensors includes an insulator on a substrate, a local gate embedded in the insulator, a channel material over the local embedded gate, and source and drain electrodes in contact with opposite ends of the channel material, and wherein a surface of the channel material is functionalized to react with at least one target molecule. The sensors in a given channel can be modulated (via the local gate) to enable the signal read out from the channel to be divided in the frequency domain based on the different frequencies used to modulate the sensors.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Chia-Yu Chen, Shu-Jen Han
  • Patent number: 9852367
    Abstract: A piece of jewellery, wherein the jewellery comprises at least one tag or chip programmed with at least a unique identification code, and a tag reader is configured to read the tag or chip when the tag reader and the piece of jewellery touch, or come into close contact and, display a message or content associated with the unique identification code.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: December 26, 2017
    Assignee: Kiroco Limited
    Inventor: Simon Boulby
  • Patent number: 9817146
    Abstract: Disclosed is method for measuring influence of or propagation time of inductive fields including producing and detecting a first inductive temporal field change and a first change value, producing and detecting a further inductive temporal field change and further field change, at least one of the changes being influenced by an object, comparing the first and further change values to produce a comparison value used to produce amplitude values such that amplitude of the first or further change value are substantially of the same magnitude, detecting a clock pulse alternation signal corresponding to the field change, determining a difference value by a comparison of the clock pulse alternation signals, changing the difference value to change phase delay of the first or further field change until the difference value is zero, using the phase delay to determine influence/propagation time of the inductive change.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: November 14, 2017
    Inventor: Gerd Reime
  • Patent number: 9746574
    Abstract: Methods and apparatus configured to evaluate a volume of interest of an earth formation intersected by a borehole. Apparatus comprise a transceiver electrode on the tool body configured to provide electrical current to the earth formation; a return electrode configured to receive the electrical current returning from the earth formation; a multi-function electrode on the resistivity imager tool; and an electrical system configured to provide current measurements at the transceiver electrode. In the first operational mode, the electrical system maintains the tool body at a first electrical potential, and maintains the multi-function electrode and the transceiver electrode at a second electrical potential; and in the second operational mode, the electrical system maintains the tool body at the first electrical potential, maintains the multi-function electrode at the first electrical potential, and maintains the transceiver electrode at the second potential.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: August 29, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Gregory B. Itskovich, Stanislav Forgang, Sven Krueger, Fei Le
  • Patent number: 9742425
    Abstract: A rotation detector detecting rotation of a rotor, based on a signal produced according to rotation of the rotor, having a waveform according to a rotational cycle thereof, includes a signal obtaining unit to obtain two signals having phases different from each other; a vector operating unit to determine a vector according to a rotational angle of the rotor, based on the two signals; and a rotation detecting unit to detect rotation of the rotor, based on the vector. The two signals are produced from two elements located at positions farthest in a rotational angle of the rotor among plural rotation detecting elements located at positions different from each other.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: August 22, 2017
    Assignee: Ricoh Company, Ltd.
    Inventor: Tatsuya Kawase
  • Patent number: 9568562
    Abstract: A method of taking a plurality of measurements of the magnetic field using the plurality of sensors; includes assessing the inductive magnetic excitation; and determining the likely distribution of magnetic sources on the surface of the hull by resolving a system of equations derived from modeling the physical phenomena at play, on the basis of the plurality of measurements taken and the assessed inductive magnetic excitation. The model describes the induced magnetic sources as a distribution of dipolar sources and the remanent magnetic sources as a distribution of monopolar sources. A device (6) for determining the magnetization of the hull of a ship for implementing the method is also described.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: February 14, 2017
    Assignee: DCNS
    Inventors: Laurent Demilier, Yannick Vuillermet, Olivier Nicolas Chadebec, Jean-Louis Coulomb, Laure-Line Rouve, Gilles Cauffet
  • Patent number: 9261382
    Abstract: A method of measuring mechanical runout including: mounting a work piece on a rotatable mount, wherein the mount is configured to rotate the work piece; placing a displacement sensor at a known position adjacent a surface of the work piece, the displacement sensor being configured to measure a radial dimension of the work piece; attaching a removable angle indicator to the surface of the work piece; rotating the work piece while mounted on the mount and collecting rotational data of the rotational position of the work piece during the rotation; collecting displacement data from the displacement sensor as the work piece rotates, wherein the displacement data indicates a radial distance from a rotational axis of the work piece to the surface of the work piece at points on the surface as the surface rotates with respect to the displacement sensor; analyzing the displacement data to detect data representing the angle indicator on the surface of the work piece; correlating the displacement data with the rotational
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: February 16, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jie Jiang, Huageng Luo
  • Patent number: 9164100
    Abstract: Provided are high-throughput detection systems. The systems include a magnetic sensor device, a magnetic field source and a reservoir plate that includes a plurality of fluid reservoirs. The magnetic sensor device includes a support with two or more elongated regions each having a magnetic sensor array disposed at a distal end. Also provided are methods in which the subject high-throughput detection systems find use.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 20, 2015
    Assignee: MagArray, Inc.
    Inventors: Sebastian J. Osterfeld, Shan X. Wang
  • Patent number: 9036884
    Abstract: A magnetic resonance system includes a magnetic resonance scanner having a multi-channel transmit coil or coil system and a magnetic resonance receive element; and a digital processor configured to perform an imaging process. The image process includes shimming the multi-channel transmit coil or coil system, acquiring a coil sensitivity map for the magnetic resonance receive element using the multi-channel transmit coil or coil system, acquiring a magnetic resonance image using the magnetic resonance receive element and the shimmed multi-channel transmit coil or coil system, and performing an intensity level correction on the acquired magnetic resonance image using the coil sensitivity map to generate a corrected magnetic resonance image.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 19, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul R. Harvey, Thomas H. Rozijn, Gerrit H. Ijperen, Willem M. Prins, Wilhelmus R. M. Mens, Franciscus J. M. Benschop
  • Patent number: 9000764
    Abstract: A method for producing printed magnetic functional elements for resistance sensors and printed magnetic functional elements. The invention refers to the field of electronics and relates to a method for producing resistance sensors, such as can be used, for example, in magnetic data storage for read sensors or in the automobile industry. The disclosure includes a simple and cost-effective production method and to obtain such printed magnetic functional elements with properties that can be adjusted as desire, in which a magnetic material is deposited onto a substrate as a film, is removed from the substrate and divided into several components and these components are applied on a substrate by means of printing technologies. Aspects are also directed to a printed magnetic functional element for resistance sensors of several components of a film, wherein at least 5% of the components of the functional element have a magnetoimpedance effect.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 7, 2015
    Assignee: Leibniz-Institut fuer Festkoerper und Werkstoffforschung Dresden e.V.
    Inventors: Daniil Karnaushenko, Denys Makarov, Oliver G. Schmidt
  • Patent number: 8994365
    Abstract: A current detection apparatus includes two magnetic detectors that are arranged oppositely on a front surface and a back surface of a board which is located above a current path in order to detect a strength of a magnetic field, an electromagnetic shielding frame member that is mounted on the current path so that the two magnetic detectors and a part of the current path are accommodated inside the electromagnetic shielding frame member, and a control circuit that determines whether a failure which occurs in either of the two magnetic detectors from a difference between magnetic fields detected by the two magnetic detectors, respectively. Sensitivities of the two magnetic detectors are made adjusted so that current values outputted from the two magnetic detectors depending on detected magnetic fields are identical to each other in a normal state.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 31, 2015
    Assignee: Yazaki Corporation
    Inventor: Yasunori Kawaguchi
  • Patent number: 8981764
    Abstract: A rolling bearing sensor, especially a rotational speed sensor, having a housing and a signal pick-up which is arranged in the housing in a manner secured against rotation and is arranged, with the housing, in a stationary receptacle in a stationary part of a rolling bearing or in a stationary component adjoining a rolling bearing, for example, an axle journal, where the housing has an outer design via which the rolling bearing sensor in the receptacle is secured against rotation in a form-fitting manner. The sensor may have a groove which runs in the axial direction and interacts with a screw or a projection. Alternatively, a securing element which predefines a defined angular position may be pushed onto the sensor.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Marc-Andre Schaefer, Jens Heim
  • Patent number: 8981018
    Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: March 17, 2015
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Ian C. Shay, Christopher A. Craven, David C. Grundy, Volker Weiss, Andrew P. Washabaugh
  • Patent number: 8872507
    Abstract: The present application discloses an integrated circuit comprising a circuit portion (100) coupled between first and second power supply lines (110; 120); a first switch (115, 135) coupled between the first power supply line (110, 120) and the circuit portion (100) for disconnecting the circuit portion from the first power supply line during an inactive mode of the circuit portion; and an arrangement (315, 335, 410) for, during said inactive mode, providing the circuit portion (100) with a fraction of its active mode power supply at least when averaged over said inactive mode to prevent the circuit portion voltage to drop below a threshold value. The present application further discloses a method for controlling such an integrated circuit.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: October 28, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Rogier Adrianus Henrica Niessen, Willem Franke Pasveer
  • Patent number: 8860403
    Abstract: A gradient sensor of a component of a magnetic field comprising at least one elementary sensor comprising a deformable mass (31) equipped with a permanent magnet (32) having a magnetization direction substantially colinear to the direction of the gradient of the component of the magnetic field to be acquired by the sensor. The deformable mass (31) is able to deform under the effect of a force exerted on the magnet by the gradient, the effect of this force being to shift it, by dragging the deformable mass (31), in a direction substantially colinear to the component of the magnetic field for which the sensor has to acquire the gradient. The deformable mass (31) is anchored to a fixed support device (33) in at least two anchoring points (36) substantially opposite relative to the mass (31). The elementary sensor also comprises measuring means (35, 35.1, 35.2, 35.3) of at least one electric variable translating deformation or stress of the deformable mass (31) engendered by the gradient.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: October 14, 2014
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Institut Polytechnique de Grenoble
    Inventors: Arnaud Walther, Robert Cuchet, Jerome Delamare, Aline Msaed, Jean-Baptiste Albertini
  • Patent number: 8847600
    Abstract: An apparatus for estimating a property of an earth formation penetrated by a borehole, apparatus including: a carrier configured to be conveyed through the borehole; a transducer disposed at the carrier and configured to transmit and/or receive electromagnetic energy into and/or from the earth formation to estimate the property; wherein the transducer includes a plurality of inductively coupled elements in a series, each element configured to transmit and/or receive electromagnetic energy and at least a first connection to a first element in the plurality and a second connection to a second element in the plurality with at least one of the first element and the second element being disposed between end transducer elements in the series.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: September 30, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Jack Signorelli, Samuel R. Bell, Stanislav W. Forgang, Sheng Fang
  • Patent number: 8813355
    Abstract: A method for producing a current metering device with current conductor optionally made of aluminum or aluminum alloy, which has a middle section in the form of a bar and two end sections with flattened areas, and is bent between one end section at a time and the middle section, a magnetic module which has a bushing which holds the current conductor, and two copper or copper alloy sleeves which are applied at least to parts of the end sections of the current conductor.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: August 26, 2014
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventor: Markus Brunner
  • Patent number: 8802331
    Abstract: Various embodiments provide methods for testing a fuel cell interconnect including the steps of providing a fuel cell interconnect and performing a non-destructive test on the fuel cell interconnect comprising at least one of detecting a magnetic response of the interconnect, calculating a volume by optically illuminating the interconnect, detecting an acoustic response of the interconnect, and detecting a thermal response of the interconnect.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 12, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Harald Herchen, Martin Janousek
  • Patent number: 8779761
    Abstract: A rotation angle detecting unit includes an IC package having a magnetism detecting element, a sealing body, and leads; and a covering member having a fixing part and a supporting part, which are integrally formed from resin. The element outputs a signal according to change of a magnetic field generated upon rotation of a magnetism generating device attached to a detection object. The sealing body covers the element. The leads are connected to the element, and project from the sealing body. The fixing part is fixed to a supporting body so that the covering member is attached to the supporting body. The supporting part supports the package such that the element can output the signal. The package is press-fitted into the supporting part after its formation, so that the package is supported by the supporting part with a predetermined pressure applied to part of an outer wall of the sealing body.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 15, 2014
    Assignee: Denso Corporation
    Inventors: Satoru Hiramoto, Yoshiyuki Kono, Akitoshi Mizutani, Koichiro Matsumoto
  • Patent number: 8773124
    Abstract: An embodiment of a magnetic-field sensor includes a magnetic-field sensor arrangement and a magnetic body which has, for example, a non-convex cross-sectional area with regard to a cross-sectional plane running through the magnetic body, the magnetic body having an inhomogeneous magnetization.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: July 8, 2014
    Assignee: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Publication number: 20140141085
    Abstract: The invention relates generally to tracer particles for product identification and/or authentication. When incorporated into a manufactured item, that item can be subsequently authenticated by either detecting, or failing to detect, the tracer particle. The tracer particles of the invention are magnetically attractable, with micromarkings, and in some embodiments, are manufactured with food grade materials and of a particle size suitable for ingestion by humans. The particles can be analyzed qualitatively or quantitatively. In other aspects, the invention provides methods for the manufacture of the tracer particles, and in other aspects, provides methods for using the particles. Examples of products that can be tagged using the tracer particles of the invention include pharmaceuticals, animal feeds or feed supplements, and baby formula. Other applications include forensics, such as in explosive materials.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 22, 2014
    Applicant: Micro-Tracers, Inc.
    Inventors: Nikolay Barashkov, Jonathan Germain, David Eisenberg, Zachary Eisenberg, Lou Kish
  • Patent number: 8710826
    Abstract: Systems and methods for sensing external magnetic fields in implantable medical devices are provided. One aspect of this disclosure relates to an apparatus for sensing magnetic fields. An apparatus embodiment includes a sensing circuit with at least one inductor having a magnetic core that saturates in the presence of a magnetic field having a prescribed flux density. The apparatus embodiment also includes an impedance measuring circuit connected to the sensing circuit. The impedance measuring circuit is adapted to measure impedance of the sensing circuit and to provide a signal when the impedance changes by a prescribed amount. According to an embodiment, the sensing circuit includes a resistor-inductor-capacitor (RLC) circuit. The impedance measuring circuit includes a transthoracic impedance measurement module (TIMM), according to an embodiment. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: April 29, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Karl Gauglitz, Thomas M. Bocek, Mark Rutzer, Lorin W. Matthews, William E. Reagor, Blair Erbstoeszer
  • Patent number: 8699654
    Abstract: The invention concerns a method comprising measurement on a fuel channel (14) of fuel assemblies (8) for nuclear boiling water reactors. The method comprises that: the measurement is done by the use of a non-destructive inductive eddy current measurement method, the measurement is done on a fuel channel (14) which has been used at least a certain time during operation in the core of a nuclear boiling water reactor, the measurement is done when the fuel channel (14) is located in water, the measurement is done on different places on the fuel channel (14), wherein through the method at least the hydride content of the fuel channel (14) at said places is determined. The method can be used in order to find out how shadow corrosion from a neighboring control rod influences the properties of the fuel channel (14).
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: April 15, 2014
    Assignee: Westinghouse Electric Sweden AB
    Inventors: Kurt-Åke Magnusson, Holger Wiese, Björn Andersson, Göran Jergeus
  • Patent number: 8692682
    Abstract: A position detection system for a detection object and a position detection method for a detection object that enable calibration without removing a detection object after the detection object is introduced into a detection space are provided.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: April 8, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Atsushi Kimura, Akio Uchiyama, Ryoji Sato, Atsushi Chiba
  • Patent number: 8674685
    Abstract: A magnetic flux position sensor includes a primary coil, a secondary coil, and a magnetic flux conductor. The primary coil generates a magnetic flux and the secondary coil senses magnetic flux. The primary and secondary coils are substantially concentric and spaced apart by an annular passage. The annular passage has first and second ends, and the magnetic flux conductor is slidable from the first end to the second end of the annular passage. The magnetic flux transferred from the primary coil to the secondary coil varies as a function of position of the magnetic flux conductor.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: March 18, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Bruce Paradise
  • Patent number: 8638090
    Abstract: A sensor system method of production includes forming first and second structures of the magnetoresistive system, heating the first and second structures, applying a magnetic field in a reference direction to the first and second structures, and cooling the first and second structures to fix a reference magnetization in the first and second structures in the reference direction. The structures are heated to near or above a blocking temperature, whereby the shape anisotropy of the first structure forces the reference magnetization to rotate into a first new orientation and the shape anisotropy of the second structure forces the reference magnetization to rotate into a second new orientation whereby the reference magnetization in the first and second structures rotate in opposite directions. The rotated reference magnetizations of the first and second structures are pinned in the respective new orientation.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Dirk Hammerschmidt, Juergen Zimmer
  • Patent number: 8628525
    Abstract: An interventional device (12) is configured to be positioned in a body and includes an electrically operable unit (E1, E2) configured to carry out an interaction with the body upon a receipt of electric power. The device further includes a sensor (2) configured for wirelessly receiving electromagnetic energy from a remote source. The sensor is configured as a resonant circuit (2a, 2b) which converts the received electromagnetic energy into the electric power. The electrically operable device may include a diagnostic and/or therapeutic module.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 14, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Daniel Wirtz, Oliver Lips, Sascha Krueger, Bernd David, Steffen Weiss
  • Patent number: 8610428
    Abstract: This variable-response magnetic radiofrequency device integrated into a substrate comprises: a beam that is mobile relative to the substrate having, at each end, a transversal part mechanically anchored to the substrate and at least one central arm connecting the transversal parts to each other, at least one of the transversal parts being made out of a piezoelectric material, actuating electrodes associated with the piezoelectric material to apply a stress on the central arm, a magnetic element directly deposited on the central arm whose permeability varies as a function of the stress, and a conductive strip comprising a central part fixed to an upper face of the magnetic element opposite the lower face of this magnetic element pointed towards the central arm.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: December 17, 2013
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche, Universite Brest-Bretagne Occidentale
    Inventors: Bernard Viala, Smaali Rafik, Patrick Queffelec, Evangeline Benevent, Jean-Philippe Michel
  • Publication number: 20130320963
    Abstract: A method and system are provided for evaluating a calibration of a magnetometer on a mobile device. The method includes obtaining a parameter associated with the calibration, determining a component of the parameter along an axis of the magnetometer and determining a calibration quality indicator using the component.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: Research In Motion Limited
    Inventors: Tennessee Carmel-Veilleux, Robert George Oliver, Nazih Almalki
  • Patent number: 8587293
    Abstract: A simple position determination is enabled by a device and a method to determine the position of a local coil in a magnetic resonance apparatus, wherein at least one signal emitted by at least one transmission coil is received by the local coil and is evaluated with a position determination device in order to determine the position of the local coil.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: November 19, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stephan Biber, Thorsten Feiweier, Wolfgang Renz
  • Patent number: 8587301
    Abstract: A method for operating a metal detection system that comprises a balanced coil system. One embodiment of the method comprises: determining the phase and magnitude of related signals at least for a first metal contaminant for at least two transmitter frequencies and for at least two particle sizes of the first metal contaminant; determining the phase and magnitude of the related signal for a specific product for the at least two transmitter frequencies; comparing information established at least for the first metal contaminant and the information established for the product; determining a transmitter frequency with which signal components of smallest sized particles of the at least first metal contaminant differ sufficiently or most in phase and amplitude from the phase and amplitude of the product signal; and selecting the transmitter frequency for measuring the product. A metal detection apparatus adapted to operate according to an exemplary method is also provided.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Mettler-Toledo Safeline Limited
    Inventor: Max Derungs
  • Patent number: 8523429
    Abstract: A remote, noncontact temperature determination method and apparatus is provided, which is operable to determine the temperature of a conducting member forming a part of or in operative thermal communication with an object of interest. The method comprises the steps of first inducing a closed vortex eddy current (28) in a conducting member (16, 38, 44) by subjecting the member (16, 38, 44) to a magnetic field, such that the corresponding eddy current magnitude changes exponentially over time. A characteristic time constant of the exponential current magnitude changes is then determined, and this is used to calculate the temperature of the object. The apparatus (24) includes a field transmitting coil (14) coupled with a waveform generator (12) for inducing the eddy current (28), and a field receiving coil assembly (18) which detects the corresponding magnetic field induced by the eddy current (28).
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: September 3, 2013
    Assignee: TSI Technologies LLC
    Inventors: Vladimir Malyshev, Evgeni Sorkine
  • Patent number: 8461833
    Abstract: A method for determining the sensitivity of a sensor provides the following steps: a) first and second deflection voltages are applied to first and second electrode systems of the sensor, respectively, and first and second electrostatic forces are exerted on an elastically suspended seismic mass of the sensor by the first and second electrode systems, respectively, and a restoring force is exerted on the mass as a result of the elasticity of the mass, and a force equilibrium is established among the first and second electrostatic forces and the restoring force, and the mass assumes a deflection position characteristic of the force equilibrium, and an output signal characteristic of the force equilibrium and of the deflection position is measured; and b) the sensitivity of the sensor is computed on the basis of the first and second deflection voltages.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: June 11, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Arnd Kaelberer, Hans-Joerg Faisst, Axel Franke, Mirko Hattass, Holger Rank, Robert Sattler, Alexander Buhmann, Ramona Maas, Marian Keck
  • Patent number: 8450998
    Abstract: A system for determining the quantity of a liquid agricultural product available for spraying on a field from a tank in an airplane comprising a payload storage tank for holding the agricultural product, an elongated magnetostrictive linear displacement transducer tube located vertically in the aircraft payload storage tank, a probe float slidably coupled to move up or down on the elongated magnetostrictive linear displacement transducer tube, and a permanent magnet coupled to the probe float. The position of the magnet is sensed by the elongated magnetostrictive linear displacement transducer tube which generates a signal that marks the level of the liquid in the aircraft payload storage tank, and converter means converts the generated signal that marks the level of the liquid in the aircraft payload storage tank to a quantity of liquid in the aircraft payload storage tank which is displayed to the pilot.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 28, 2013
    Inventor: Troy Robert Reabe
  • Patent number: 8442180
    Abstract: A control rod position detector including a permanent magnet that is attached on a control rod inserted in a reactor pressure vessel, where the permanent magnet is capable of moving together with the control rod, and a plurality of reed switch mechanisms that are arranged in the reactor pressure vessel at regular intervals in an insertion direction of the control rod. Each of the reed switch mechanisms is provided with a pair of reed switches that are placed so as to overlap with each other in the insertion direction of the control rod. The pair of reed switches are connected to a common wiring. The common wiring is connected to a detector that detects a position of the control rod based on signals from the reed switches.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: May 14, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuharu Nakamura, Tsukasa Suwazono, Yoshikazu Ui, Yutaka Sosa, Goro Yanase, Kazuhiro Kawagoe, Shinichi Ishizato, Norimitsu Komai
  • Patent number: 8441252
    Abstract: The object of the invention is to provide a rotational angle measurement apparatus that is capable of correcting an error due to pin-angle error with a small amount of calculation operation. The rotational angle measurement apparatus includes a magnetic sensor 301 and a signal processing unit 303M. The magnetic sensor includes two bridges comprising magneto-resistance elements each having a pinned magnetic layer. A ratio-calculation unit 381 of the signal processing unit 303M calculates a ratio Vy/Vx of output signals Vx and Vy. A parameter correction unit 382 subtracts a predetermined correction parameter ? from the ratio Vy/Vx calculated by the ratio-calculation unit. An a tan-processing unit 383 conducts arctangent processing on the value calculated by the parameter correction unit and calculates an angle of magnetic field ?.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: May 14, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Mutsumi Suzuki
  • Patent number: 8427136
    Abstract: A magnetic displacement sensor, where, in order to achieve an improved measurement behavior, magnets are formed in a direction of an x-axis such that a z-component (Bz) of the flux density has an essentially linear characteristic curve in a region of travel and/or the magnets are formed in a direction of a y-axis such that the z-component (Bz) is essentially constant in a region of a transversal offset.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 23, 2013
    Assignee: Conti Temic Microelectronic GmbH
    Inventors: Gerhard Hinkel, Michael Nagel, Andreas Schulze, Roger Pohlmann, Bernd Seitz
  • Patent number: 8427134
    Abstract: A current detection printed board includes: a board having a penetration hole that penetrates the board; and at least one wire that is formed in a coiled shape having both ends by penetrating the board along the periphery of the penetration hole and alternately connecting a front surface layer and a rear surface layer of the board, wherein, when a conductor, in which an AC current flows, is disposed to pass through the inside of the penetration hole, a current flowing in the wire is output through electromagnetic induction.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 23, 2013
    Assignee: Daihen Corporation
    Inventors: Yoshifumi Ibuki, Shuji Omae, Hideo Ito
  • Patent number: 8427142
    Abstract: Provided is a rotation angle detecting device with high detection accuracy, which can be structured with a small number of teeth even if a shaft angle multiplier increases, thus enhancing winding workability and becoming suitable for mass production.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 23, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masatsugu Nakano, Shinsuke Henmi, Satoru Akutsu
  • Patent number: 8423228
    Abstract: An apparatus for detecting a decrease in air pressure of a tire attached to a vehicle includes a rotation speed detection means for periodically detecting rotation speeds of tires of respective wheels of the vehicle; a rotation wheel speed ratio calculation means for calculating a rotation wheel speed ratio between front wheels and rear wheels of the vehicle; a wheel torque calculation means for calculating a wheel torque of the vehicle; an initialization means for obtaining a relation at a normal internal pressure between the wheel torque and the rotation wheel speed ratio; a comparison means for comparing the rotation wheel speed ratio with the rotation wheel speed ratio at a normal internal pressure obtained from the wheel torque and the relation; and a determination means for correcting the comparison result by a front-to-rear direction acceleration and determining whether there is a tire having a decreased air pressure or not.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: April 16, 2013
    Assignee: Sumitomo Rubber Industries, Ltd.
    Inventor: Yuji Oshiro
  • Patent number: 8415945
    Abstract: A sheet coil type resolver includes: a stator section in which a stator transformer coil composed of first and second stator transformer coil layers is disposed to axially overlap with a resolver stator coil composed of first and second resolver stator coil layers; and a rotor section in which a rotor transformer coil composed of first and second rotor transformer coil layers is disposed to axially overlap with a resolver rotor coil composed of first and second resolver rotor coil layers, whereby the axial dimension is reduced, lead wires can be easily led out from the coils, and high reliability is achieved.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 9, 2013
    Assignee: Minebea Co., Ltd.
    Inventors: Kazuhiko Fujita, Takado Fukuda, Takaaki Ochiai
  • Patent number: 8416076
    Abstract: A magnetic proximity sensor is attached to a ferrous object such that the sensor alerts a practitioner if a threshold of magnetic strength has been exceeded by bringing the ferrous object within a certain proximity to the magnet of an MRI scanner. The magnetic proximity sensor includes at least one magnetic field sensor for sensing a magnetic field strength. An alarm in communication with the field sensor alerts a practitioner that a threshold of magnetic strength has been exceeded. A battery powers the field sensor and the alarm. The field sensor may produce an output voltage corresponding to the sensed magnetic field strength, and a potentiometer may provide a reference voltage corresponding to a threshold magnetic field strength. A comparator compares the reference voltage to the output voltage, and triggers an alarm if the output voltage exceeds the reference voltage.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: April 9, 2013
    Assignee: The Trustees of Dartmouth College
    Inventors: Alexander Mamourian, Michael Holland
  • Publication number: 20130082691
    Abstract: A headset or earphone is provided, having an electro-acoustic reproduction transducer with an oscillator coil arranged in an axis. An amplifier is coupled to the electro-acoustic reproduction transducer. The headset or earphone also has a magnetic interference sensor for measuring a magnetic interference field. A correction unit, for analyzing an output of the magnetic interference sensor and for producing a compensation signal, is coupled to the magnetic interference sensor. In addition, the headset or earphone also includes an adding unit for adding the compensation signal to an input signal and for outputting the result to the amplifier.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventor: Oliver GELHARD