Compensation For Measurement Patents (Class 324/207.12)
  • Patent number: 10386169
    Abstract: A first, a second, and a third computing circuit respectively generate a first post-computation signal with a second harmonic component reduced as compared with first and second signals, a second post-computation signal with the second harmonic component reduced as compared with third and fourth signals, and a third post-computation signal with the second harmonic component reduced as compared with fifth and sixth signals. A fourth and a fifth computing circuit respectively generate a fourth post-computation signal with a third harmonic component reduced as compared with the first and second post-computation signals, and a fifth post-computation signal with the third harmonic component reduced as compared with the second and third post-computation signals. A sixth computing circuit determines a detected angle value based on the fourth and fifth post-computation signals.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: August 20, 2019
    Assignee: TDK CORPORATION
    Inventors: Yohei Hirota, Homare Tokida, Hiraku Hirabayashi
  • Patent number: 10385991
    Abstract: Valve systems include at least one component comprising a conductive material and at least one inductance-to-digital converter (LDC) configured to wirelessly sense a position of at least a portion of the conductive material. The valve system is configured to determine at least one force applied to a portion of the valve system based at least partially on the position of the at least a portion of the conductive material. Methods of determining a force associated with a valve system include wirelessly sensing a position of at least a portion of the conductive material with the at least one inductance-to-digital converter (LDC) sensor and determining a force applied to a portion of the valve system based at least partially on the position of the at least a portion of the conductive material.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: August 20, 2019
    Assignee: Flowserve Management Company
    Inventor: William T. Dolenti
  • Patent number: 10378929
    Abstract: A movement detection unit includes a movable body, a first sensor, a second sensor, and a signal processor. The movable body performs a movement in a first direction. The first sensor detects a first magnetic field change which is caused by the movement of the movable body and outputs a first signal. The second sensor is provided in the first direction at a location different from a location of the first sensor. The second sensor detects a second magnetic fled change which is caused by the movement of the movable body and outputting a second signal. The signal processor includes a signal generating circuit that generates a third signal and a fourth signal on a basis of the first signal. The third signal and the fourth signal have waveforms different from each other.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 13, 2019
    Assignee: TDK CORPORATION
    Inventor: Takakazu Imai
  • Patent number: 10371498
    Abstract: Disclosed is a linear inductive sensor having, on the one hand, a fixed part of transformer type with a primary circuit and at least two secondary circuits, the primary circuit being flowed through by a high-frequency alternating current capable of inducing an electrical voltage in each of the at least two secondary circuits and, on the other hand, a moving part with a target intended to be fixed on a mechanical component executing a movement in rotation about an axis, which the inductive sensor measures angularly. The target is a metal spiral carried by a circular face of a ring having a central recess, the ring being intended to be fixed on the component while being concentric therewith, the spiral projecting axially from the ring while making at least one revolution around and moving away from the recess.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: August 6, 2019
    Assignees: CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTICE GMBH
    Inventors: Andreas Moser, Alain Fontanet, Simon-Didier Venzal
  • Patent number: 10338642
    Abstract: An electronic device incorporating a magnet and a Hall-effect sensor to determine a location of a portion of the electronic device. The electronic device comprises a magnet mechanically coupled to a first portion of the electronic device and a Hall-effect sensor coupled to a second portion of the electronic device where the first portion and the second portion are moveable with reference to each other and where the Hall-effect sensor receives a magnetic field of the magnet. The device further comprises an electronic stage that outputs a comparison threshold signal based on peak detecting an output of the Hall-effect sensor using a long term adjustment and resetting the long term adjustment to a current output of the Hall-effect sensor in response to a short term adjustment and a switch electronic stage that switches in response to the output of the Hall-effect sensor exceeding the comparison threshold output.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: July 2, 2019
    Assignee: Honeywell International Inc.
    Inventors: Gregory Furlong, Lamar Floyd Ricks, Jason Chilcote
  • Patent number: 10337495
    Abstract: The present disclosure is directed to a system and method for reducing vortex-induced vibrations of a tower of a wind turbine. The wind turbine has a nacelle mounted atop the tower. The nacelle has a rotor with a rotatable hub having at least one rotor blade mounted thereto. The rotor blade has a first pitch position. Thus, the method includes measuring, via one or more sensors, an acceleration of the nacelle. The method also includes determining a rotor speed of the rotor. Further, the method includes determining a second pitch position for the rotor blade based on the acceleration of the nacelle and the rotor speed and pitching the rotor blade to the second pitch position if the rotor speed is below a speed threshold and the acceleration of the nacelle is above an acceleration threshold. As such, the second pitch position disturbs vortices caused by interactions between the tower and the rotor blade as the rotor blade passes in front of the tower so as to reduce vortex-induced vibrations of the tower.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: July 2, 2019
    Assignee: General Electric Company
    Inventors: Jorge Gonzalez Castro, Hubert Oing
  • Patent number: 10327667
    Abstract: A device for magnetizing a tissue-penetrating medical device is disclosed including a housing having a proximal portion and a distal portion; a magnetic field generator contained within the distal portion of the housing and a tissue penetrating subassembly including a hub and a tissue penetrating medical device having a proximal end and a distal end. The hub is detachably connected to the distal portion of the housing and the proximal end of tissue penetrating medical device extends proximally from the hub such that the proximal end of the tissue penetrating medical device is exposed to the magnetic field to magnetize the distal end of the tissue penetrating medical device. Methods of magnetizing tissue-penetrating medical devices are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: June 25, 2019
    Assignee: Becton, Dickinson and Company
    Inventor: Ralph L. Sonderegger
  • Patent number: 10330730
    Abstract: A method and an apparatus for determining the electric resistances of coil connections (RSi) of connections (1-12) of coils (Bi) of a winding (102) of a dynamo electric machine, which includes a plurality of coils (Bi) connected in series. A first current (I1) is generated through a first coil connection (1) of a first coil (B1) of the winding (102). Furthermore, a second current (I2) is generated through a first coil connection (3, 7) of a second coil (B2, B6) of the winding in such a way as to eliminate the current flowing through a portion (B8-B11) of the winding, which is proximate to the first coil connection (1) of the first coil (B1) and the first coil connection (3,7) of the second coil (B2, B6). A third current (I3) is also generated in a second coil connection (2) of the first coil (B1). The generating of the first current (I1), the generating of the second current (I2), and the generating of the third current (I3) are made with respect to a common potential (13).
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: June 25, 2019
    Assignee: ATOP S.p.A.
    Inventor: Federico Sbalchiero
  • Patent number: 10329801
    Abstract: Determining a position of a deadbolt used to lock and unlock a door is disclosed. An electromechanical lock can include a deadbolt that can retract or extend along a linear path as the door is to be locked and unlocked. A sensor such as an accelerometer can rotate along a non-linear path as the deadbolt moves along a linear path. The accelerometer can determine a gravity vector that can be indicative of a position of the accelerometer along the non-linear path. A controller can then determine a position of the deadbolt based on the gravity vector.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: June 25, 2019
    Assignee: CALIFORNIA THINGS, INC.
    Inventors: John H. Martin, Kenneth D. Goto, Thomas E. King, Jordan R. Fountain, Wael S. Barakat
  • Patent number: 10324143
    Abstract: In various embodiments, a Hall sensor arrangement for the redundant measurement of a magnetic field may include a first Hall sensor on a top side of a first semiconductor substrate; a second Hall sensor on a top side of a second semiconductor substrate; a carrier having a top side and an underside; wherein the first Hall sensor is arranged on the top side of the carrier and the second Hall sensor is arranged on the underside of the carrier; and wherein the measuring area of the first Hall sensor projected perpendicularly onto the carrier at least partly overlaps the measuring area of the second Hall sensor projected perpendicularly onto the carrier.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 18, 2019
    Assignee: Infineon Technologies AG
    Inventors: Berthold Astegher, Helmut Wietschorke
  • Patent number: 10309802
    Abstract: Embodiments relate to magnetic field angle sensors, including off-axis and on-axis sensors. In an embodiment, a magnetic field angle sensor comprises two sensor units, and each sensor unit comprises two sensor elements. The sensor units are spaced apart from one another and arranged proximate a magnet, wherein the two sensor elements of each sensor unit are responsive to the same magnetic field component induced by a magnet coupled to a shaft as the shaft rotates. In each sensor unit, a sum and a difference of the output signals of the two sensor elements can be calculated to determine a coarse estimation of a rotation angle, and a more refined estimation can be obtained by combining the coarse estimations of each sensor unit. In embodiment, the magnetic field angle sensor comprises a control unit or other circuitry to carry out this combining.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 4, 2019
    Assignee: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Patent number: 10302458
    Abstract: A rotation angle detection sensor includes a magnet body subjected to magnetization in an in-plane direction, a first Hall element and a second Hall element separated from each other and arranged offset to one of spaces divided by an imaginary plane including a rotation axis, and a third Hall element located in a position away from a straight line passing through the first Hall element and the second Hall element. A storage section stores a rotation angle that is related to electric signals having a phase difference therebetween, among electric signals of the first Hall element, the second Hall element, and the third Hall element. A detection section detects the electric signals of the first Hall element, the second Hall element, and the third Hall element and obtains from the storage section the rotation angle that is related to the detected electric signals.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: May 28, 2019
    Assignee: Toyo Dense Co., Ltd.
    Inventors: Toshiya Yoshida, Shoji Kishi
  • Patent number: 10267616
    Abstract: A displacement sensor includes a coil, an inverter electrically connected to the coil, the inverter being configured to generate an oscillation signal, a reducer electrically connected between the coil and an output terminal of the inverter, the reducer being configured to reduce the strength of the oscillation signal, and a frequency detector electrically connected to the inverter, the frequency detector being configured to detect an oscillation frequency of an oscillator circuit in response to a distance between a measurement target and the coil, the oscillator circuit including the coil, the inverter, and the reducer and having an oscillation frequency of 30 MHz or higher.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: April 23, 2019
    Assignee: JAPAN SYSTEM DEVELOPMENT CO., LTD.
    Inventors: Yoshiichi Yoshida, Hiroki Tomino
  • Patent number: 10166710
    Abstract: Apparatus and method for detecting a position of an actuator piston driving a valve pin in an injection molding system. The apparatus includes an actuator housing having a body portion, surrounding an axial bore, of a substantially non-magnetic and/or magnetically permeable material, a piston, movable within the axial bore for driving a valve pin, the piston including a magnetic member generating a magnetic field such that axial movement of the piston in the bore modifies the magnetic field according to the position of the piston relative to a detection position, and a magnetic field detector attached to an exterior surface of the body portion at the detection position for detecting the magnetic field associated with the position of the piston and generating an output signal determined by the piston position.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 1, 2019
    Assignee: Synventive Molding Solutions, Inc.
    Inventors: Zhuang Rui Tan, Lin Yang
  • Patent number: 10161762
    Abstract: A method for computing a correction factor (KF) for an angular measuring system (10) comprising a measurement of a first output value (W1) in a first measuring position (20) and a measurement of a second output value (W2) in a second measuring position (30). An actual value (DI) is formed from the difference between the first output value (W1) and the second output value (W2), and a target value (DS) is formed from the difference of target values (S1, S2) in the first measuring position (20) and in the second measuring position (30). The correction factor (KF) is computed from the ratio of the target value (DS) to the actual value (DI).
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 25, 2018
    Assignee: TDK-Micronas GmbH
    Inventor: Yan Bondar
  • Patent number: 10119841
    Abstract: A magnetic position detection device includes two magnetic scales 1a, 1b on which N and S magnetic poles are disposed alternately, magnetism sensing element groups 2a, 2b for measuring variation in magnetic fields formed respectively by the magnetic scales 1a, 1b, and a position calculation device 3 for calculating absolute positions of magnetism sensing elements 21 on the magnetic scales 1a, 1b from output values output by the magnetism sensing elements 21, wherein a difference between the respective numbers of magnetic poles on the magnetic scales 1a, 1b is 2, and the magnetism sensing elements 21 are disposed such that arrangement intervals between the magnetism sensing elements 21 of the respective magnetism sensing element groups 2a, 2b each take a value obtained by dividing a length of one magnetic pole equally by the number of magnetism sensing elements 21.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: November 6, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shohei Tsukamoto, Takafumi Hara
  • Patent number: 10114323
    Abstract: A sheet size detector to detect a sheet size of a recording medium includes a movable member to move in a sheet size detection direction to a position corresponding to the sheet size, a magnetic flux detector including a coil disposed on a board face parallel to the sheet size detection direction to generate a magnetic flux in a direction perpendicular to the board face, and a target to oppose the board face and including a material to affect the magnetic flux. The target is different in configuration in the sheet size detection direction to change the magnetic flux in the direction perpendicular to the board face as the movable member moves. The magnetic flux detector outputs a signal corresponding to changes in magnetic flux in the direction perpendicular to the board face, and the signal corresponds to the position of the movable member.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: October 30, 2018
    Assignee: Ricoh Company, Ltd.
    Inventors: Tetsuro Hirota, Yu Wakabayashi, Shintaroh Yamada, Shun Kobayashi
  • Patent number: 10083253
    Abstract: In the method for producing a set of cooperating embossing rollers, a modelling device is used for parameterizing the embossing rollers, the device comprising a test bench having a pair of rollers which are put under hydraulic pressure that can be measured and set, in order to determine from the measurement data the parameters for producing the embossing rollers. The use of a modelling device for obtaining the parameters for producing a set of embossing rollers makes it possible to use a very large variety of embossing patterns and foils with diverse properties as a basis and, by conducting tests on this very test bench, be able to efficiently narrow down and predetermine the properties of a final embossing device, preferably operated without hydraulics.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 25, 2018
    Assignee: Boegli-Gravures S.A.
    Inventors: Charles Boegli, Werner Steffen
  • Patent number: 10078094
    Abstract: A sensor system (01) for measuring the rotational speed of a rotatable component having a pole wheel (02) comprising a carrier (04) with at least one path of alternating magnetic north and south poles (05), and at least one magnetic field sensor (03) for sampling the path of the pole wheel (02) is provided. The sensor system (01) provides that the rotational direction in front of and behind the magnetic field sensor (03) a ferromagnetic flux-conducting component (07) is arranged in each case opposite the path, the ferromagnetic flux-conducting components (07) being arranged in the installation space between the magnetic field sensor (03) and the pole wheel (02), the distance between the ferromagnetic flux-conducting components (07) corresponding to the width of one magnetic pole (05) of the pole wheel (02).
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: September 18, 2018
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Benjamin Kaufner
  • Patent number: 10073059
    Abstract: An apparatus and method detect defects in a metal surface. The apparatus is configured to move an eddy coil relative to an underlying metallic surface along a plurality of generally parallel and adjacent scan paths, and to receive from the eddy coil an oscillating signal induced at said coil as it is moved along each path. A representation of the received oscillating signal in relation to each one of a plurality of adjacent scan areas within each path is recorded, and a two-dimensional grid-like map showing the signal representations relative to each scan area is displayed. Defect location is facilitated by a further function of the apparatus and method, by which user input to an interface causes a light source to illuminate a selected part of the metallic surface.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: September 11, 2018
    Assignee: SARCLAD LIMITED
    Inventor: Robert Northern
  • Patent number: 10067256
    Abstract: A system includes a proximity probe. The system also includes a probe information element. The probe information element is coupled to the proximity probe. The probe information element includes first data corresponding to one or more first error characteristics of the proximity probe.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: September 4, 2018
    Inventor: Lysle R. Turnbeaugh
  • Patent number: 10045713
    Abstract: Systems and methods described herein use near field communications to locate a radiating transponder, such as a pill swallowed by a patient. The system can be triggered to turn on and transmit a waveform to a set of antennas attached to, coupled with, or near the patient. The magnetic field emitted by the transponder can be measured by the receiving antennas, for example, using principles of mutual inductance. The differential phase and/or time shifts between the antennas can contain sufficient information to find the location of the transponder and optionally its orientation relative to body coordinates. The system can display the location and/or orientation of the transponder. Further, the pill can include a reservoir to deliver a payload at a particular site of the patient's body based at least in part on the determined location.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 14, 2018
    Assignee: Rock West Medical Devices, LLC
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal Jay Carron, Donald Gordon Pritchett
  • Patent number: 10006972
    Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: June 26, 2018
    Assignee: NXP B.V.
    Inventors: Klaus Reimann, Robert van Veldhoven, Jaap Ruigrok, Selcuk Ersoy, Ralf van Otten, Jörg Kock
  • Patent number: 9982989
    Abstract: Embodiments relate to magnetic field angle sensors, including off-axis and on-axis sensors. In an embodiment, a magnetic field angle sensor comprises two sensor units, and each sensor unit comprises two sensor elements. The sensor units are spaced apart from one another and arranged proximate a magnet, wherein the two sensor elements of each sensor unit are responsive to the same magnetic field component induced by a magnet coupled to a shaft as the shaft rotates. In each sensor unit, a sum and a difference of the output signals of the two sensor elements can be calculated to determine a coarse estimation of a rotation angle, and a more refined estimation can be obtained by combining the coarse estimations of each sensor unit. In embodiment, the magnetic field angle sensor comprises a control unit or other circuitry to carry out this combining.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: May 29, 2018
    Assignee: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Patent number: 9970783
    Abstract: A rotation angle sensor includes a ring magnet that is provided around a rotating shaft, a magnetic field sensor that detects magnetic field strengths in radial and tangent directions of the rotating shaft, a rotation angle calculation section that calculates a rotation angle of the rotating shaft based on the magnetic field strengths detected by the magnetic field sensor, a correction value storage section that stores correction values preliminarily set for each magnetic pole or each pair of magnetic poles facing the magnetic field sensor, a facing magnetic pole detecting means that detects the magnetic pole or the pair of magnetic poles facing the magnetic field sensor, and a rotation angle correcting section that extracts correction values corresponding to the magnetic pole or the pair of magnetic poles detected, and corrects a rotation angle calculated in the rotation angle calculation section by using the extracted correction values.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: May 15, 2018
    Assignee: HITACHI METALS, LTD.
    Inventor: Yukio Ikeda
  • Patent number: 9966873
    Abstract: An active switching rectifier circuit uses a MOSFET and applies a current based control to turn the MOSFET on and off. The MOSFET has its source and drain connected between an AC phase line and the DC output. A current detection and control circuit has an input current conductor coupled in series with the source-drain current of the MOSFET; it outputs a switching control signal based on the current in its input conductor and applies the signal to the gate of the MOSFET for on/off control. A Hall-effect switch may be used in the current detection and control circuit. The rectifier may also include a voltage supply circuit coupled to the AC source for supplying a floating DC voltage to the current detection and control circuit. The rectifier circuit can be adapted for various configurations including single-phase half-wave, center-tap dual-phase full-wave, single-phase full-wave, and three-phase full-wave.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: May 8, 2018
    Inventor: Yiqiang Jake Zhang
  • Patent number: 9960758
    Abstract: An AD converter acquires first and second input values. A first multiplication unit multiplies a first tangent value, which is based on a first boundary angle based on a phase range of a reference value, by the reference value to calculate a first threshold value. A second multiplication unit multiplies a second tangent value, which is based on a second boundary angle based on the phase range, by the reference value to calculate a second threshold. A comparison unit determines whether the comparison value is within a particular phase range specified by the first and the second thresholds. The comparison unit determines magnitude of the comparison value when the comparison value is not within the particular phase range. A phase estimation unit updates the particular phase range to a phase range adjacent to a direction corresponding to the result of determination.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: May 1, 2018
    Assignee: OLYMPUS CORPORATION
    Inventor: Hitoshi Tsuchiya
  • Patent number: 9952292
    Abstract: Sensing systems can include magnetoresistive sensors suitable for both angle and field strength sensing. The system can include one or more magnetoresistive sensors that can sense one or more aspects or characteristics of a magnetic field. The system can include a first magnetoresistive sensor that is configured to sense the magnetic field angle or rotation and a second sensor configured to sense the strength or magnitude of the magnetic field. The system can determine an operation state of the system based on the sensed characteristic(s) of the magnetic field. For example, if the system determines that the sensed magnetic field strength is below a threshold value, the system can determine that it may be operating in an error state. In this example, the system can generate an alarm signal based on the determined error state.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: April 24, 2018
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Granig, Juergen Zimmer
  • Patent number: 9953515
    Abstract: An inductive security sensor system is not susceptible to magnetic tampering (such as by using an external magnet or false target). A sensor assembly includes an inductive sensor (inductor coil), mounted in a relatively secure location, and a conductive proximity target incorporated with an object (such as a window or door, or an object/asset). An alarm condition can be detected as either a displacement condition in which the proximity target is displaced relative to the inductive sensor, or a tamper condition in which magnetic coupling between the proximity target and the inductive sensor is interfered with (such as by introducing a false conductive target) An inductance-to-data converter drives the inductor coil with an excitation signal to project a time-varying magnetic field for magnetically coupling to the proximity target. The IDC acquires sensor measurements (such as coil inductance), which are converted into corresponding sensor data representing alarm conditions (displacement or tamper).
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: April 24, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Robert M. Hanrahan
  • Patent number: 9927261
    Abstract: An inductive sensor device includes a scale unit (24) containing field elements (26) that cooperate with a transmit circuit (32) to create a field pattern (S(x)) in measuring direction (M). A sensor unit (25) contains at least one receive circuit (34) with at least one receive coil (35), respectively. The sensor unit (25) and the scale unit (24) can move relatively in measuring direction (M). The coil loops (37) of the at least one receive coil (35) and/or the scale loops (28) of the scale elements (26) are separated into a loop front (56) and a loop back (57), each containing a sectional portion that runs alternately with regard to the height direction. The alternating run can be obtained by combining linear and/or curved portions so that a meandering, zigzag, sinusoidal, or another arbitrary alternating run can be obtained.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 27, 2018
    Assignee: SAGENTIA LTD.
    Inventor: Ross Peter Jones
  • Patent number: 9903920
    Abstract: A magnetic field sensor apparatus is provided for measuring one magnetic field vector component He. The apparatus includes at least one anisotropic magneto-resistive resistor device (AMR resistor device) on a chip substrate, where the resistor device includes a plurality of magneto-resistive AMR resistor elements which are connected in series by electrically conductive strips. At least one permanent-magnetic magnetization element with a magnetization axis is assigned to each resistor element in such a way that the resistor element is passed through by an initial magnetization field H0 of the magnetization element in the direction of the magnetization axis. A measurement current IS flowing through the resistor element from a contact region between a first conductive strip and the resistor element to a contact region between the resistor element and a second conductive strip has a mean current direction axis at a predefined linearization angle ?>0° and ?<90° relative to the magnetization axis.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: February 27, 2018
    Assignee: SENSITEC GMBH
    Inventors: Hubert Grimm, Viktor Spetter
  • Patent number: 9869566
    Abstract: A magnetic field sensor includes a back bias magnet to generate a DC magnetic field. First and second magnetic field sensing elements of the magnetic field sensor are disposed proximate to at least one ferromagnetic surface of a ferromagnetic target object. The first and second magnetic field sensing elements generate first and second electronic signals, respectively, in response to first and second sensed magnetic fields corresponding to the DC magnetic field but influenced by the at least one ferromagnetic surface. The magnetic field sensor generates a difference signal that is a difference of amplitudes of the first and second electronic signals. The difference signal is indicative of a rotation measurement of an absolute relative rotation of the ferromagnetic target object and the magnetic field sensor about a rotation axis.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: January 16, 2018
    Assignee: Allegro MicroSystems, LLC
    Inventors: Simon Tima, Yannick Vuillermet, Andreas P. Friedrich, Thomas Kerdraon
  • Patent number: 9869568
    Abstract: A sensing system and method for correcting an input waveform from a coded wheel. The coded wheel is configured to generate a signal that varies with rotation of the coded wheel relative to a sensor. The sensor is configured to sense the varying signal and output a corresponding input waveform. A correction module is configured to receive the input waveform and compare the input waveform to at least one stored waveform and to correct the input waveform if a defect is detected in the coded wheel in response to the comparison.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: January 16, 2018
    Assignee: Infineon Technologies AG
    Inventors: Simon Hainz, Dirk Hammerschmidt, Ernst Katzmaier
  • Patent number: 9867509
    Abstract: A dispenser assembly for web materials includes an enclosure that is configured to support a roll of material and a feed mechanism configured to dispense the material from the assembly. A capacitive sensor is connected to the feed mechanism and configured to allow touch-less operation of the dispenser. Operation of the sensor is adjustable so that the assembly can achieve a desired operation in environments having different capacitive backgrounds.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: January 16, 2018
    Assignee: San Jamar, Inc.
    Inventors: Kostyantyn Hlushchenko, Taras Hrabovenskyy
  • Patent number: 9851222
    Abstract: A magnetic detection device has: a magnetic moving body which rotates about a rotating shaft and in which N-poles and S-poles are disposed alternately on an outer periphery thereof; magnetoresistive elements that are disposed at a spacing from the outer peripheral surface of the magnetic moving body; a signal processing unit that processes signals from the magnetoresistive elements; and a magnet that applies a bias magnetic field to the magnetoresistive elements. The magnetization direction of the magnet is parallel to the rotating shaft of the magnetic moving body. The magnetoresistive elements are disposed in a plane perpendicular to the magnetization direction of the magnet, and are disposed at a fixed spacing in the radial direction of the magnetic moving body.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: December 26, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Shimauchi, Masahiro Yokotani, Akira Koshimizu
  • Patent number: 9835475
    Abstract: An inductive sensor for measuring the position of a shaft of a vehicle in a first direction (X) and a second direction (Y), from a target mounted on the shaft. The sensor (20) includes a printed circuit board (21) including at least one first receiving coil (23), at least one second receiving coil (24) and at least one transmitting coil (22) surrounding the first receiving coil and the second receiving coil. The first receiving coil and the second receiving coil each include a plurality of N portions (23A, 23B, 23C, 24A, 24B, 24C) that are electrically connected to one another and are disposed side by side on the printed circuit in the second direction, each portion extending on the printed circuit in the first direction in such a way as to determine the position of the target both in the first direction and in the second direction.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 5, 2017
    Assignees: CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Olivier Gerardiere, Alain Fontanet
  • Patent number: 9817078
    Abstract: Methods and apparatus for a magnetic field sensor including a die, a coil proximate the die to generate a magnetic field, and a magnetic field sensing element having to detect changes in the magnetic field generated by the coil in response to a ferromagnetic target.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 14, 2017
    Assignee: ALLEGRO MICROSYSTEMS LLC
    Inventors: Gary T. Pepka, William P. Taylor
  • Patent number: 9810746
    Abstract: To provide a magnetic sensor which is reduced in power consumption without reducing magnetism detection sensitivity of a magnetoelectric transducing element. One end of a magnetoelectric transducing element is connected to an output electrode of a constant current circuit, and the other end thereof is connected to a power supply electrode on the positive side of one or plural signal processing circuits, and the like built in a magnetic sensor, whereby a connection relation of the magnetoelectric transducing element and the signal processing circuit is configured such that they are connected in series with a voltage source.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: November 7, 2017
    Assignee: SII Semiconductor Corporation
    Inventors: Kentaro Fukai, Minoru Ariyama, Tomoki Hikichi, Takemasa Miura
  • Patent number: 9791488
    Abstract: A sensor for sensing a parameter includes a capacitor, a switch and a comparator. The capacitor is configured to be charged or discharged by at least one of a first current signal or a second current signal. The switch is configured to selectively connect or disconnect the first current signal and the capacitor in response to a feedback signal. The comparator is coupled with the capacitor and configured to output an output voltage based on a comparison of a capacitor voltage of the capacitor to a reference voltage. The first current signal is independent of the parameter, and the second current signal is dependent on the parameter. The output voltage defines the feedback signal and is indicative of a value of the parameter detected by the sensor.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chia Liang Tai
  • Patent number: 9786139
    Abstract: A programmable barrier alarm includes a sensor, such as a magnetic field detector, for sensing a magnetic field produced by the magnet and for producing an electronic signal associated with the magnetic field, a processor, and, a memory for storing an alarm threshold value and processor-executable instructions that, when executed by the processor, cause the sensor to, in a calibration mode of operation, calculate the alarm threshold value based on a first magnetic field sensed by the magnetic field detector when the barrier is in the closed position, and in a normal mode of operation, compare the electronic signal from the magnetic field detector to the alarm threshold value, and generate an alarm signal if the electronic signal falls below the alarm threshold value.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: October 10, 2017
    Assignee: Ecolink Intelligent Technology, Inc.
    Inventors: Michael Lamb, Michael Bailey, Jay Stone, George Seelman, Carlo Q. Petrucci, Andrew Permenter
  • Patent number: 9739672
    Abstract: A torque sensor unit includes two magnetic angle sensors capable of detecting absolute rotation angles of a shaft member which indicate a twist angle of the shaft member when the shaft member is twisted. The shaft member has two end portions exposed to outside so that the shaft member can be connected at the two end portions to shaft-forming parts of a device.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: August 22, 2017
    Assignee: NTN CORPORATION
    Inventor: Shoji Itomi
  • Patent number: 9709423
    Abstract: Provided are an electromagnetic-induction-type position detector which can be small sized and in which interference errors do not occur, and a detection method. The present invention has: a stator having first and second main patterns and first and second sub-patterns; and a rotor having a main pattern part and a sub-pattern part, in which adjacent comb-shaped electrodes of the main pattern part and the sub-pattern part are connected to form a single loop; and when an excitation electric current is supplied to the first and second main patterns, an excitation voltage excited in the main pattern part is detected in the first and second sub-patterns via the sub-pattern part, and when an excitation electric current is supplied to the first and second sub-patterns, the excitation voltage excited in the sub-pattern part is detected in the first and second main patterns via the main pattern part.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: July 18, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES MACHINE TOOL CO., LTD.
    Inventor: Katsuyoshi Takeuchi
  • Patent number: 9702735
    Abstract: Provided is a magnetic rotation-angle detector that includes a disk-shaped magnet that is magnetized so as to change magnetic poles n times per rotation (where n is an integer equal to or larger than 1); a magnetic-body slit plate that is rotated together with the magnet, where a part having a high magnetic flux permeability and a part having a low magnetic flux permeability are alternately and repeatedly arranged thereon so as to change the magnetic flux permeability m times per rotation (where m is an integer equal to or larger than 2 and m>n); a magnetic sensor that detects magnetism from the magnet when the magnet has passed by through the magnetic-body slit plate; and a calculation unit that obtains the rotation angle of the magnet from the output from the magnetic sensor.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: July 11, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takeshi Musha, Jin Inoue, Hajime Nakajima, Takashi Okamuro
  • Patent number: 9684038
    Abstract: A magnetic field sensor system has a plurality of magnetic field sensor elements, which each are configured to provide an individual sensor value, and of which a first portion is arranged in a first contiguous area and a second portion is arranged in a second contiguous area, and a coil wire arrangement with a first coil portion and at least a second coil portion being connected to the first coil portion, wherein the first coil portion is arranged close to the sensor elements of the first area and the second coil portion is arranged close to the sensor elements of the second area such that, if a predetermined current is applied to the coil wire arrangement, a first magnetic field component is generated at the first area and a second magnetic field component is generated at the second area being opposite to the first magnetic field component.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: June 20, 2017
    Assignee: AMS AG
    Inventors: András Mozsáry, Georg Roehrer
  • Patent number: 9671477
    Abstract: An inductive sensor (100) for a motor vehicle, includes: a field coil (101) designed to form an electromagnetic field, a coil (103) for measuring a magnetic field and designed to provide an output signal representative of the position of a metal target (102) in the magnetic field formed by the field coil (101), and at least two electric circuits (111) connected simultaneously in parallel to the terminals of the field coil (101), each electric circuit (111) including an inverter element (112) and a capacitive element (113), and forming, together with the field coil (101) an electric oscillator (110) designed to form an AC voltage at the terminals of the field coil (10) via electric resonance, the electric oscillators (110) being of the same resonance frequency.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: June 6, 2017
    Assignees: CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Bertrand Vaysse, Alain Fontanet, Jeremie Blanc, Jean-Louis Roux
  • Patent number: 9638766
    Abstract: A magnetic field sensor includes a plurality of magnetic field sensing elements, wherein the plurality of magnetic field sensing elements is configured to generate a plurality of magnetic field signals, each magnetic field sisal responsive to a magnetic field. The magnetic field sensor additionally includes a sequence switches circuit coupled to the plurality of magnetic field sensing elements. The sequence switches circuit is configured to sequentially select from among the plurality of magnetic field signals to generate a sequenced output signal representative of sequentially selected ones of the plurality of magnetic field signals. The magnetic field sensor also includes a variable potentiometer coupled to the sequence switches circuit. The magnetic field sensor additionally includes a gain circuit coupled to receive a signal representative of the offset attenuated sequenced output signal. A corresponding method is also provided.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 2, 2017
    Assignee: Allegro Microsystems, LLC
    Inventor: Aurelian Diaconu
  • Patent number: 9632150
    Abstract: In one embodiment, a TMR field sensor utilizes existing one or more self-test current lines in a configuration to extend magnetic field measurement range without sacrificing measurement sensitivity. The self-test current lines are energized to facilitate magnetic field measurement when the measured magnetic field reaches a threshold. The magnetic field created by self-test coil opposes an external magnetic field being measured to keep the net magnetic field within a desired range where the magnetic field sensor has linear output and desired sensitivity.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 25, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Anuraag Mohan, Phillip G. Mather
  • Patent number: 9625281
    Abstract: A magnetic angle sensor may include a first bridge circuit. The first bridge circuit may include a first half-bridge to generate a first signal indicative of a first angular component of a direction of a magnetic field. The first bridge circuit may include a second half-bridge to generate a second signal indicative of a second angular component of the direction of the magnetic field. The second angular component may be linearly independent from the first angular component.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: April 18, 2017
    Assignee: Infineon Technologies AG
    Inventors: Christoph Bilger, Konrad Kapser
  • Patent number: 9618528
    Abstract: A speed sensor (1) including a first magnetic sensor (3) with a first magnetic detector (30), which is connected to an electronic circuit for conversion of its output analog signal to a first digital signal and a second magnetic sensor (4) with a second magnetic detector (40), which is also connected to an electronic circuit for conversion of its output analog signal to a second digital signal.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: April 11, 2017
    Assignee: LESIKAR, A.S.
    Inventors: Vladimir Leŝikar, Ladislav Půr
  • Patent number: 9593967
    Abstract: Disclosed are systems and methods for measuring multi-turn position of a shaft with high resolution and in a non-contact manner. In some embodiments, a multi-turn sensing apparatus can include a rotation counter configured to determine a number of turns made by a shaft, and an angular position sensor configured to measure an angular position of the shaft within a given turn. The number of turns can be determined with an M-bit resolution, and the angular position per turn can be measured with an N-bit resolution. Selected appropriately, the rotation counter can be configured to operate as a relatively low resolution; and yet the multi-turn sensing apparatus can maintain the N-bit per-turn angular resolution throughout the full range. Accordingly, the multi-turn sensing apparatus can have an effective resolution of M+N bits.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: March 14, 2017
    Assignee: Bourns, Inc.
    Inventors: Eugen Bogos, Perry Wehlman, Christopher Couch