Material Flaw Testing Patents (Class 324/237)
  • Patent number: 10444983
    Abstract: An instrument is described which comprises an input for receiving a signal, a data processing unit for analyzing said received signal and providing data to be displayed, and a touch enabled display screen for displaying said data to be displayed and receiving commands directed to said data processing unit. Said commands comprise commands that determine how said data is displayed on the touch enabled display screen and commands that determine operations that are performed by said instrument and/or said data processing unit. Said commands are specified by control gestures on said touch enabled display screen. Said control gestures are unambiguously related to certain commands. Said data processing unit recognizes said control gestures wherein said data processing unit is configured to determine a corresponding command specified by said detected control gesture and to process said determined command. Said instrument is a test instrument for measuring and/or analyzing said received signal.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: October 15, 2019
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Laddie Zarsuelo, Roland Dingal
  • Patent number: 9964519
    Abstract: A device for discovering, identification and monitoring, of mechanical flaws in metallic structures is disclosed, based on magneto-graphic/magnetic tomography technique to identify stress-related defects. The device can determine the position of the defect or stress including depth information. The device includes registration means that optimized for use with metallic structures of various types, shapes, and sizes. Applications include a real-time quality control, monitoring and emergency alarms, as well structural repairs and maintenance work recommendations and planning. Examples of the device implementation include pipes for oil and gas industry monitoring, detection of flaws in roiled products in metallurgical industry, welding quality of heavy duty equipment such as ships, reservoirs, bridges, etc. It is especially important for loaded constructions, such as pressured pipes, infrastructure maintenance, nuclear power plant monitoring, bridges, corrosion prevention and environment protection.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: May 8, 2018
    Inventors: Valerian Goroshevskiy, Svetlana Kamaeva, Igor Kolesnikov
  • Patent number: 9413407
    Abstract: The invention relates to frequency conversion systems, in particular for use as up-converters or down-converters in radiofrequency (RF) receivers or transmitters, exemplary embodiments including a radiofrequency receiver including an RF signal input; a mixing module including a first plurality of IF amplifiers each connected to the RF signal input via a switch; a multi-phase local oscillator signal generator configured to provide a switching signal to each switch; and a summing module configured to receive output signals from each of the IF amplifiers and to provide a second plurality of output IF signals from a weighted sum of the IF amplifier output signals, wherein the second plurality is different to the first plurality.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: August 9, 2016
    Assignee: NXP B.V.
    Inventors: Jan van Sinderen, Johannes Hubertus Antonius Brekelmans, Frank Harald Erich Ho Chung Leong, Nenad Pavlovic
  • Patent number: 8884613
    Abstract: A water-chamber working apparatus 1 according to the present invention includes a movable body that can move along a tube plate 12 of a steam generator 10, an extendable member 21 that extends and retracts in a direction in which a first coupling portion 21d approach each other and a direction in which these portions move away from each other, where the first coupling portion 21d is attached to a maintenance hatch 15 via a first joint 23a including two rotation axes intersecting with each other, and the second coupling portion 21e is attached to the movable body via a second joint 23b including two rotation axes intersecting with each other, which are different from the rotation axes of the first joint 23a.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Jun Fujita
  • Patent number: 8823369
    Abstract: A non-destructive inspection system that has particular application for inspecting a bore in a valve for defects. The system includes an inspection yoke having a ferromagnetic core, where a first coil is wound around the core in one direction and a second coil is wound around the core in an orthogonal direction so that orthogonal electromagnetic fields can be generated within the bore. A controller provides a current flow through the coils to generate the electromagnetic fields to detect defects in the bore.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 2, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: David S. Segletes, Erik A. Lombardo
  • Patent number: 8581578
    Abstract: A magnetic pattern detection device for use with a medium having at least one magnetic pattern of a plurality of types of magnetic patterns whose residual magnetic flux density and permeability are different on a basis of both of a level of residual magnetic flux density and a level of permeability may include a common sensor part structured to detect presence/absence of each of the plurality of types of magnetic patterns, and a signal processing section structured to extract a first signal corresponding to the level of the residual magnetic flux density and a second signal corresponding to the level of the permeability from a signal outputted from the sensor part.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 12, 2013
    Assignee: Nidec Sankyo Corporation
    Inventor: Shogo Momose
  • Patent number: 8552717
    Abstract: It is an object of the present invention to provide an eddy current testing apparatus capable of accurately detecting any flaws occurring in a columnar or cylindrical subject to be tested regardless of their extending directions, with the use of the same probe coil. The eddy current testing apparatus 100 according to the present invention comprises a spinning plate 1 and a probe coil 2 disposed on the spinning plate 1. The probe coil is a probe coil capable of obtaining a differential output about a scanning direction of a detection signal which corresponds to a detected eddy current induced in the subject to be tested. The spinning plate is disposed in such a position that a spinning center RC of the spinning plate faces with an axial center PC of the subject to be tested.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: October 8, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shigetoshi Hyodo, Yoshiyuki Nakao
  • Patent number: 8552718
    Abstract: In a method for the nondestructive testing of pipes made of ferromagnetic steel for flaws by means of stray flux, the pipe is magnetized by a constant field and the discontinuities in the near-surface region of the outer or inner surface of the pipe cause magnetic stray fluxes, which exit the pipe surface and are detected by probes of a test unit, wherein the association of the detected amplitude signals is performed on the basis of the amplitude height and/or the frequency spectrum with respect to an external or internal flaw via defined flaw thresholds respectively. For this, prior to associating the detected amplitude signals to an external or internal flaw, the angular position of the flaw relative to the respective magnetic field direction is determined, and a correction of the signals is carried out via a previously determined correction factor for amplitudes and/or frequencies of a perpendicular angular position.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: October 8, 2013
    Assignee: V & M Deutschland GmbH
    Inventors: Andreas Groos, Stefan Nitsche
  • Patent number: 8513943
    Abstract: An apparatus, system, and method are disclosed for maintaining normalcy of a sensor with respect to a structure. The apparatus includes a driving member, a driven member, and a sensor. The driving member includes a first engaging element and a second engaging element. The driven member includes a third engaging element and a fourth engaging element. The third engaging element of the driven member is engaged with the first engaging element of the driving member. The fourth engaging element of the driven member is engaged with the second engaging element of the driving member. The sensor is coupled to the driven member, which is rotatably drivable by the driving member. Engagement between the first and third engaging elements facilitates three-dimensional adjustment of the driven member relative to the driving member. Engagement between the second and fourth engaging elements facilitates co-rotation of the driving member and the driven member.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 20, 2013
    Assignee: United Western Technologies Corporation
    Inventors: Mark Gehlen, Gary Brockman, Steve Hubbard
  • Patent number: 8493064
    Abstract: An apparatus, system, and method are disclosed for scanning metallic surfaces. The apparatus, in one embodiment, comprises a shaft and a rotating member. The rotating member may comprise a sensing end and a featuring engaging element. The shaft further comprises a first coupling element and the rotating member further comprises a second coupling element. The first coupling element may be coupleable with the second coupling element such that the rotating member is pivotable at any three-dimensional angle with respect to the shaft to orient the sensing surface parallel to the scanned surface.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: July 23, 2013
    Assignee: United Western Technologies Corporation
    Inventors: Mike Setbacken, Mark Gehlen, Steve Hubbard, Fred Perrin
  • Patent number: 8486545
    Abstract: Systems and methods for flaw detection and monitoring at elevated temperatures with wireless communication using surface embedded, monolithically integrated, thin-film, magnetically actuated sensors, and methods for fabricating the sensors. The sensor is a monolithically integrated, multi-layered (nano-composite), thin-film sensor structure that incorporates a thin-film, multi-layer magnetostrictive element, a thin-film electrically insulating or dielectric layer, and a thin-film activating layer such as a planar coil. The method for manufacturing the multi-layered, thin-film sensor structure as described above, utilizes a variety of factors that allow for optimization of sensor characteristics for application to specific structures and in specific environments. The system and method integrating the multi-layered, thin-film sensor structure as described above, further utilizes wireless connectivity to the sensor to allow the sensor to be mounted on moving components within the monitored assembly.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 16, 2013
    Assignee: Southwest Research Institute
    Inventors: Bruce R. Lanning, Glenn M. Light, Stephen J. Hudak, Jr., James A. Moryl
  • Patent number: 8358126
    Abstract: A method of testing for defects in the bottom of an above ground storage tank, the tank bottom having a lip extending outwardly from the tank wall around the circumference of the tank. A special magnetostrictive sensor is designed to be placed on this lip. The sensor is placed over a strip of magnetostrictive material, which generally conforms in length and width to the bottom of the probe, with a couplant being applied between the strip and the lip surface. The sensor is then operated in pulse echo mode to receive signals from defects in the bottom of the tank. It is incrementally moved around the circumference of the tank.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 22, 2013
    Assignee: Southwest Research Institute
    Inventors: Glenn M Light, Alan R Puchot, Adam C Cobb, Erika C Laiche
  • Patent number: 8339130
    Abstract: The surface length of a metal subject to be inspected is evaluated by detecting an eddy current without using a combination of a scale and visual or liquid penetrant inspection. An exciting coil and a detecting coil are scanned above the subject in a length direction. An eddy current detector measures an output voltage corresponding to scanning positions based on an output from the detecting coil. Based on an output voltage distribution curve indicating a distribution of output voltages corresponding to the scanning positions, position information is extracted corresponding to values which are within a differential voltage range and lower by 12 dB than a maximum value of the output voltages on the left and right sides of the distribution. A distance between the positions included in the extracted information is calculated to evaluate the length of a slit which is a defect present on the subject surface.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 25, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Akira Nishimizu, Yoshio Nonaka, Isao Yoshida, Motoyuki Nakamura, Akihiro Taki, Masahiro Koike
  • Patent number: 8319494
    Abstract: A pipeline inspection tool includes two pole magnets oriented at an oblique angle relative to the central longitudinal axis of the tool body. An array of sensor coil sets is located between opposing edges of the two pole magnets and oriented perpendicular to the central longitudinal axis. Each sensor coil set includes a transmitter coil and two opposing pairs of receiver coils that are gated to receive reflections from the wall of a tubular member. Because the line of sensor coils is rotated relative to the magnetic bias field, the receiver coils are in-line with, and have the same angular orientation as, the transmitter coil. The tool provides improved sensitivity to small defects, substantial decrease in RF pulser power requirements, full circumferential coverage, self-calibration of the transmitted signals, and less interference between transmitter coils caused by acoustic ring around.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 27, 2012
    Assignee: TDW Delaware Inc.
    Inventors: James Simek, Jed Ludlow, John H. Flora, Syed M. Ali, Huidong Gao
  • Patent number: 8283918
    Abstract: A detection apparatus for an eddy current in a heat generating tube using a permeability measurement method, and a method using the apparatus are provided. In the detection apparatus, a bobbin type probe acquires detection information with respect to a magnetic flux change by a magnetic phase occurring in the heat generating tube using a coil which is wound in an axis direction of at least one yoke located in a perpendicular direction with a bobbin of the bobbin type probe, and a material having a corresponding magnetic phase and a circumferential defect, which is difficult to be detected by the bobbin type probe, are detected based on the detection information.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: October 9, 2012
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Duck-Gun Park, Derac Son, Kwon-Sang Ryu, Dae-hyuk Jyung, Whung-whoe Kim
  • Patent number: 8274278
    Abstract: An automated, non-destructive anhysteretic magnetization characterization method for studying and modeling soft magnetic materials. This measurement method employs a “reading-waveform” that allows multiple points of reference to be established in tracing out the B waveform. In using the reference values from this waveform, the components of B that cannot be measured directly may be calculated with precision. In turn, the initial magnitude of the B waveform is identified as the unknown component of the anhysteretic state. The processes can be repeated for different values of static fields as well as a function of temperature to produce a family of anhysteretic magnetization curves. The core characterization was performed without physically altering the core, so that the true anhysteretic magnetization curve, and the true B-H loop under applied bias H, is measured.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: September 25, 2012
    Assignee: University of South Florida
    Inventors: Jeremy Walker, Stephen E Saddow
  • Patent number: 8008913
    Abstract: Variations in the lift-off separation between a probe and the surface of a structure to be tested often mask the detection of defects in the structure. A method and apparatus for automatically classifying and compensating for variations in the lift-off is described. A reference signal at a known lift-off may be weighted by a corresponding calculated ratio parameter and subtracted from a test signal to compensate for lift-off. A number of reference signals are preferably obtained and the largest magnitude gradient for each reference signal is preferably determined. The largest magnitude gradient for subsequent test signals is also obtained and the corresponding reference signal with the closest largest magnitude gradient to the test signal is identified and the corresponding reference signal is selected in the related compensation procedure. Such a method has been found to restore the signal such that lift-off is removed and defects are easily identified.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 30, 2011
    Assignee: GE Inspection Technologies, Ltd
    Inventors: Xiaoyu Qiao, John Hansen
  • Patent number: 7994778
    Abstract: An inductive sensor or detector includes as its sensitive element, preferably defining a front working plane of the sensor, a coil system forming an air-core transformer arrangement with a primary coil or winding (2) and a secondary coil or winding (3). The primary coil or winding of the system is associated with a capacitive component (4) in order to constitute a LC oscillating circuit whose oscillation is sustained by an adapted generator (5) in the form of an operational amplifier (6) and an associated resistance arrangement (R, R5, R13). The sensor also includes a signal processing circuit, for example signal adding (8), amplifying, converting (9) and/or evaluating circuits (10), fed by at least one signal provided by at least one component of the coil system. The inductive sensor comprises a direct or indirect feedback line (11) from the secondary coil or winding (3) to the input of the operational amplifier (6) of the generator (5).
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 9, 2011
    Assignee: Senstronic SA
    Inventors: Rémy Kirchdoerffer, Vladimir Frolov
  • Patent number: 7911206
    Abstract: The surface length of a metal subject to be inspected is evaluated by detecting an eddy current without using a combination of a scale and visual or liquid penetrant inspection. An exciting coil and a detecting coil are scanned above the subject in a length direction. An eddy current detector measures an output voltage corresponding to scanning positions based on an output from the detecting coil. Based on an output voltage distribution curve indicating a distribution of output voltages corresponding to the scanning positions, position information is extracted corresponding to values which are within a differential voltage range and lower by 12 dB than a maximum value of the output voltages on the left and right sides of the distribution. A distance between the positions included in the extracted information is calculated to evaluate the length of a slit which is a defect present on the subject surface.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Akira Nishimizu, Yoshio Nonaka, Isao Yoshida, Motoyuki Nakamura, Akihiro Taki, Masahiro Koike
  • Patent number: 7898246
    Abstract: A method and apparatus for nondestructive inspection of interwoven wire fabric components. The apparatus comprises a probe, a power source, and a display system. The probe is capable of creating a magnetic field for a plurality of wires in an interwoven wire fabric component such that disturbances of the magnetic field caused by the plurality of wires can be detected. The power is a source connected to the probe and is capable of sending an alternating current through the probe to generate the magnetic field for the wire. The display system is connected to the probe and is capable of displaying results from detecting the magnetic field and disturbances of the magnetic field.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 1, 2011
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, James H. Lee
  • Patent number: 7808330
    Abstract: A high-frequency oscillator includes a high-frequency oscillation element having a magnetization pinned layer whose magnetization direction is pinned substantially in one direction, an oscillation layer formed of a magnetic material which generates a high-frequency oscillation phenomenon when a current is supplied, an intermediate layer provided between the magnetization pinned layer and the oscillation layer, the intermediate layer having an insulation layer and current paths which pass through the insulation layer in a thickness direction, and a pair of electrodes which supply a current perpendicularly to a plane of a stacked film including the magnetization pinned layer, the intermediate layer and the oscillation layer.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7711499
    Abstract: A method of synthesizing nondestructive examination data of a component that combines data sets acquired at least two different frequencies. At least one of the data sets is interpolated or extrapolated to the equivalent of data acquired at one of the other frequencies employing a third, reference set of eddy current inspection data that is acquired at each of the inspection frequencies being combined.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: May 4, 2010
    Assignee: Westinghouse Electric Co LLC
    Inventors: Warren R. Junker, Thomas W. Nenno, Daniel J. Yaklich, Ronald J. Pocratsky
  • Patent number: 7696497
    Abstract: Apparatus for focusing a charged particle beam onto a surface, including a charged particle beam generator which is adapted to project the charged particle beam onto a location on the surface, thereby causing charges to be emitted from the location. The apparatus further includes an imaging detector which is adapted to receive the charges so as to form an image of the location, and an aberrating element which is positioned before the imaging detector and which is adapted to produce an aberration in the image. A processor is adapted to receive the image and to adjust at least one of the charged particle beam generator and a position of the surface in response to the aberration.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 13, 2010
    Assignees: Applied Materials Israel, Ltd., Carl Zeiss AG
    Inventor: Steven Robert Rogers
  • Publication number: 20090234590
    Abstract: A method of predicting at least one physical change in crack geometry based on ILI operating pressure, the method comprising a) performing a first test on a pipeline at a first pressure P1; b) obtaining a first set of test data on the pipeline at P1; c) performing a second test on the pipeline at a second pressure P2; d) obtaining a second set of test data on the pipeline at P2; and e) analyzing the first and second sets of test data for difference in feature signature at P1 vs. P2.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Inventors: Richard Clark McNealy, Ming Gao
  • Patent number: 7576534
    Abstract: The system (10) and the method are used for forecasting the electrical conductivity of an anode (12) for aluminum production before the anode (12) is baked. In the system (10), at least one receiving coil (20,22) is coupled to an electromagnetic field emitting unit (14,18). A sensing device (30) is connected to the receiving coil (20,22), the sensing device (30) outputting a signal indicative of a variation of the electromagnetic field received by the receiving coil (20,22) as the crude anode (12), or a portion thereof, passes inside the receiving coil (20,22). A value indicative of the electrical conductivity of the anode (12) is then calculated using the signal from the sensing device (30) and signals previously obtained using reference anodes (12). This way, the electrical conductivity of the anodes (12) can be forecasted before the crude anodes (12) are baked.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: August 18, 2009
    Assignee: Universite Du Quebec A Chicoutimi
    Inventors: Daniel Audet, Luc Parent
  • Patent number: 7518359
    Abstract: A non-planar part has a non-planar surface such as an edge, and may contain an anomaly such as a crack. The non-planar part is inspected using an eddy current technique. The method includes providing the non-planar part having the non-planar surface thereon, driving an eddy current probe at two or more frequencies, measuring an eddy current response signal of the non-planar part at each frequency, and performing a multifrequency phase analysis on the eddy current response signals.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: April 14, 2009
    Assignee: General Electric Company
    Inventors: Changting Wang, Ui Suh
  • Patent number: 7504898
    Abstract: A high-frequency oscillator includes a high-frequency oscillation element having a magnetization pinned layer whose magnetization direction is pinned substantially in one direction, an oscillation layer formed of a magnetic material which generates a high-frequency oscillation phenomenon when a current is supplied, an intermediate layer provided between the magnetization pinned layer and the oscillation layer, the intermediate layer having an insulation layer and current paths which pass through the insulation layer in a thickness direction, and a pair of electrodes which supply a current perpendicularly to a plane of a stacked film including the magnetization pinned layer, the intermediate layer and the oscillation layer.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: March 17, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7466126
    Abstract: An aspect of the invention is directed to a variable sensor head for use in multiple electric machines with varying slot openings comprising a ferromagnetic core; a first adjustable portion and a second adjustable portion positioned in communication with the ferromagnetic core wherein the first adjustable portion and the second adjustable portion are adjusted to fit between a plurality of slot openings of varying widths between a pair of lamination teeth of an electric machine. According to another embodiment, the first and second adjustable portions are sliding portions where the sliding portions may be spring biased to provide a close fit between the pair of lamination teeth. According to another embodiment, the first and second adjustable portions are adjustable screws.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventors: Edith Kliman, legal representative, Ralph James Carl, Jr., Manoj Ramprasad Shah, Sang-Bin Lee, Gerald Burt Kliman
  • Patent number: 7403872
    Abstract: A method and system are provided for inspecting manufactured parts such as cartridges and cartridge cases and sorting the inspected parts. The system includes an illumination assembly for evenly illuminating a plurality of annular, exterior side surfaces of a part when the part is located in a circumference vision station with rings of strobed radiation to generate corresponding reflected radiation signals. A plurality of imaging detectors in the form of CCD cameras are located at the vision station to generate a plurality of side images. The system further includes at least one side image processor for processing the side images of each part to identify parts having an unacceptable defect. The system further includes a mechanism for directing parts identified as having an unacceptable defect to a defective part area and directing parts not identified as having an unacceptable defect to an acceptable part area.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: July 22, 2008
    Assignee: GII Acquisition, LLC
    Inventors: James W. St. Onge, Joseph W. Priskorn, John D. Spalding, John V. McKowen, Kenneth S. Kolodge, Brett J. Lee
  • Patent number: 7356421
    Abstract: A new approach for locating an underground line described herein remains accurate in the face of bleedover by including both amplitude and phase from at least two magnetic field strength sensors in the measurement set. A numerical optimization step is introduced to deduce the positions and currents of each of several cables, of which one is the targeted cable and the others are termed bleedover cables. Furthermore, some embodiments of the method accounts for practical problems that exist in the field that relate to reliable estimation of cable positions, like the phase transfer function between transmitter and receiver, the estimation of confidence bounds for each estimate, and the rejection of false positive locates due to the presence of noise and interference.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: April 8, 2008
    Assignee: Metrotech Corporation, Inc.
    Inventors: Thorkell Gudmundsson, Jim Waite, Johan Överby, Stevan Polak, Niklas Lindstrom
  • Patent number: 7250757
    Abstract: A material analysis system configured to determine whether a circuit is defective includes a magnetic field generator configured to generate a first magnetic field that is configured to induce at least one eddy current in a conductive portion of the circuit, wherein the eddy current induces a second magnetic field; a set of magnetic field sensors configured to detect the second magnetic field and generate a set of image information therefrom; a database that includes circuit information for the circuit; and a computing device configured to receive the image information from the set of magnetic field sensors and retrieve the circuit information from the database, wherein the computing device is configured to compare the image information to the circuit information to determine whether the circuit is defective.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: July 31, 2007
    Assignee: Radiation Monitoring Devices, Inc.
    Inventor: Tim Tiernan
  • Patent number: 6975108
    Abstract: A non-contact printed circuit board (PCB) electromagnetic testing system comprises at least one high resolution transducer operative to induce multi-frequency, multi-amplitude eddy currents in a tested PCB, each such transducer including both a high frequency excitation coil that serves also as a sensing coil and a direct current (DC) bias coil operative to provide an optimal transducer operating regime; a multi-frequency generator for providing AC and DC bias signals to each transducer; and a control mechanism for driving the transducer. Optionally, the system further comprises an external ferrite concentrator that enhances a magnetic field flux focus and depth of focus on the inspected PCB. The multi-frequency, multi-amplitude methods enable three-dimensional mapping of various features in the PCB with both high sensitivity and high resolution in respective operating regimes.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 13, 2005
    Inventors: Yuli Bilik, Eytan Keydar, Vladimir Boroda
  • Patent number: 6966816
    Abstract: A chemical mechanical polishing apparatus and method can use an eddy current monitoring system and an optical monitoring system. Signals from the monitoring systems can be combined on an output line and extracted by a computer. A thickness of a polishing pad can be calculated. The eddy current monitoring system and optical monitoring system can measure substantially the same location on the substrate.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: November 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A Swedek, Manoocher Birang, Nils Johansson
  • Patent number: 6657430
    Abstract: A magnetic head wear-rate measuring apparatus for measuring the rate of head wear in noncontact form arranged to be opposed to a magnetic head and to serve as a part of oscillating elements of an oscillator circuit. A magnetic resistance of a magnetic circuit at a rotational position where the magnetic head faces the magnetic sensor, changes according to the degree of extension of the magnetic head from the surface of the drum, and the change in magnetic resistance acts as a variation in oscillating frequency. A counter is supplied with a pulse of a measured oscillating frequency and produces a pulse having a pulse width up to the counting of a predetermined number of pulses. The counter output is supplied to a second counter where the number of reference clocks lying within the pulse width is counted and used as measured data.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: December 2, 2003
    Assignee: Sony Corporation
    Inventors: Seiichi Sakai, Hiroshi Yamauchi
  • Patent number: 6643909
    Abstract: Method of making a proximity probe including providing a preform having an interior cavity accessible by an opened rearward end; coupling a coil to the preform proximate a forward most end of the preform for defining an assembly; locating a single support pin through the rearward end such that the support pin extends within the interior cavity while having an end emanating from the rearward end; cantilevering the emanating end between an upper and a lower mold plate defining a mold cavity for supporting the assembly; injecting moldable material into the mold cavity for molding an encapsulation of material over the assembly for defining an encapsulated probe tip, allowing the encapsulated probe tip to cure; removing the encapsulated probe tip from the mold cavity; removing the support pin from the assembly, and coupling a cable to the encapsulated probe tip for forming the proximity probe.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 11, 2003
    Assignee: Bently Nevada LLC
    Inventor: Robert Ivan Rose
  • Publication number: 20020105323
    Abstract: Disclosed herein is a magnetic head wear-rate measuring apparatus for measuring the rate of head wear in noncontact form and with high accuracy. A magnetic sensor is disposed so as to be opposed to a magnetic head and serves as a part of oscillating elements of an oscillator circuit. A magnetic resistance of a magnetic circuit at a rotational position where the magnetic head faces the magnetic sensor, changes according to the degree of extension of the magnetic head from the surface of a drum, and the change in magnetic resistance acts as a variation in oscillating frequency. The change in frequency is converted into a counter output. A counter is supplied with a pulse Pd of a measured oscillating frequency and correspondingly produces a pulse (counter output) Px having a pulse width up to the counting of a predetermined number of pulses. Thereafter, the counter output Px is supplied to a second counter where the number of reference clocks lying within the pulse width is counted.
    Type: Application
    Filed: October 25, 2001
    Publication date: August 8, 2002
    Applicant: SONY CORPORATION
    Inventors: Seiichi Sakai, Hiroshi Yamauchi
  • Publication number: 20020003421
    Abstract: A method for evaluation of an eddy current testing signal is provided. The method includes the steps of generating a feature amount based on a sample eddy current testing signal obtained by measuring a standard specimen, the feature amount including a feature highly correlated to a secondary factor which is other than a depth of the flaw and which affects the waveform of the signal; generating an evaluation parameter by using the feature amount, the evaluation parameter being a parameter for outputting a value with a sufficiently small error relative to correct answer data on the sample eddy current testing signal; and estimating the depth of a flaw, expressed by an actual measurement eddy current testing signal, by use of the evaluation parameter.
    Type: Application
    Filed: January 9, 2001
    Publication date: January 10, 2002
    Inventors: Kayoko Kawata, Masaaki Kurokawa, Yoshihiro Asada
  • Publication number: 20010017540
    Abstract: In a non-destructive inspection device of the present invention which detects in a non-destructive manner a defect of a member to be inspected, based on a change in magnetic fluxes due to eddy currents that are generated by an inspection probe having a coil, a driving section which adjusts a position of the inspection probe, and measuring device for, based on a detection signal of the inspection probe, measuring a lift-off between the inspection probe and the member to be inspected are disposed. The driving section is controlled in accordance with a result of measurement of the measuring device, whereby a control of making the lift-off constant is performed.
    Type: Application
    Filed: December 20, 2000
    Publication date: August 30, 2001
    Inventor: Makoto Arai
  • Patent number: 6198280
    Abstract: Flexible eddy current probes that allow an inspector to interrogate the blade roots or disk slots of different types of blades and disks while using a limited number of probes. The probe includes a rectangular-shaped block assembly, a rectangular-shaped loading platform having a slot therein, and stabilizing slide rods that couple the loading platform to the block assembly. The slide rods are adapted to slide through the block assembly as the block assembly is urged towards the loading platform. The probe further includes a flexible coil within a flexible membrane that produces a magnetic field during the inspection. The flexible coil extends from the block assembly and remains within the device, that is, between the loading platform and the block assembly, when not deployed. When deployed, the flexible coil passes through the slot in the loading platform to allow contact with the surface being inspected. Outriggers within the probe guide the flexible coil onto the surface during deployment.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: March 6, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Gary Lee Hensley, David Justin Watson, Larry Stephen Price
  • Patent number: 5963030
    Abstract: An openable ring assembly is externally centered around and moved parallel to the centerline of a stationary pipe. As a low-frequency EM source signal is applied to the ring assembly, the time and/or frequency shifts of a detected EM signal from the source signal can be correlated to pipe wall thickness without removal of external pipe insulation and metal cladding, if present. The ring assembly may be opened or expandably segmented to allow pipe thickness detection around obstructions or larger diameter pipe. Centering is preferably accomplished by using rollers circumferentially attached to the ring assembly.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: October 5, 1999
    Assignee: Union Oil Company of California
    Inventor: Mitchel A. Stark
  • Patent number: 5841277
    Abstract: A probe, such as an eddy current probe, which can be moved by hand to a surface to be tested. A toroidal-shaped first resilient member contacts the bottom face of a support member. An elastic membrane extends over the bore of the first resilient member, contacts the bottom lateral surface of the first resilient member, and is unattached to the radially-inward-facing surface of the first resilient member. A more elastic, second resilient member is placed in the bore, is unattached to the first resilient member, and contacts the bottom surface of the elastic membrane. A flexible, surface-conformable, eddy current sensing coil overlies a portion of the bottom side of the second resilient member.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: November 24, 1998
    Assignee: General Electric Company
    Inventors: Kristina Helena Valborg Hedengren, John David Young, Thomas Burrows Hewton, Carl Granger, Jr.
  • Patent number: 5748003
    Abstract: A method and apparatus for determining fatigue/surface crack features on metal surfaces is disclosed wherein the cracks may be empty, filled, or covered with a dielectric (e.g., paint). The present invention includes a microwave waveguide having an aperture for scanning over a surface and thereby characterizing changes in a standing wave within the waveguide when a crack is scanned. In particular, crack related data resulting from standing wave perturbations can be analyzed for determining crack geometric features such as crack width, crack depth, crack length and crack tips. These features are determinable with high precision in comparison to the size of the aperture. When locating and/or sizing the geometric features of a crack, voltage changes induced by higher order modes generated by various orientations of the crack in relation to the aperture are utilized for generating the crack related data.
    Type: Grant
    Filed: May 14, 1996
    Date of Patent: May 5, 1998
    Assignee: Colorado State University Research Foundation
    Inventors: Reza Zoughi, Chin-Yung Yeh, Stoyan I. Ganchev, Christian Huber
  • Patent number: 5729133
    Abstract: A magnetic sensor is disposed in an opposing relationship to a rotating magnetic head device with a magnetic head mounted thereon and placed in noncontact therewith so as to fall outside a lap angle .alpha. of a magnetic tape. The magnetic sensor is used as a part of oscillating elements of an oscillator circuit. By noting that a magnetic resistance of a magnetic circuit at a rotational position where the magnetic head faces the magnetic sensor changes according to the degree of extension of the magnetic head from the surface of a drum, and taking the change in magnetic resistance as a variation in oscillating frequency, the rate of wear of the magnetic head is measured. Since the change in magnetic resistance is taken as the variation in oscillating frequency, the degree of extension of the magnetic head, i.e., the rate of wear of the magnetic head can be measured with high accuracy.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: March 17, 1998
    Assignee: Sony Corporation
    Inventors: Seiichi Sakai, Teruyuki Yoshida
  • Patent number: 5537038
    Abstract: A current of predetermined frequency is fed to a coil wound around a ferromagnetic core through a fixed impedance means. A magnetic flux measurement is performed in terms of a level of a DC component of a voltage generated across the coil. A DC bias is added to the current of predetermined frequency, and the resultant current is applied through the fixed impedance means to the coil wound around the ferromagnetic core. A magnetic flux measurement is performed in terms of a level of a DC component of the voltage across the coil. A magnetic flux measuring method and apparatus for embodying the same have a high sensitivity in detecting a minute magnetic flux and an improved temperature characteristic because an output voltage little varies against a temperature variation.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: July 16, 1996
    Assignee: NKK Corporation
    Inventor: Seigo Ando
  • Patent number: 5509320
    Abstract: A test head through which passes a test object has at least one test probe guided in a circular orbital path around the test object. The shape of the circular orbital path of the probe, when considered in the travel direction of the object, diverges in a predetermined manner from a circular shape. A rotor guides the probe on a circular path, and the rotational axis of the rotor can be tilted with respect to the travel direction of the test object. The rotor is driven by a driving unit positioned laterally to the travel direction on a base plate by a belt drive which runs in a transmission element carrying the test head and linking it with a drive unit.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: April 23, 1996
    Assignee: Institut Dr. Friedrich Forster
    Inventor: Friedrich M. Forster
  • Patent number: 5473248
    Abstract: A system and method of automatic, in-line electrical quality control of a carbon anode including detecting internal flaws in the carbon anode by measuring an eddy-current loss of the carbon anode and determining intrinsic resistivity of the carbon anode by measuring resistivity of the carbon anode and determining the electrical quality of the carbon anode according to the measured eddy-current loss and the measured resistivity.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: December 5, 1995
    Assignee: The University of Maryland at College Park
    Inventors: Paul R. Haldemann, Eman P. Fawzi
  • Patent number: 5453291
    Abstract: The detection of an internal damage in an FRP member constituted by reinforcing fibers, a matrix resin and magnetic members having a magneto-mechanical property is conducted by disposing the magnetic members in the FRP member, and measuring a change in the magnetic properties of the magnetic members by a non-destructive inspection method.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: September 26, 1995
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Jun Sasahara, Hajime Goto
  • Patent number: 5430376
    Abstract: A microcomputer or PC based non-destructive coated-object testing system and method combines thermoelectrically measured surface coating thickness data with flaw/crack depth data determined from eddy current measurements of the surface of the object to locate and selectively identify faults or cracks which penetrate the surface coating. The microcomputer controls scanning of eddy-current and thermoelectric probes over the object surface and stores measured data along with surface coordinate information to provide a color-keyed graphics display of surface conditions for visual analysis.
    Type: Grant
    Filed: June 9, 1993
    Date of Patent: July 4, 1995
    Assignee: General Electric Company
    Inventor: John R. M. Viertl
  • Patent number: 5418459
    Abstract: A method for nondestructive examination of an object of type having localized permeability variations therein and varying surface conditions and grain structures comprises the steps of AC flux saturating a localized surface area of the object so as to magnetically saturate the surface area to quiet localized permeability variations therein and to set up a stabilized high level primary field on the surface substantially unalterable by the varying surface conditions and grain structures in the object and detecting eddy currents in the surface area. Coil structure and apparatus for implementing the method are also defined. Further, the method is disclosed as being implemented in part by the use of components of a pre-existing object evaluation device.
    Type: Grant
    Filed: October 8, 1993
    Date of Patent: May 23, 1995
    Assignee: Magnetic Analysis Corporation
    Inventors: Zhongqing You, Robert A. Brooks, Paul J. Bebick
  • Patent number: 5311128
    Abstract: An eddy current imaging system includes an eddy current sensing coil positioned proximate a workpiece for scanning the workpiece to produce a signal indicative of the integrity of the workpiece for regions in an x,y array of data. Such a signal may be a complex impedance signal representative of the amplitude and/or the phase of the signal. Two data processing techniques are disclosed for enhancing the display of a flay in the workpiece. The first includes the step of calculating a spatial derivative of the amplitude and/or phase indicative signal from the coil and providing an image of the spatial derivative to produce a C scan of the spatial derivative. The second includes the steps of determining the regions of maximum ascent and/or descent of the signal for regions in the scan and calculating an impedance plane trajectory from the data array of path points for displaying a reconstructed optimum signal independent of path pattern.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: May 10, 1994
    Assignee: Abb Amdata Inc.
    Inventors: John P. Lareau, David S. Leonard