Magnetic Test Structure Elements Patents (Class 324/262)
  • Patent number: 10374004
    Abstract: Disclosed examples provide wafer-level integration of magnetoresistive sensors and Hall-effect sensors in a single integrated circuit, in which one or more vertical and/or horizontal Hall sensors are formed on or in a substrate along with transistors and other circuitry, and a magnetoresistive sensor circuit is formed in the IC metallization structure.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 6, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, William David French, Keith Ryan Green
  • Patent number: 10302598
    Abstract: Methods and devices are provided for detecting, corrosion and cracks in fastener nuts. In an exemplary embodiment, an apparatus can be configured to couple to a fastener nut to facilitate inspection of the fastener nut for detection of flaws in the fastener nut, such as corrosion and cracks. The apparatus can be configured to couple to the fastener nut when the fastener nut is mounted on a fastener and in use in a larger system such as a subsea drilling apparatus or other system in which fasteners with fastener nuts attached thereto are used. The apparatus can include an ultrasonic probe configured to facilitate inspection of the fastener nut using ultrasonic waves.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: May 28, 2019
    Assignee: General Electric Company
    Inventors: Manuel K. Bueno, Robert Shaffer, Gary Lamberton
  • Patent number: 9435766
    Abstract: An automatic portable inspection system includes a part holder for holding a component to be inspected and a rotary actuator coupled to the part holder. The system further includes an eddy current probe for scanning the component and providing eddy current signals. The system also includes a self-alignment unit coupled to the eddy current probe and configured to align an axis of the probe substantially perpendicular to a surface of the component and to maintain constant contact with said surface of the component. The system also includes a linear actuator coupled to the self-alignment unit, for providing movement of the eddy current probe along the X, Y and Z axes. A motion control unit is coupled to the rotary actuator and the linear actuator, for controlling the rotary actuator and the linear actuator for moving said probe about the component in accordance with a scan plan.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 6, 2016
    Assignee: General Electric Company
    Inventors: Yuri Alexeyevich Plotnikov, Daniel John Noonan, John Edward McLeod, Jr., Alessio Andolfi, Riccardo Catastini
  • Patent number: 9366600
    Abstract: A method of inspecting a component located on a rotor rotating about an axis internal to a turbine. An elongated probe is provided defining a probe length and having a one-dimensional pixel array formed by a plurality of pixels extending single file along the probe length. The probe is positioned through an access port in a casing of the turbine. The rotor is rotated to move the component past the pixel array, and energy emitted from an image area defined by a line extending along the component is received at the pixel array. An intensity-based signal from each pixel in the pixel array is conveyed to a processor to convert the intensity-based signals to an intensity-based line image, and a succession of the intensity-based line images are converted into a cohesive two-dimensional digital image of the component.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 14, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Forrest R. Ruhge
  • Patent number: 9244145
    Abstract: A system and method for measuring near field information of a device under test (DUT) uses a reference probe and a measurement probe that are configured to sense a field. A probe calibration factor is used to determine corresponding field values for signals from the measurement probe at sampling locations about the DUT. The probe calibration factor is derived from measured signals about a conductive trace using a probe and simulated field information for the conductive trace when subjected to a simulated reference signal.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: January 26, 2016
    Assignee: Amber Precision Instruments, Inc.
    Inventors: Kyung Jin Min, Giorgi Muchaidze, Besarion Chikhradze
  • Patent number: 9201093
    Abstract: Disclosed is an inspection apparatus for a semiconductor device, which is to inspect an electric characteristic of an inspective object having a plurality of electric inspective contact points. The inspection apparatus includes a socket assembly which includes a plurality of probe pins retractable in a longitudinal direction, a probe pin supporter supporting the probe pins in parallel with each other, and a socket board including a plurality of fixed contact points a first end portion of the probe pins, and an inspective object carrier which includes an inspective object accommodating portion accommodating the inspective object so that the inspective contact points face toward a second end portion of the probe pins, and a floor member interposed between the inspective object and the probe pin supporter and including probe holes penetrated corresponding to the inspective contact points and passing the second end portion of the probe pin therethrough.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 1, 2015
    Assignee: LEENO INDUSTRIAL INC.
    Inventor: Chae-Yoon Lee
  • Patent number: 9041388
    Abstract: A non-contact current censor includes a spin valve structure (2), an electrical unit (4) that applies a varying current to the spin valve structure (2), and a resistance reading unit that electrically reads out a resistance value of the spin valve structure (2). When a current-induced magnetic field is detected, a coercive force of a free layer (14) is configured to be larger than the current-induced magnetic field as a detection target, and the electrical unit (4) allows the magnetization directions of a pinned layer (12) and the free layer (14) to transition between a mutually parallel state and a mutually anti-parallel state by applying the current to the spin valve structure (2). The resistance reading unit (5) detects a threshold value corresponding to the transition.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: May 26, 2015
    Assignee: III HOLDINGS 3, LLC
    Inventor: Yasushi Ogimoto
  • Patent number: 9000764
    Abstract: A method for producing printed magnetic functional elements for resistance sensors and printed magnetic functional elements. The invention refers to the field of electronics and relates to a method for producing resistance sensors, such as can be used, for example, in magnetic data storage for read sensors or in the automobile industry. The disclosure includes a simple and cost-effective production method and to obtain such printed magnetic functional elements with properties that can be adjusted as desire, in which a magnetic material is deposited onto a substrate as a film, is removed from the substrate and divided into several components and these components are applied on a substrate by means of printing technologies. Aspects are also directed to a printed magnetic functional element for resistance sensors of several components of a film, wherein at least 5% of the components of the functional element have a magnetoimpedance effect.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 7, 2015
    Assignee: Leibniz-Institut fuer Festkoerper und Werkstoffforschung Dresden e.V.
    Inventors: Daniil Karnaushenko, Denys Makarov, Oliver G. Schmidt
  • Patent number: 8963538
    Abstract: Manufacturing of magnetometer units (20?) employs a test socket (41) having a substantially rigid body (43) with a cavity (42) therein holding an untested unit (20) in a predetermined position (48) proximate electrical connection (50) thereto, wherein one or more magnetic field sources (281, 332, 333, 334, 335, 336) fixed in the body (43) provide known magnetic fields at the position (48) so that the response of each unit (20) is measured and compared to stored expected values. Based thereon, each unit (20) can be calibrated or trimmed by feeding corrective electrical signals back to the unit (20) through the test socket (41) until the actual and expected responses match or the unit (200) is discarded as uncorrectable. In a preferred embodiment, the magnetic field sources (281, 332, 333, 334, 335, 336) are substantially orthogonal coil pairs (332, 333, 334) arranged so that their centerlines (332-1, 333-1, 334-1) coincide at a common point (46) within the predetermined position (48).
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 24, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventors: Peter T. Jones, David T. Myers, Franklin P. Myers, Jim D. Pak
  • Patent number: 8947080
    Abstract: A magnetometer for sensing a magnetic field may include a solid state electronic spin system, and a detector. The solid state electronic spin system may contain one or more electronic spins that are disposed within a solid state lattice, for example NV centers in diamond. The electronic spins may be configured to receive optical excitation radiation and to align with the magnetic field in response thereto. The electronic spins may be further induced to precess about the magnetic field to be sensed, in response to an external control such as an RF field, the frequency of the spin precession being linearly related to the magnetic field by the Zeeman shift of the electronic spin energy levels. The detector may be configured to detect output optical radiation from the electronic spin, so as to determine the Zeeman shift and thus the magnetic field.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: February 3, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Mikhail Lukin, Ronald L. Walsworth
  • Patent number: 8884606
    Abstract: A current determiner comprising a first input conductor and a first current sensor, formed of a plurality of magnetoresistive, anisotropic, ferromagnetic thin-film layers at least two of which are separated from one another by a nonmagnetic layer positioned therebetween, and both supported on a first side of a substrate adjacent to but electrically isolated from one another with the first current sensor positioned in those magnetic fields arising from any input currents. A first shield/concentrator of a material exhibiting a substantial magnetic permeability is positioned on a second side of the substrate opposite the first side of the substrate. The substrate can include a monolithic integrated circuit structure containing electronic circuit components of which at least one is electrically connected to the first input conductor.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: November 11, 2014
    Assignee: NVE Corporation
    Inventors: John K. Myers, James M. Daughton
  • Patent number: 8873200
    Abstract: There is disclosed a spinstand for testing a head gimbal assembly. The spinstand includes a gripper operable to grip the head gimbal assembly and a load pick device operable to hold a head gimbal assembly and to move the head gimbal assembly into an exchange position where it can be gripped by the gripper. In the exchange position part of the load pick device registers with the gripper and another part of the load pick device is spaced from the gripper so as to form a space between, in which space at least part of the head gimbal assembly is located in use.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 28, 2014
    Assignee: Xyratex Technology Limited
    Inventors: Ian Stanley Warn, Andrew William Atkins
  • Patent number: 8872519
    Abstract: One exemplary embodiment includes a method including providing a battery, producing a first magnetic field so that a second magnetic field is induced in the battery, sensing a magnetic field resulting from the interaction of the first magnetic field and the second magnetic field, utilizing the sensed net magnetic field to determine the state of charge of the battery.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: October 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory P. Meisner, Jan F. Herbst, Mark W. Verbrugge
  • Patent number: 8829901
    Abstract: A method to measure a magnetic field is provided. The method includes applying an alternating drive current to a drive strap overlaying a magnetoresistive sensor to shift an operating point of the magnetoresistive sensor to a low noise region. An alternating magnetic drive field is generated in the magnetoresistive sensor by the alternating drive current. When the magnetic field to be measured is superimposed on the alternating magnetic drive field in the magnetoresistive sensor, the method further comprises extracting a second harmonic component of an output of the magnetoresistive sensor. The magnetic field to be measured is proportional to a signed amplitude of the extracted second harmonic component.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventor: Bharat B. Pant
  • Patent number: 8789422
    Abstract: An electromagnetic-acoustic transducer for ultrasonic testing of test objects which are composed substantially of an electrically conductive material includes a magnet system that produces a magnetic field intended to penetrate into the test object, and an inductive coil arrangement that produces an electromagnetic alternating field superimposed on this magnetic field in the test object, and that detects electromagnetic alternating fields emitted from the test object, wherein magnet system is arranged in a magnetization unit, the coil arrangement is arranged in a probe unit separate from the magnetization unit, the probe unit is mounted such that it can move relative to the magnetization unit in the area of the magnetic field.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: July 29, 2014
    Assignee: Institut Dr. Foerster GmbH & Co. KG
    Inventors: Michael Ege, Jürgen Wanner
  • Publication number: 20140197829
    Abstract: The invention relates to a mobile carrier system for at least one sensor element for testing test objects having convex surfaces. The system is provided for testing test objects that are at least made of ferromagnetic material. For this purpose, two first rollers are attached to a frame, the rotational axes of which are oriented parallel to each other and at a distance from each other. The distance of the two first rollers can be varied, and one of the two first rollers is attached to a carriage, which can be moved perpendicularly to the rotational axes of the two first. rollers. A drive for raising and lowering the first rollers is present on the two first rollers. Two pairs of second rollers are attached to the frame between the two first rollers. At least one pair of the second rollers comprises a rotary drive.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 17, 2014
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Klaus SZIELASKO, Jochen Horst KURZ, Wajahat HUSSAIN
  • Patent number: 8773113
    Abstract: Cyclic motion of a ferromagnetic part in an environment made noisy by at least one electric source with an A.C. component is measured using at least one first magnetometer sensitive to the moving part and a sensor of an image of current in the electric source. An estimate is calculated of noise linked to the electric source on a signal measured by the first magnetometer and then subtracted from the measured signal.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 8, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Alexis Le Goff, Roland Blanpain
  • Patent number: 8768639
    Abstract: A dynamically self-adjusting magnetometer is disclosed. In one embodiment, a first sample module periodically generates an electronic signal related to at least one magnetic field characteristic of a monitored environment. A second sample module periodically generates an electronic signal related to at least one magnetic field characteristic of a monitored environment. A summing module sums the absolute value of the electronic signal from the first sample module and the electronic signal from the second sample module. A delta comparator module receives the electronic signals from each of the first sample module, the second sample module and the summing module and compares each of the electronic signals with a previously received set of electronic signals to establish a change, wherein an output is generated if the change is greater than or equal to a threshold.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 1, 2014
    Assignee: Broadband Discovery Systems, Inc.
    Inventor: Cory James Stephanson
  • Patent number: 8704511
    Abstract: A system according to one embodiment includes a power supply for charging a lead of a magnetic sensor to a voltage; an interface for operatively coupling the power supply to the lead of the magnetic sensor; a relay for selectively coupling the lead of the magnetic sensor to ground for causing a discharge event, wherein the discharge event reverses a magnetic orientation of a pinned layer of the magnetic sensor; and a shorting resistor between the relay and ground.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventor: Icko E. T. Iben
  • Patent number: 8659292
    Abstract: A CPP MR sensor interposes a tapered soft magnetic flux guide (FG) layer between a hard magnetic biasing layer (HB) and the free layer of the sensor stack. The flux guide channels the flux of the hard magnetic biasing layer to effectively bias the free layer, while eliminating instability problems associated with magnetostatic coupling between the hard bias layers and the upper and lower shields surrounding the sensor when the reader-shield-spacing (RSS) is small.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 25, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Tong Zhao, Kunliang Zhang
  • Patent number: 8653824
    Abstract: A method for quasi-static testing a magnetic recording head read sensor is described. The method includes applying a first voltage to a heater in the magnetic recording head and measuring an output of the magnetic recording head read sensor while applying the first voltage to the heater and recording the measured output as a first set of measurements. The method further includes applying a second voltage to the heater in the magnetic recording head and measuring the output of the magnetic recording head read sensor while applying the second voltage to the heater and recording the measured output as a second set of measurements. The first and second sets of measurements are then compared.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: February 18, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Feng Liu, Mehran Zargari
  • Patent number: 8611048
    Abstract: An apparatus for receiving and positioning a read/write head to a disk and related methods are disclosed. The apparatus includes: a deck; a spindle on the deck; a safety enclosure surrounding at least the spindle; and a movable carriage having at least one head receiving portion. The carriage is movable between a first position wherein the head receiving portion is outside the safety enclosure and a second position wherein the head receiving portion is inside the safety enclosure. The apparatus further includes an automated mechanism arranged to pick up the head from the head receiving portion when in the second position and to load the head to the disk for testing.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: December 17, 2013
    Assignee: Xyratex Technology Limited
    Inventors: Keith Rowland Charles Brady, Graham Collins
  • Patent number: 8611986
    Abstract: A system and method for performing object localization based on the emission of electromagnetic fields. The electromagnetic fields are simultaneously emitted from different transmitters. One electromagnetic field is emitted at a base frequency; the remaining waves are emitted at frequencies that are harmonics of the base frequency. The composite magnetic fields are measured by sensors. The signal generated by each sensor is subject to a Fourier analysis to determine the strengths of the individual electromagnetic fields forming the composite electromagnetic field. These individual measure field strength data are then used to determine the position and orientation of the sensors relative to the transmitters.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: December 17, 2013
    Assignee: Stryker Corporation
    Inventor: Chunwu Wu
  • Patent number: 8558537
    Abstract: In a process for testing the measurement accuracy of at least one magnetic field sensor, in particular during manufacturing, a semiconductor wafer that has at least two semiconductor chips is provided. A measurement coil is integrated into at least one first semiconductor chip, and a magnetic field-sensitive electric circuit is integrated into at least one second semiconductor chip that forms the magnetic field sensor. The first semiconductor chip, of which at least one is present, is positioned at an exciter coil that is supplied with current in order to generate a reference magnetic field. With the aid of the measurement coil a first measured value that is dependent on the magnetic flux density is acquired and the current in the exciter coil is adjusted depending on the first measured value. The second semiconductor chip, of which at least one is present, is positioned at the exciter coil.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: October 15, 2013
    Assignee: Micronas GmbH
    Inventors: Martin Bayer, Hans-Jörg Fink
  • Patent number: 8560259
    Abstract: A dynamically self-adjusting magnetometer is disclosed. In one embodiment, a first sample module periodically generates an electronic signal related to at least one magnetic field characteristic of a monitored environment. A second sample module periodically generates an electronic signal related to at least one magnetic field characteristic of a monitored environment. A summing module sums the absolute value of the electronic signal from the first sample module and the electronic signal from the second sample module. A delta comparator module receives the electronic signals from each of the first sample module, the second sample module and the summing module and compares each of the electronic signals with a previously received set of electronic signals to establish a change, wherein an output is generated if the change is greater than or equal to a threshold.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 15, 2013
    Assignee: Broadband Discovery Systems, Inc.
    Inventor: Cory James Stephanson
  • Patent number: 8552723
    Abstract: A measuring arrangement is provided with a magnetic field-sensitive sensor (2), which includes a body (10) formed of a magnetic material. The body has a continuous recess (12) and a wall (26) defining same. The sensor (2) has at least one electric conductor (5), which extends between the ends and is passed through the recess (12). A magnet (22), which can be moved relative to the body (10), provides a magnetic field by which the permeability of the body (10) can be varied as a function of the distance between the body (10) and the magnet (22). An analysis means (4), which can be or is connected to the conductor (5) and by which the change in the permeability of the body (10) can be detected. The conductor (5) does not loop around the wall (26).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 8, 2013
    Assignee: Lemförder Electronic GmbH
    Inventors: Rainer Haevescher, Achim Fürhoff, Maik Hubert
  • Patent number: 8552716
    Abstract: In one embodiment, a manufacturing method for magnetic heads includes classifying magnetic heads into one of: a first tested head class, and a non-test-candidate head class, determining characteristic values of the magnetic heads classified in the first tested head class, estimating characteristic values of the magnetic heads classified in the non-test-candidate head class, wherein the estimating is based on the characteristic values of the magnetic heads classified in the first tested head class, classifying each of the magnetic heads classified in the non-test-candidate head class into one of: a second tested head class, and a non-test head class based on the estimated characteristic values, determining characteristic values of the magnetic heads classified in the second tested head class, and screening magnetic heads in the second tested head class based on the determined characteristic values of the magnetic heads classified in the second tested head class.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: October 8, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Fumiomi Ueda, Makoto Ono
  • Publication number: 20130214773
    Abstract: A gas cell used for a magnetocardiograph that measures a magnetic field generated from a living body (magnetocardiography) and a magnetoencephalograph that measures a magnetic field generated from a brain (magnetoencephalography).
    Type: Application
    Filed: February 14, 2013
    Publication date: August 22, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: SEIKO EPSON CORPORATION
  • Patent number: 8500651
    Abstract: A system and method for measuring volumes and areas using electromagnetic induction techniques. A current is generated and fed into one of two coil assemblies to induce voltage into another coil assembly to provide accurate values for volume or area.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 6, 2013
    Assignee: Volusense AS
    Inventors: Morten Eriksen, Erik Eriksen
  • Publication number: 20130187646
    Abstract: Electronics module assemblies (“EMAs”) for inflatable personal restraints and associated systems are described herein. An EMA configured in accordance with an embodiment of the present technology can include, for example, a housing having a body portion, cover portion that attaches to the body portion to form an enclosure, and protrusion extending outwardly from the cover portion. The protrusion can have an outer boundary at which the protrusion projects away from the cover portion. The EMA can further include a crash sensor within the enclosure in an area defined by the outer boundary of the protrusion. The protrusion can form an envelope of space around the crash sensor that defines a minimum distance an external object with a magnetic field can come to the crash sensor without activating it. The EMA can optionally include a magnetic field configured to disable the crash sensor upon the detection of an external magnetic field.
    Type: Application
    Filed: September 10, 2012
    Publication date: July 25, 2013
    Applicant: AmSafe, Inc.
    Inventors: Andre Baca, Ronald A. Shields, Willard F. Hagan
  • Patent number: 8493062
    Abstract: According to the present invention, a method for determining coercivity of a coercivity distribution magnet, whereby coercivity of each portion in the coercivity distribution magnet can be determined with good accuracy without, for example, cutting the coercivity distribution magnet into pieces and thus quality assurance can be achieved with good accuracy, is provided.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomonari Kogure, Mayumi Nakanishi
  • Patent number: 8450997
    Abstract: Magnetic tracking systems and methods for determining the position and orientation of a remote object. A magnetic tracking system includes a stationary transmitter for establishing a reference coordinate system, and at least one receiver. The remote object is attached to, mounted on, or otherwise coupled to the receiver. The transmitter can include a set of three mutually perpendicular coils having a common center point, or a set of three coplanar coils with separate centers. The receiver can include a set of three orthogonal coils. The position and orientation of the receiver and the remote object coupled thereto is determined by measuring the nine mutual inductances between the three transmitter coils and the three receiver coils. The magnetic tracking system provides reduced power consumption, increased efficiency, digital compensation for component variation, automatic self-calibration, automatic synchronization with no connections between transmitter and receiver, and rapid low-cost implementation.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: May 28, 2013
    Assignee: Brown University
    Inventor: Kenneth J. Silverman
  • Patent number: 8432163
    Abstract: The method for cancellation of low frequency noise in a magneto-resistive mixed sensor (1) comprising at least a superconducting loop with at least one constriction and at least one magneto-resistive element (6) comprises a set of measuring steps with at least one measuring step being conducted with the normal running of the mixed sensor and at least another measuring step being conducted whilst an additional super-current is temporarily injected in the at least one constriction of the at least one superconducting loop of the mixed sensor (1) up to a critical super-current of the constriction so that the result of the at least another measuring step is used as a reference level of the at least one magneto-resistive element (6).
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: April 30, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Claude Fermon, Hedwige Polovy, Myriam Pannetier-Lecoeur
  • Patent number: 8427163
    Abstract: A spot indicating metal detector apparatus rides on a motorized platform having a rotary framework having a plurality of metal detectors mounted thereon with a plurality of metal detector coils positioned adjacent the ground below. The metal detector apparatus has a plurality of spray heads each associated with one metal detector detector coil for spraying a fluid onto the earth at the position the metal detector detects the presence of a metallic object.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 23, 2013
    Inventor: Robert L. Sickler, Jr.
  • Patent number: 8395380
    Abstract: A device for non-destructive control of a component analyzes distribution of a leakage magnetic field emitted by the component when it is subjected to an exciting magnetic field, includes means for generating an exciting magnetic field inside the component to be tested, and means for detecting and measuring the distribution of the magnetic field. The set of means is integrated in a flexible housing to form a device in the form of a flexible coating for being fixed on a region of the surface of the component to be tested. The disclosed embodiments are useful for non-destructive testing of aircraft components, but may also be used in all industrial sectors where testing the integrity of components is important, such as the automotive, railway, marine or nuclear industry.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: March 12, 2013
    Assignee: Airbus Operations SAS
    Inventor: Marie-Anne de Smet
  • Patent number: 8390271
    Abstract: The present invention relates to magnetic anchorage equipment comprising a frame able to contain a plurality of polar units, each of the plurality of polar units having a ferromagnetic polar element which identifies an anchorage surface and a self-testing unit for checking the magnetic equipment. The magnetic anchorage equipment is characterized in that the self-testing unit for checking the magnetic equipment is at least partly integrated in the frame.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: March 5, 2013
    Assignees: Tecnomagnete S.p.A., Politecnico di Milano
    Inventors: Michele Cardone, Giovanni Cosmai, Roberto Faranda, Antonino Giglio
  • Patent number: 8350564
    Abstract: A system and a method for determining the torque imposed on a filament, such as a single DNA strand or macromolecule, using a magnetic probe and an imaging device.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: January 8, 2013
    Assignee: The Johns Hopkins University
    Inventors: Alfredo A. Celedon, Sean X. Sun, Gregory Bowman, Denis Wirtz, Peter Searson
  • Patent number: 8344725
    Abstract: A device for nondestructive testing of a pipe made of ferromagnetic steel for detection of longitudinal, transverse or inclined flaws using magnetic or magnetic-induction test procedures is disclosed. The device includes a magnetizing yoke which transmits the magnetic flux contactless into the pipe and at least two magnetic-field-sensitive scanning probes having GMR sensors. The GMR sensors are combined into sensor groups in form of a sensor array and electrically connected in parallel. A single preamplifier connected to each sensor group in one-to-one correspondence. The device further includes an evaluation unit.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: January 1, 2013
    Assignee: V & M Deutschland GmbH
    Inventors: Gert Fischer, Sven Gwildies, Michael Kaack, Alfred Graff, Ashraf Koka, Stefan Nitsche
  • Patent number: 8339132
    Abstract: A magnetic detection device of the present invention includes at least one pair of first magnetosensitive bodies each comprising a soft magnetic material extending in a first axis direction and being sensitive to an external magnetic field oriented in the first axis direction; and a magnetic field direction changer comprising a soft magnetic material and changing an external magnetic field oriented in a different axis direction from the first axis direction into a measurement magnetic field having a component in the first axis direction which can be detected by the at least one pair of first magnetosensitive bodies. With this magnetic detection device, the external magnetic field oriented in the different axis direction can be detected by way of the first magnetosensitive bodies. As a result, while attaining magnetic detection with high accuracy, the magnetic detection device can be reduced in size or thickness by omitting a magnetosensitive body extending long in the different axis direction.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: December 25, 2012
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Michiharu Yamamoto, Norihiko Hamada, Akihiro Shimode, Masayuki Kato
  • Patent number: 8330458
    Abstract: There is provided a nondestructive inspection apparatus using a SQUID magnetic sensor which allows nondestructive and accurate detection of magnetic particles in an insulator such as an electronic device or in a magnetizable member. The nondestructive inspection apparatus using the SQUID magnetic sensor comprises: a magnet for horizontal magnetization 4, the magnet applying a magnetic field to a specimen in the longitudinal direction of the specimen 3?; an inspection unit on which a specimen 3 is set, the specimen 3 being horizontally magnetized in the longitudinal direction by the magnet for horizontal magnetization 4; and belt conveyers 2, 5 for conveying the horizontally magnetized specimen 3; and a gradiometer 8 for detecting a particle horizontally magnetized along with a magnetizable member as the horizontally magnetized specimen 3.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 11, 2012
    Assignee: National University Corporation TOYOHASHI UNIVERSITY OF TECHNOLOGY
    Inventors: Saburo Tanaka, Yoshimi Hatsukade
  • Publication number: 20120256623
    Abstract: A non-contact magnetic particle inspection apparatus includes a test article support and manipulation system having a first rail that extends along a first axis, a second rail that extends along the first axis, and a third rail that extends a second axis. The third rail includes a first end that extends to a second end through an intermediate portion. The first end is mounted to the first rail and the second end is mounted to the second rail. A mounting fixture is mounted to the third rail. The mounting fixture includes a test article mounting system and a test article orientation system. The test article orientation system is configured and disposed to selectively manipulate a test article within a magnetic field.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: General Electric Company
    Inventor: Robert William Bergman
  • Patent number: 8274282
    Abstract: The invention concerns a method for producing an assembly of at least one transmission coil (B1) and one reception coil (B2) for eddy current testing, the reception coil receiving in the absence of fault a complex amplitude signal VR, subject to a variation ?VR in the presence of a characteristic fault to be detected. The method consists in selecting the distance ?ER between the axes of the transmission coil and the reception coil so as to maximize the ratio I?VR/VRI.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: September 25, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Marc Decitre, Thierry Sollier
  • Patent number: 8264219
    Abstract: An in-line pipe inspection tool has one or more inspection platforms (28, 30) which are connected to an elongate wheeled trolley by link arms (20 to 26). The trolley unit (10, 12) has drive means for driving the point of connection of the first link arm (20, 22) to the trolley (10) relative to the point of connection of the second link arm (24, 26) to the trolley (12), thereby to move the inspection platforms (28, 30) in a direction perpendicular to the direction of elongation of the trolley (10, 12). Thus the inspection platforms (28, 30) are movable which is relative to the trolley (10, 12) to permit the tool to be adapted to pipelines of different diameters. Moreover, the platforms (28, 30) preferably have permanent magnets which contain a rotatable magnet. The rotatable magnet permits the net magnetic field generated by the platform to be varied.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: September 11, 2012
    Assignee: PII Limited
    Inventors: Michael Gibson, Christopher Envy, Paul Mundell
  • Patent number: 8242776
    Abstract: A semiconductor process and apparatus provide a high-performance magnetic field sensor from two differential sensor configurations (201, 211) which require only two distinct pinning axes (206, 216), where each differential sensor (e.g., 201) is formed from a Wheatstone bridge structure with four unshielded MTJ sensors (202-205), each of which includes a magnetic field pulse generator (e.g., 414) for selectively applying a field pulse to stabilize or restore the easy axis magnetization of the sense layers (e.g., 411) to eliminate micromagnetic domain switches during measurements of small magnetic fields.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: August 14, 2012
    Assignee: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Young Sir Chung, Bradley N. Engel
  • Patent number: 8237433
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: August 7, 2012
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein
  • Patent number: 8217647
    Abstract: A method and system for measuring agglutination in a target-induced agglutination assay with one or more magnetic particles is performed in a reaction chamber. After the magnetic particles, which are capable of binding to a target are provided in the assay, an agglutination process is performed resulting in agglutinated particles. Further an alternating current magnetic field (HAC) is applied to the assay. The method further includes measuring an effect of the HAC on the one or more magnetic particles unattached to any surface. The measured effect is indicative of one or more agglutination parameters.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 10, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Wendy Uyen Dittmer, Peggy De Kievit, Jeroen Hans Nieuwenhuis, Menno Willem Jose Prins, Leonardus Josephus Van Ijzendoorn, Xander Jozef Antoine Janssen
  • Patent number: 8183855
    Abstract: A measuring arrangement where a magnet moves or is positioned because of the movement or position of an object, and this movement or positioning of the magnet is collected by a sensor, an in particular a non-magnetic dividing wall being provided between the magnet and the sensor. A mechanical converter, in particular a gear, being arranged between the object and the magnet.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: May 22, 2012
    Assignee: Sensor-Technik Wiedemann GmbH
    Inventors: Hans-Georg Hornung, Michael Sieber
  • Patent number: 8179134
    Abstract: An upward warp of a terminal pad of a flexible cable which is kept horizontal by a suction head is prevented by a pressing arm which contacts with an upper surface of a rear portion of the flexible cable.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: May 15, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshinori Sugiyama, Shinji Honma, Yoshinori Tokumura, Hideki Mochizuki
  • Patent number: 8158940
    Abstract: A magnetic domain imaging system is offered which permits application of a strong magnetic field to a specimen. The imaging system includes a transmission electron microscope having an objective lens. The specimen that is magnetic in nature is placed in the upper polepiece of the objective lens. An electron beam transmitted through the specimen is imaged and displayed on a display device. A field application coil assembly for applying a magnetic field to the specimen and two deflection coil assemblies for bringing the beam deflected by the field applied to the specimen back to the optical axis are mounted in the upper polepiece.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: April 17, 2012
    Assignee: JEOL Ltd.
    Inventor: Takeshi Tomita
  • Patent number: 8148976
    Abstract: The invention relates to a method and arrangement for the contactless determination of conductivity-influencing properties and their spatial distribution over the entire cross section of an electrically conductive substance moving in a primary magnetic field (B). The substance may be a liquid or a solid. A simultaneous measurement of a number of mechanical state parameters of the magnetic system is performed (three-dimensional components of the force and the torque), said parameters being variable by the effect of a secondary field on the magnetic system, the secondary field being produced on the basis of eddy currents induced in the substance by the primary field (B). To determine the spatial distribution of the property that is sought, the primary field is changed in intensity or form a number of times and a measurement of the state parameters is carried out for each change.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: April 3, 2012
    Assignee: Technische Universitat Ilmenau
    Inventors: André Thess, Yuri Kolesnikov, Christian Karcher