To Determine Battery Electrolyte Condition Patents (Class 324/432)
  • Patent number: 10326178
    Abstract: A battery pack having a housing and a secondary battery inside the housing, and including a communicator that receives an instruction related to the secondary battery from an external communication terminal device via short-distance wireless communication and a controller that executes an operation in accordance with the instruction by using a status of the secondary battery. The external communication terminal device, by transmitting to the battery pack the instruction, which is related to the status of the secondary battery, acquires a response that is in accordance with the status of the secondary battery from the battery pack, thereby facilitating checking of secondary battery state.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 18, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Shoichi Toya
  • Patent number: 10161963
    Abstract: An electrical contact device includes a tubular element, a crown spring in the tubular element, a solid or hollow cylinder slideably received in the crown spring and a coil spring engaged with the cylinder for applying force while the cylinder is pressed against a test item and for returning the cylinder to a relaxed position. The crown spring holds the cylinder in the tubular element and allows the cylinder to slide back and forth while providing electrical connectivity between the cylinder and the tubular element. An electrical contact device includes a rod-shaped probe having a contact end and a contact sheet fixed to the probe, where the contact sheet has a plurality of prongs bent over the contact end of the probe for providing a plurality of contact points between the probe and a test item.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: December 25, 2018
    Inventor: Chaojiong Zhang
  • Patent number: 10101403
    Abstract: Systems and methods for an open wire scan are provided. In certain embodiments, An apparatus comprising a circuit includes a plurality of inputs for connecting with a plurality of outputs of a multi-cell battery pack; and an open connection detection circuit, formed within the circuit, for detecting an open connection on at least one of the plurality of inputs connected to the multi-cell battery pack and generating a fault condition responsive thereto. The open connection detection circuit comprises at least one current source device; and at least one device for turning on and off the at least one current source device. The open connection detection circuit also comprises at least one amplifier; an analog to digital converter; and a control logic circuit.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: October 16, 2018
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Anthony John Allen, Edgardo A. Laber
  • Patent number: 10054644
    Abstract: A method for locating a battery module among multiple battery modules of a traction battery that are electrically connected to one another, having the following features: an electrical potential is measured at each of the battery modules in real time relative to a potential reference that is common to the battery modules; the potentials are used to subtractively compute voltages between the battery modules; a positional relationship for the battery modules is derived from the voltages; a module controller that is univocally denoted within the traction battery is used to retrieve a voltage dropped across the battery module that is to be located; and the retrieved voltage and the computed voltages are used to locate the battery module on the basis of the positional relationship within the traction battery. Also described is a corresponding apparatus, a corresponding computer program and a corresponding storage medium.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 21, 2018
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Stefan Götz, Hermann Dibos, Malte Jaensch
  • Patent number: 9511670
    Abstract: A magnetic sensor for measuring the magnetic properties of a battery cell, and converting the magnetic properties to a battery cell SOC. The magnetic sensor includes a magnetic core formed of laminated high permeability plates provided in a C-shape. An extended portion of the battery cell extends through a transverse opening in the core so that it is positioned within the core. A driving coil is wrapped around one end of the magnetic core and generates a magnetic field in the core that extends across the transverse opening and through the battery cell. A receiving coil is wrapped around an opposite end of the core that receives the magnetic field, and converts the magnetic field to a representative current. A detection circuit converts the receiving coil current to the battery cell SOC.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: December 6, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Jonathan O. Conell, Brian J. Koch
  • Patent number: 9184611
    Abstract: A system and method for determining the health of a battery. A primary coil may be positioned along a first portion of a battery and a secondary coil may be positioned along a second portion of the battery. The primary coil may then be excited with a signal, and an electromagnetic field induced in the secondary coil by the excited primary coil may be measured. A state of health of the battery may thus correlate to the measured electromagnetic field during operation of the battery. This state of health may be determined as a function of electrolyte stratification, current profile, electrode structure, electrode surface degradation, and combinations thereof.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: November 10, 2015
    Assignee: Villanova University
    Inventors: Neeta Khare, Pritpal Singh, John Vassiliou
  • Patent number: 9121911
    Abstract: A degradation determination device includes: a measuring unit measuring an open-circuit voltage characteristic indicating an open-circuit voltage variation with respect to a lithium ion secondary battery capacity variation; and a determining unit determining a degradation state due to wear and precipitation of lithium using a parameter for identifying the open-circuit voltage characteristic that substantially coincides with the measured open-circuit voltage characteristic.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: September 1, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Takahashi, Yuji Nishi, Shuji Tomura, Nobuyasu Haga, Tetsuya Fuchimoto
  • Patent number: 9007068
    Abstract: A method is provided for current-based detection of an electrical fault in an electrical network of a motor vehicle, the network having at least: one battery, one pulse-controlled inverter, one d.c. voltage converter, and an intermediate circuit associated with the pulse-controlled inverter. The method includes: detecting magnitudes of each a battery current, a d.c. voltage converter current, and an intermediate circuit current; comparing current magnitudes according to provided equations; and checking based on the comparison of whether a specifiable deviation has been exceeded. An alternative method for voltage-based detection of an electrical fault in an electrical network of a motor vehicle includes: detecting magnitudes of each a battery voltage, a d.c. voltage converter voltage, and an intermediate circuit voltage; comparing voltage magnitudes according to provided equations; and checking based on the comparison of whether a specifiable deviation has been exceeded.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: April 14, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Beqir Pushkolli, Ulrich Klein
  • Publication number: 20150086896
    Abstract: Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 26, 2015
    Inventors: On Kok CHANG, David Andrew Sopchak, Ai Quoc Pham, Kimio Kinoshita
  • Patent number: 8952702
    Abstract: A fuel cell system includes a fuel cell, a multiphase voltage conversion device with N-phases (N being an integer equal to or larger than two) that is connected to the fuel cell, a control signal generation portion that generates control signals to control each phase of the multiphase voltage conversion device by superimposing a control waveform for measuring impedance on a voltage indicating an output target voltage of the multiphase voltage conversion device and sequentially outputs the control signals corresponding to N phases with a predetermined phase difference to the multiphase voltage conversion device, and an impedance calculation portion that measures a current and a voltage of the fuel cell on cycles corresponding to N predetermined sampling frequencies having a phase difference equal to the predetermined phase difference and calculates an impedance of the fuel cell based on the measured current and the measured voltage.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Hasegawa, Nobuyuki Kitamura
  • Patent number: 8907675
    Abstract: The invention relates to a method for determining a state of health of an electrochemical device in particular having improved reliability. Said method in particular consists of: applying (10) to said electrochemical device an input signal comprising electrical excitations of different categories, and measuring an output signal (20) including the response signals to each electrical excitation; estimating (41) at least one first parameter from an electrical excitation belonging to a first category and the corresponding response signal; estimating (43) said at least one physicochemical parameter representative of the physicochemical behavior of the device from an electrical excitation of a different category, of the corresponding response signal and said first estimated parameter; estimating (50) said state of health of the electrochemical device as deviation between the previously estimated value of the physicochemical parameter and a reference value.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: December 9, 2014
    Assignees: Helion, Institut National Polytechnique de Toulouse, Centre National de la Recherche Scientifique
    Inventors: Vincent Phlippoteau, André Rakotondrainibe, Christophe Turpin, Guillaume Fontes
  • Patent number: 8907674
    Abstract: An MPU performs a degradation diagnosis based on an open circuit voltage characteristic of a rechargeable lithium ion battery indicating how the battery varies in open circuit voltage as the battery varies in capacity to obtain a capacity ratio of a positive electrode, a capacity ratio of a negative electrode, and a deviated capacity of the battery. The MPU applies the capacity ratio of the positive electrode and the capacity ratio of the negative electrode to a predetermined map for degradation attributed to wear to estimate a deviated capacity resulting from degradation attributed to wear and separates the deviated capacity into the deviated capacity resulting from degradation attributed to wear and a deviated capacity resulting from deposition of lithium. The MPU uses at least the deviated capacity resulting from deposition of lithium to determine whether a rechargeable lithium ion battery subject to determination of degradation is reusable and/or recyclable.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Takahashi, Shuji Tomura, Nobuyasu Haga
  • Patent number: 8877025
    Abstract: An electrochemical test cell, containing an anode comprising a metal as an active component; a cathode comprising a porous chemically inert tube containing an active material compatible with the metal of the anode; and an electrolyte; wherein the only metal in contact with the electrolyte is the metal of the anode, is provided. This test cell is useful in a method to evaluate various combinations of materials for suitability as a combination for preparation of a battery.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 4, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Hee Soo Kim, John Muldoon
  • Patent number: 8872519
    Abstract: One exemplary embodiment includes a method including providing a battery, producing a first magnetic field so that a second magnetic field is induced in the battery, sensing a magnetic field resulting from the interaction of the first magnetic field and the second magnetic field, utilizing the sensed net magnetic field to determine the state of charge of the battery.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: October 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory P. Meisner, Jan F. Herbst, Mark W. Verbrugge
  • Publication number: 20140297084
    Abstract: One exemplary embodiment includes a method including providing a battery, producing a first magnetic field so that a second magnetic field is induced in the battery, sensing a magnetic field resulting from the interaction of the first magnetic field and the second magnetic field, utilizing the sensed net magnetic field to determine the state of charge of the battery.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: Gregory P. Meisner, Jan F. Herbst, Mark W. Verbrugge
  • Patent number: 8797043
    Abstract: An apparatus comprises an integrated circuit and an open connection detection circuit within the integrated circuit. The integrated circuit includes a plurality of inputs for connecting with a plurality of outputs of a multi-cell battery pack. The open connection detection circuit within the integrated circuit detects an open connection on at least one of the plurality of inputs from the multi-cell battery and generates a fault condition responsive thereto.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 5, 2014
    Assignee: Intersil Americas Inc.
    Inventors: Edgardo Laber, Anthony Allen, Carlos Martinez
  • Patent number: 8779784
    Abstract: Provided is an insulation resistance measuring circuit including: a source resistor unit including a first source resistor connected between a positive terminal of a battery and a second source resistor and the second source resistor connected between a negative terminal of the battery and the first source resistor; a voltage sensing unit sensing a voltage of the first source resistor as a first voltage and sensing a voltage of the second source resistor as a second voltage; and an insulation resistance measuring unit measuring an insulation resistance of the battery through a value obtained by dividing a difference between the first and second voltages by a sum between the first and second voltages.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 15, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Jeong Hwan Yang, Ki Seok Choi, Jae Hwan Lim
  • Patent number: 8751176
    Abstract: An apparatus for monitoring battery voltage and temperature includes a host controller and acquisition boards, and every acquisition board for the battery includes a voltage acquisition module, a temperature acquisition module, a host control chip MCU, A/D convertor module, an opto-isolator module, a CAN bus communication module and two external connection ports CN1, CN2. The input end of the AD transformation module is connected with the output end of the voltage acquisition module and the temperature acquisition module, and the output end of the A/D convertor module is connected with the opto-isolator module via a SPI bus, and the I/O port of the SPI bus module in the main control chip MCU is connected with the opto-couple isolation module, and the host control chip MCU is connected with the CAN bus communication module of the host controller via the CAN bus communication module, and the acquisition boards are connected via a socket piece in turn.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: June 10, 2014
    Assignee: Chery Automobile Co., Ltd.
    Inventor: Yue Wang
  • Publication number: 20140141302
    Abstract: A measuring device is used in conjunction with a programmable controller for monitoring electrolyte levels in the battery. According to one implementation, the measuring device is located in a battery and is configured to detect when the electrolyte level in the battery falls below a particular level. The controller is in electrical communication with the electrolyte detection device. The controller is configured to: (i) receive a signal from the electrolyte level detection device indicating when the electrolyte level in the battery has fallen below the particular level; (ii) introduce a wait-period after the signal is received; and (iii) enable an indicator to indicate that the electrolyte level in the battery should be refilled when the wait-period expires.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: PHILADELPHIA SCIENTIFIC LLC
    Inventors: Duncan Jones, John Worthington
  • Patent number: 8729904
    Abstract: Modeling and testing are used to characterize consequences of a first lithium-ion cell having an internal short. The vulnerability of a second lithium-ion cell being induced into thermal runaway by the energy released by the first cell undergoing an internal short is quantified. Characteristics of the packaging of Li-ion cells within a battery pack are analyzed. Combined, these analyses determine the robustness required of a cell in order to withstand a nearby cell's internal short given that the battery is maintained within the specified operational envelope by a BMS and this envelope is modified in real-time as required to meet the safety requirement. Robustness factors are: age, history of charging/discharging, as well as immediate state of charge and environment. In operation, the cell's operational history is incorporated into a model. When the model indicates cell robustness at a predetermined lower limit, operation of the cell is ceased or limited.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 20, 2014
    Assignee: Launchpoint Energy and Power LLC
    Inventor: Larry James Yount
  • Patent number: 8564299
    Abstract: A battery confirmation system and method for confirming a state of charge in a vehicle battery installed in a vehicle includes a vehicle having a controller, a battery powering the controller, and an onboard diagnostics connector operatively connected to the controller. A tester is connectable to the onboard diagnostics connector. The tester is configured to receive a vehicle operating voltage from the connector when an electrical load on the battery is within a predetermined load range and to determine a SOC value based on the vehicle operating voltage.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Dean S. Sauerwine, Christopher D. Kroenke, Derrick I. Cobb
  • Patent number: 8525520
    Abstract: Systems and methods for monitoring a voltage pump to determine the status of a battery connected to the voltage pump are provided. The operation of the voltage pump is monitored during at least one monitoring period which corresponds to a period of relatively heavy consistent load. The operation of the voltage pump can be monitored by sampling a control signal that corresponds to the operation of the voltage pump.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 3, 2013
    Assignee: Landis+Gyr Innovations, Inc.
    Inventors: Bruce Edwards, Eric Norrod
  • Patent number: 8513949
    Abstract: Vehicle maintenance circuitry for use with a storage battery, and/or electrical system of a vehicle includes an electrical connector configured to electrically couple to the vehicle. OBD communication circuitry is configured to couple to an OBD databus of a vehicle. The operation of the vehicle maintenance circuitry is a function of communication on the OBD databus.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: August 20, 2013
    Assignee: Midtronics, Inc.
    Inventor: Kevin I. Bertness
  • Publication number: 20130189596
    Abstract: A fuel cell system includes a fuel cell; a voltage measuring portion that measures a voltage of the fuel cell; an electric current adjusting portion that adjusts an electric current flowing in the fuel cell; an electric current-voltage characteristic information obtaining portion that controls the electric current adjusting portion to change the electric current, and obtains electric current-voltage characteristic information that is information indicating a correspondence relation between an electric current value and a voltage value measured by the voltage measuring portion; and a negative voltage cause determining portion that determines, if the voltage of the fuel cell is a negative voltage, a cause of the negative voltage of the fuel cell, based on the obtained electric current-voltage characteristic information.
    Type: Application
    Filed: September 23, 2011
    Publication date: July 25, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuya Kawahara, Manabu Kato, Hideyuki Kumei
  • Patent number: 8487627
    Abstract: A system and method for controlling a power storage device through the Stimulation and Intensification of Interfacial Processes (SIIP) is provided. A signal generator can provide a low voltage sinusoidal AC signal across a battery terminal, or other reactor vessel, during charging and discharging states. For example, the battery/reactor vessel can be of Li-ion and NiMH designs, a fuel cell, a Zn—O cell, or other devices that have features of rechargeable batteries. The output of the signal generator (i.e., voltage, wave type, and frequency) can be controlled based on battery parameters (e.g., internal resistance, output power, temperature). The internal resistance of the battery can be reduced, and the discharge time can be increased. Elastic waves can also be provided to a battery/reactor vessel to stimulate the interfacial processes. The signal generator can be an integrated circuit which is packaged with the battery and can be powered by the battery.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: July 16, 2013
    Inventor: Victor Stancovski
  • Patent number: 8487630
    Abstract: A battery pack includes: one or two or more secondary batteries; a charge control switch that turns on/off a charging current to the secondary battery; a discharge control switch that turns on/off a discharging current from the secondary battery; a current-detecting element for detecting the charging current and the discharging current; a voltage measuring part that measures the voltage of the secondary battery; a control unit that controls the charge control switch and the discharge control unit; and a storage unit that stores an initial internal resistance of the secondary battery. The control unit measures a closed circuit voltage and a charging current during charging, and a first closed circuit voltage after a first waiting time and a second closed circuit voltage after a second waiting time. The second waiting time is longer than the first waiting time.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: July 16, 2013
    Assignee: Sony Corporation
    Inventor: Yasushi Mori
  • Patent number: 8448479
    Abstract: In an ion elution unit, a drive circuit applies a voltage between electrodes to elute metal ions from the electrodes. Polarities of the electrodes are reversed cyclically with a voltage application halt period placed in-between. A current detection circuit detects the current flowing between the electrodes. A check of operation of the current detection circuit is carried out before the application of a voltage to the electrodes is started. The operation of the current detection circuit is started when a predetermined period of time passes after the application of a voltage to the electrodes is started.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: May 28, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hirokazu Ooe, Yutaka Tateyama, Toshihiro Kamii
  • Patent number: 8415954
    Abstract: There is provided an apparatus that calculates a polarization voltage of a secondary battery. A temperature sensor detects a temperature of the secondary battery; a voltage sensor detects a voltage of the secondary battery; and a current sensor detects an electric current of the secondary battery. A battery ECU calculates a polarization voltage based on the electric current and adaptively sets an upper limit value and a lower limit value of the polarization voltage according to a temperature characteristic of the secondary battery. The calculated polarization voltage is compared with an upper limit value and a lower limit value, whereby the polarization voltage is corrected. An SOC is estimated based on the corrected polarization voltage.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: April 9, 2013
    Assignee: Primearth EV Energy Co., Ltd.
    Inventors: Naoshi Akamine, Kimiaki Ishidu
  • Publication number: 20130084506
    Abstract: Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.
    Type: Application
    Filed: March 28, 2012
    Publication date: April 4, 2013
    Applicant: EnerVault Corporation
    Inventors: On Kok CHANG, Ai Quoc Pham, Kimio Kinoshita
  • Patent number: 8410810
    Abstract: A system for testing a DC power supply performance includes a load module electrically coupled to the DC power supply, a switch module electrically coupled to the DC power supply, a control module electrically coupled to the load module and the switch module respectively, and an indication module electrically coupled to the control module. The control module includes a judge module and a comparison module. The judge module is configured for receiving DC voltage signals from the DC power supply; wherein the judge module is capable of turning on when the DC power supply is normal. The comparison module is configured for comparing the DC voltage signals with a reference voltage; wherein the comparison module is capable of outputting a control signal when the DC voltage signals are greater than the reference voltage. The indication module is configured for receiving the control signal and indicating status of the DC power supply.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 2, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Ling-Yu Xie
  • Patent number: 8395390
    Abstract: A method of testing a battery including several steps described herein is provided.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: March 12, 2013
    Assignee: SPX Corporation
    Inventors: Dennis Robinson, Garret Miller
  • Publication number: 20120212233
    Abstract: A battery tester determines a remaining level of charge of a battery mounted within a separate electronic device having an audio jack. The battery tester includes a plug and a circuit having a high impedance input amplifier. At least one electrical contact of the plug is electrically coupled to an input of the high impedance input amplifier. The plug is removably insertable within the audio jack such that the battery of the separate electronic device is electrically connected to the input of the high impedance input amplifier. When electrically coupled to the battery, an output of the high impedance input amplifier provides a signal proportional to the remaining level of charge of the battery, whereby the remaining level of charge of the battery is obtainable by the battery tester without having to remove the battery from the electronic device.
    Type: Application
    Filed: April 30, 2012
    Publication date: August 23, 2012
    Applicant: NuWave Technologies, Inc
    Inventor: Damian Coccio
  • Patent number: 8237448
    Abstract: An electronic vehicle tester includes a battery tester configured to measure a parameter of a battery of a vehicle. A tire tester is configured to receive a parameter of a tire of the vehicle. A wireless receiver can be configured to receive pressure information from a transmitter associated with a tire of a vehicle.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 7, 2012
    Assignee: Midtronics, Inc.
    Inventor: Kevin I. Bertness
  • Patent number: 8237408
    Abstract: A battery charging apparatus and method adapted to reduce battery capacity as a function of increased temperature thereby permitting partial charges at temperatures in excess of manufacturer's recommendations. The method includes steps of reducing charging current and charging voltage as a function of battery temperature thereby averting chemical instability within the battery. The apparatus detects battery temperature and includes a controller that will control charger voltage and current as a function of temperature and determine a suitable charging capacity.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: August 7, 2012
    Inventors: Steve Carkner, Paul Jan Melichar, Joon Kim
  • Publication number: 20120194198
    Abstract: A device and method for determining the state of charge of an object, such as an electrochemical battery cell. The device includes a state of charge sensor having a primary magnet that creates a primary magnetic field, and at least one magnetic field sensing element. The sensitivity axes of the sensing elements are substantially perpendicular to the direction of polarization of the primary magnet. The primary magnet and the sensing elements are placed in the proximity of the object, and magnetic fields resulting from the magnetic susceptibility of the object are measured by the sensing elements. The sensing elements output an electrical signal from which the state of charge of the object can be determined.
    Type: Application
    Filed: December 29, 2011
    Publication date: August 2, 2012
    Inventor: Timothy MORAN
  • Patent number: 8232767
    Abstract: The present invention relates to an apparatus and method for testing batteries, which can prevent errors from occurring due to the tolerance of voltage sensors when the charged states of batteries are measured, and can charge a battery having a charged state deteriorated due to the difference in the resistance of each battery. The apparatus includes a voltage circuit for measuring voltages of N batteries. A resistance circuit decreases voltages of batteries, which are greater than a reference voltage. A connection switch unit selects any one of the N batteries. A divert change unit separates polarities of each battery and changes positions of an cathode and a anode of the battery depending on separated polarities. A selection switch unit selectively connects the cathode and anode of the battery to an cathode and a anode of the voltage circuit or the resistance circuit.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: July 31, 2012
    Assignee: SK Innovation Co., Ltd.
    Inventors: Jeon Keun Oh, Joong Hui Lee, Soo Yeup Jang
  • Patent number: 8207706
    Abstract: The present teachings are directed toward a machine implemented method for estimating the state of charge of a battery. The machine implemented method includes providing measured and estimated cell terminal voltage to a model coefficient updater to update a model coefficient. Battery current information is provided to a battery state of charge estimator along with the updated model coefficient so that the estimated state of charge can be determined. A multi-layer model can be utilized to determine the states of charge for layers of the electrodes. The method can be implemented on a processing device, and is particularly applicable to Li-ion batteries.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: June 26, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yosuke Ishikawa
  • Patent number: 8198864
    Abstract: Methods and systems are provided for determining a state of charge of a battery. A magnetic force between the battery and a magnet is detected. The state of charge of the battery is determined based on the detected magnetic force.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 12, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Brian J. Koch, Robert S. Conell
  • Publication number: 20120119747
    Abstract: A battery confirmation system and method for confirming a state of charge in a vehicle battery installed in a vehicle includes a vehicle having a controller, a battery powering the controller, and an onboard diagnostics connector operatively connected to the controller. A tester is connectable to the onboard diagnostics connector. The tester is configured to receive a vehicle operating voltage from the connector when an electrical load on the battery is within a predetermined load range and to determine a SOC value based on the vehicle operating voltage.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 17, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Dean S. Sauerwine, Christopher D. Kroenke, Derrick I. Cobb
  • Patent number: 8179094
    Abstract: Embodiments of the invention include a device and method for improved battery learn cycles for battery backup units within data storage devices. The backup unit includes a first battery pack, a corresponding charge capacity gauge, one or more second battery packs, a corresponding charge capacity gauge, and a controller switch configured to select only one battery pack for a learn cycle at any given time. The charge capacity gauges are such that, at the end of the learn cycle discharge phase, the depth of discharge of the learn cycle battery pack is such that the charge capacity of the learn cycle battery pack combined with the full charge capacity of the remaining battery packs is sufficient for the device cached data to be off-loaded to a physical data storage device, and the data storage device does not have to switch from a write-back cache mode to a write-through cache mode.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 15, 2012
    Assignee: LSI Corporation
    Inventors: Lakshmana Anupindi, Brian Skinner
  • Patent number: 8179140
    Abstract: The present teachings are directed toward a machine implemented method for estimating the solid phase potentials of either positive or negative electrode of a battery. The machine implemented method includes providing battery voltage information and an estimated solid phase potential to a model coefficient updater to update a model coefficient. Battery current information is provided to a battery internal variable estimator along with the updated model coefficient so that the solid phase potentials can be determined. A multi-layer model can be utilized to determine the ion density of the electrodes. The method can be implemented on a processing device, and is particularly applicable to Li-ion batteries.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: May 15, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yosuke Ishikawa
  • Patent number: 8179139
    Abstract: The rechargeable battery abnormality detection apparatus is provided with an internal short circuit detection section (20b) that monitors rechargeable battery (1) voltage change when no charging or discharging takes place, and detects internal short circuit abnormality when battery voltage drop during a predetermined time period exceeds a preset threshold voltage; a degradation appraisal section (20d) that judges the degree of rechargeable battery degradation; and a threshold control section (20c) that incrementally increases the threshold voltage according to the degree of degradation determined by the degradation appraisal section (20d).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: May 15, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Atsushi Kawasumi, Toru Nishikawa
  • Patent number: 8108160
    Abstract: Methods and systems for determining a state of charge of a battery are provided. A first component of the state of charge is calculated based on a first property of the battery. A second component of the state of charge is calculated based on a second property of the battery. The first component of the state of charge is weighted based on a rate of change of the first property relative to a change of the state of charge. The second component of the state of charge is weighted based on a rate of change of the second property relative to a change of the state of charge. The state of charge is determined based on the first and second weighted components.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: January 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Liu, Michael J. Gielniak, Jian Lin, Brian Koch, Damon R. Frisch, Joseph M. Lograsso
  • Patent number: 8054045
    Abstract: In a status detector for a power supply, a power supply, and an initial characteristic extracting device for use with the power supply, a measuring unit obtains measured values of at least current, voltage and temperature of the electricity accumulating unit. A processing unit executes status detection of the electricity accumulating unit by using the measured values and the characteristic information of the electricity accumulating unit which is stored in a memory unit. A discrepancy detecting unit detects the presence of a discrepancy away from a theoretical value when a result of the status detection is changed over a predetermined threshold or reversed with respect to the measured values. A modifying unit modifies the characteristic information depending on the detected discrepancy.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: November 8, 2011
    Assignee: Hitachi Vehicle Energy, Ltd.
    Inventors: Youhei Kawahara, Akihiko Emori, Shuko Yamauchi, Hirotaka Takahashi, Masami Shida, Akihiko Kudo
  • Patent number: 8049465
    Abstract: Various systems and methods for determining micro-shorts are disclosed. For example, some embodiments of the present invention provide battery systems including a determination of potential micro-shorts based on rate of change of state of charge. Such battery systems include: a battery, a processor, and a computer readable medium. The computer readable medium includes instructions executable by the processor to: determine a rate of change of the state of charge of the battery; compare the rate of change of the state of charge of the battery against a threshold; and indicate a potential failure where the result of the comparison is beyond the threshold.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: November 1, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Yevgen P. Barsoukov, Garry Elder, Jinrong Qian
  • Patent number: 8035395
    Abstract: A battery life predicting device and a battery life predicting method capable of accurately predict the lifetime of storage batteries are provided.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Tatsuhiko Suzuki, Hiroki Takeshima
  • Patent number: 8018233
    Abstract: The evaluation method of a separator for a nonaqueous electrolyte battery according to the present invention includes: placing opposite an upper jig 21 serving also as a conductive electrode and a lower jig 23 serving also as a conductive electrode in both sides of the separator sample 22; and measuring the relationship between an applied voltage and a passed current between the upper jig 21 and the lower jig 23 while applying a pressure to between the upper jig 21 and the lower jig 23 to evaluate the separator. At this time, by fitting a foreign material 28 in any shape between the separator sample 22 and one of the upper jig 21 and the lower jig 23, an evaluation of the separator simulating the presence of a foreign material affecting adversely the separator can be performed.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: September 13, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masato Iwanaga, Noriko Yamashita
  • Patent number: 8008924
    Abstract: A detecting circuit for detecting a battery having a first and second electrode, includes a contacting portion electrically connecting to the first electrode of the battery, a seesaw electrically connected to the second electrode of the battery, and an actuator electrically connecting to the second electrode of the battery. One end of the seesaw electrically contacts with the contacting portion when the battery have a protection circuit. The actuator is configured for providing power onto another end of the seesaw to separate the contacting portion with the seesaw when the battery has no a protection circuit. The detecting circuit can truly and handily judges whether the detected battery has the protection circuit according to the action of the seesaw.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: August 30, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chuan-Feng Wu
  • Patent number: 7944218
    Abstract: A system for detecting liquid on a battery or on an electronic device connected with the battery is presented. The battery has an electrical contact for transferring current from the battery to the electronic device. The system includes a sensor for detecting liquid on the battery or on the electronic device and sensor circuitry connected with the sensor. The sensor circuitry prevents current from flowing through the electrical contact of the battery upon detecting liquid.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 17, 2011
    Assignee: Motorola Solutions, Inc.
    Inventors: John W. Oglesbee, William C. Bohne, John E. Hermann
  • Patent number: 7928735
    Abstract: Improvements both in the methods whereby existing techniques for determining the condition of a battery are communicated to a user (for example, to the owner of a private vehicle, or to the service manager of a fleet of vehicles), or the vehicle's operating system, and in the methods for evaluating the condition of the battery are disclosed. It has been discovered by the inventors that the difference in internal resistance of a fully charged battery as measured during charging and as measured after charging is greater for a battery in poor condition than for a new battery. The invention relates in part to instruments and corresponding methods for evaluating the condition of a battery utilizing this discovery.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: April 19, 2011
    Inventors: Yung-Sheng Huang, Andrew F. Kallfelz