By Voltage Or Current Measuring Patents (Class 324/522)
  • Patent number: 8941387
    Abstract: An electrical waveform is received over an electrical power line. A plurality of nominal electrical parameters are determined for the electrical power network and the plurality of nominal electrical parameters are associated with a state of the electrical power network in the absence of at least one transitory electrical fault in the network. Subsequently, a plurality of electrical parameters of the electrical waveform are sampled when the at least one transitory electrical fault exists in the network. A plurality of inductances are determined based at least in part upon a comparison of the nominal electrical parameters and the plurality of sampled electrical parameters. The plurality of inductances are representative of inductances present in the network when the at least one transitory electrical fault exists in the network. The plurality of inductances are analyzed to determine a distance and/or direction to the at least one electrical fault.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: January 27, 2015
    Assignees: Howard University, San Diego Gas & Electric Company
    Inventor: Charles Kim
  • Patent number: 8937487
    Abstract: Methods, apparatus, and computer program products for evaluating current transients measured during an electrical stress evaluation of a dielectric layer in a semiconductor device. Measured current transients are fit to an equation representing a time dependence for stress induced leakage currents. The measured current transients are corrected based upon stress currents computed from the equation to define corrected current transients.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Steven W. Mittl, Ernest Y. Yu
  • Patent number: 8933721
    Abstract: An embodiment method of diagnosing a power source arrangement includes a plurality of n power sources connected in series between output terminals, wherein n?2. At least two different groups of power sources are selected from the power source arrangement. A voltage of each of the at least two different groups is measured between the output terminals. During the measurement of the voltage of one group, the power sources of the power source arrangement that do not belong to the one group are bypassed. The at least two measured voltages obtained through measuring the voltage of each of the at least two different groups or at least two voltages that are dependent on these at least two measured voltages are compared.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 13, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerald Deboy
  • Patent number: 8928331
    Abstract: A diagnostic circuit for trouble shooting electronic control units of appliances includes a voltage sensing and signal generation device with an input/output and an input. The circuit includes first terminals for connecting to the load and second terminals for connecting to the two lines of the sinusoidal source. One of the first terminals is connected to the input/output, and another one of the first terminals is connected to the input. A relay is connected between one of the second terminals and the input/output. Another relay is connected between another one of the second terminals and the input. A first diode pair with clamping diodes is connected to the input/output, and a second diode pair first diode pair with clamping diodes is connected to the input.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: January 6, 2015
    Assignee: Diehl AKO Stiftung & Co. KG
    Inventors: Robert Alvord, James Kopec, Jochen Aicher, Vu Nguyen
  • Patent number: 8928471
    Abstract: Remote tamper detection. At least some of the example embodiments are methods including: tracking location of an asset by an onboard device mechanically coupled to the asset, the onboard device electrically coupled to a source of power of the asset, and the onboard device receiving power from the asset; detecting a loss of power provided to the onboard device, the loss of power indicative of tampering with the onboard device, and the detecting by the onboard device; and sending a message by wireless transmission, the message indicative of tampering with the onboard device, and the sending by the onboard device during the loss of power.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: Gordon*Howard Associates, Inc.
    Inventors: Gerald A. Morgan, Christopher M. Macheca, Rodney P. Landers
  • Patent number: 8917084
    Abstract: The present invention is an efficient high voltage sensing mechanism that operates only when an individual needs to test the voltage across a wire. The present invention attaches around a tested wire using a jaw and a hook. The hook is tensioned using an expansion spring. The operator propels the hook outwards from the jaw, around the tested wire; thereafter, the expansion spring retracts to latch onto the tested wire against the jaw. An on-off switch is integrated into the mechanical hook device. As the hook is propelled outwards, the on-off switch moves into the “on” position, which powers the electrical processing and voltage analysis equipment. Once the hook is returned to the initial position, the on-off switch moves to the “off” position. This arrangement allows the present invention to remain unpowered for any instance a wire is not being tested. The present invention detects voltage through capacitive coupling.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: December 23, 2014
    Assignee: Synergistic Technology Solutions, Inc.
    Inventors: John G. Konopka, Alex K. Choi, David A. Konopka
  • Patent number: 8907664
    Abstract: Methods and apparatus for non-intrusive power monitoring and current measurement in a circuit breaker without modification of the breaker panel or the circuit breaker itself. In one example, an inductive pickup sensor senses current from the breaker face, an inductive link transmits power through a steel breaker panel door, and a passive balanced JFET modulator circuit modulates a carrier signal on the inductive link with information regarding the sensed current. A demodulated breaker current signal is available outside of the breaker panel door. The JFET modulator circuit does not require DC power to modulate the carrier signal with the information regarding the sensed current from the breaker. Such methods and apparatus may be interfaced with a spectral envelope load detection system that can monitor multiple loads from a central location.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Steven B. Leeb, Zachary A. Clifford, John J. Cooley, Al-Thaddeus Avestruz
  • Patent number: 8907656
    Abstract: An integrated current sensing apparatus includes a magnetic-field sensing element, a power supply circuit, an offset adjustment circuit, a gain adjustment circuit and a regulating unit. The magnetic-field sensing element is configured for sensing magnetic field, and correspondingly generating a sensing voltage. The power supply circuit is electrically coupled to the magnetic-field sensing element, for generating a constant current to the magnetic-field sensing element to control the sensing voltage. The offset adjustment circuit is electrically coupled to the magnetic-field sensing element, for adjusting an offset of the sensing voltage. The gain adjustment circuit is electrically coupled to the offset adjustment circuit, for amplifying the sensing voltage to a rated output voltage. The regulating unit is electrically coupled to the power supply circuit, the offset adjustment circuit and the gain adjustment circuit, for controlling the constant current, the offset and a gain value.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: December 9, 2014
    Assignee: Delta Electronics, Inc.
    Inventor: Shih-Tsung Chen
  • Patent number: 8907679
    Abstract: A meter apparatus having three-phase judgment function includes a control unit, a multimeter measurement unit electrically connected to the control unit, a three-phase judgment unit electrically connected to the control unit, a first measurement jack electrically connected to the multimeter measurement unit and the three-phase judgment unit, a second measurement jack electrically connected to the multimeter measurement unit and the three-phase judgment unit, and a third measurement jack electrically connected to the multimeter measurement unit and the three-phase judgment unit.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: December 9, 2014
    Assignee: Brymen Technology Corporation
    Inventor: Po-Chao Tan
  • Patent number: 8901936
    Abstract: A method for testing an array for a pixel circuit of an organic light emitting diode display, which includes a first transistor that transmits a driving current corresponding to a data signal to an organic light emitting diode according to a scan signal and at least one capacitor, uses an array test device having a control device and a driver. The method includes performing a first irradiation of electron beams to an exposed portion of a first electrode of the at least one capacitor before manufacturing of the organic light emitting diode is completed, calibrating the control device of the array test device based on secondary electrons output by the at least one capacitor, performing a second irradiation of electron beams to an anode of the pixel circuit, and detecting whether the first transistor is normally operated based on an output amount of secondary electrons output by the anode.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: December 2, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Guang hai Jin, Jae-Beom Choi, Kwan-Wook Jung, June-Woo Lee, Hae-Yeon Lee, Jae-Hwan Oh, Seong-Jun Kim
  • Patent number: 8896317
    Abstract: A method of determining the dominant output wavelength of an LED, includes determining an electrical characteristic of the LED which is dependent on the voltage-capacitance characteristics, and analyzing the characteristic to determine the dominant output wavelength.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: November 25, 2014
    Assignee: NXP B.V.
    Inventors: Radu Surdeanu, Viet Nguyen Hoang, Benoit Bataillou, Pascal Bancken, David Van Steenwinckel
  • Patent number: 8890536
    Abstract: A secondary battery capable of ensuring operator safety by checking whether a service plug is opened or closed. The secondary battery includes a battery pack having a plurality of battery cells, a service plug coupled between each of the plurality of battery cells through a pair of plug terminals for controlling interconnection of the plurality of battery cells according to whether the pair of plug terminals contact the battery cells, and a battery management system connected to the battery pack and the service plug for determining whether the service plug is opened or closed by measuring at least one selected from the group consisting of a voltage and a current of the battery pack and voltages of the plurality of battery cells connected to the service plug.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: November 18, 2014
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventor: Jongdoo Park
  • Publication number: 20140336959
    Abstract: A method of locating a fault on an electricity transmission line is disclosed. The transmission line has a known line impedance and is operable to transport electricity at one or more system frequencies. The method comprises using measurements of the current and voltage made on the line at one or more frequencies which are different to the system frequency and the known line impedance (Z) to determine a distance to the fault. The method may include monitoring the voltage and the current on the transmission line at the one or more non-system frequencies, and determining from the presence of signals at a non-system frequency on the transmission line that a fault has occurred.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 13, 2014
    Inventors: David Thomas, Mark Sumner, Jia Ke
  • Patent number: 8884638
    Abstract: A circuit configuration monitors the electrical insulation of an electrically conductive part in relation to a first pole and a second pole of an electrical power network for example, an electrical drive network in a hybrid vehicle. The circuit configuration is characterized in that between the electrically conductive part and the two poles, a voltage divider having at least two resistors is arranged in each case. A measuring unit is associated with each of the two voltage dividers and provided for measuring a partial voltage, which drops via at least one of the resistors. A switch unit is associated each with the two voltage dividers and is provided for alternately bypassing at least one of the resistors.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 11, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Volker Karrer, Christian Kuschnarew
  • Patent number: 8884628
    Abstract: Systems, methods and apparatus for monitoring rub detection in a machine are provided. An electrical signal may be provided for transmission to and into a component of the machine. A capacitance associated with the electrical signal in the component may be monitored. Based at least in part upon a determined change in the monitored capacitance, a potential rub condition for the component of the machine.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 11, 2014
    Assignee: General Electric Company
    Inventor: Wesley Donald Franklin
  • Patent number: 8884627
    Abstract: An apparatus comprises: a voltage monitoring unit for monitoring input direct-current voltages of first and second converters whose output ends are connected in parallel to each other; and a judgment control unit for judging that an output diode of the first converter is short-circuited, when an input direct-current voltage monitored by the voltage monitoring unit with respect to the first converter rises up to a post-step-up voltage stepped up by the second converter during a step-up operation of the second converter.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: November 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshihiko Minamii, Takahiko Hasegawa
  • Patent number: 8878547
    Abstract: A monitor for monitoring isolation resistance, impedance, or other isolation reflective conditions between vehicle systems as contemplated. The monitor may be useful in assessing insulation resistance between a high-voltage power net and a low-voltage power net. The monitor may be configured to assess a sufficiency of the insulation resistance based on a frequency response of the high-voltage power net.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 4, 2014
    Assignee: Lear Corporation
    Inventors: Marc Deumal Herraiz, Albert Trenchs Magaña, Antoni Ferré Fàbregas
  • Patent number: 8878561
    Abstract: This invention is to detect defective products of semiconductor devices with high accuracy even when the characteristics of the semiconductor devices vary according to their positions on each of wafers.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuhiro Sakaguchi
  • Patent number: 8878559
    Abstract: An IC current measuring apparatus is provided between an IC and a substrate. The IC current measuring apparatus electrically connects each of a plurality of IC-facing terminals and a different one of a plurality of substrate-facing terminals. Especially, resistances are each inserted into a path between an IC terminal targeted for measurement and a substrate terminal corresponding thereto. Furthermore, the IC current measuring apparatus is provided with terminals each used to measure a voltage between both ends of an inserted resistance corresponding thereto. Accordingly, a measurer who measures current flowing through an IC-facing terminal can measure the current flowing through the IC-facing terminal by providing the IC current measuring apparatus between the IC targeted for measurement and the substrate and measuring a voltage between both ends of an inserted resistance corresponding to the IC terminal through which current he/she wishes to measure flows.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: November 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeshi Nakayama, Yoshiyuki Saito, Masahiro Ishii, Kouichi Ishino, Yukihiro Ishimaru
  • Patent number: 8872521
    Abstract: An electrical parameter detection device is configured for detecting electrical parameters of a peripheral component interconnect (PCI) connector including a plurality of power pins. The electrical parameter detection device includes a processor module, a first detection module, and a second detection module. The processor module continuously detects voltage values of electric potentials provided by each of the power pins of the PCI connector using the first detection module, and determines time sequences of the electric potentials according to the voltage values of the electric potentials. Furthermore, the processor module detects the amount of power provided by each of the power pins of the PCI connector using the second detection module.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: October 28, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Jun Pan, Qi-Yan Luo, Peng Chen, Song-Lin Tong
  • Patent number: 8874391
    Abstract: Techniques are disclosed for computing distance-to-fault (DTF) in communication systems. The techniques can be embodied, for instance, in a DTF system that provides a multi-port probing device and DTF functionality, including computing distances to faults and the fault magnitudes. In addition, the DTF system is further configured with the ability to accurately measure complex reflection coefficient of the UUT, and/or return loss of the UUT. The complex reflection coefficient and/or return loss of the UUT can be computed as a function of known scattering parameters of a multi-port measurement circuit included in the probe of the DTF system.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 28, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Matthew A. Taylor
  • Patent number: 8872380
    Abstract: An energy storage system includes a plurality of battery units; a plurality of thermistors detecting a temperature of the plurality of battery units; a multiplexer performing multiplexing on the plurality of thermistors, and connecting a thermistor selected from among the plurality of thermistors to a reference resistor; a power switch unit arranged between the reference resistor and a power voltage terminal; and a control signal input unit receiving a control signal applied to the multiplexer and the power switch unit, and receiving two or more control bits contained in the control signal. In the energy storage system, a temperature measurement operation is performed at a plurality of measurement positions, whereby a current state of a battery may be accurately detected, an entire circuit may be reduced and simplified, and low power consumption may be realized.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Kyung-Sub Shim
  • Patent number: 8872522
    Abstract: A electrical circuit includes an excitation voltage connected via a first circuit path to an output, a switching device having a control terminal and first and second controlled terminals connected to the first circuit path, and a controller that generates a control signal provided to the control terminal of the switching device to selectively supply the excitation voltage to the output. Faults in the electrical circuit are detected by monitoring the switching device voltage at one of the controlled terminals of the switching device.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 28, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventor: James Saloio
  • Patent number: 8866486
    Abstract: A device for detecting and locating at least one electric discharge in equipment insulated by fluid contained in an electrically-conductive housing. The equipment includes a plurality of grounding lines connected between the housing and ground. The device includes a plurality of Rogowski coil type current detectors and a mechanism synchronously comparing signals delivered by the current detectors. The coil of each detector is placed around a respective one of the lines. Each detector delivers a signal representative of current flowing in the line, with occurrence of an electric discharge giving rise to a sudden variation in the current, and with electric discharge being located within an inside zone of the housing situated in proximity of the line that is surrounded by the detector that was first to deliver the sudden variation of current.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 21, 2014
    Assignee: Alstom Technology Ltd.
    Inventors: Wolfgang Grieshaber, Alain Fanget
  • Patent number: 8866487
    Abstract: A directional fault sectionalizing system that utilizes one phase voltage measurement and three phase current measurements to determine the directionality of high impedance faults on a three phase electric power circuit. This eliminates the need for two of the three voltage measuring devices at each monitoring station conventionally required to determine fault directionality, which makes it economical to install at a greater number of distribution tap points. The system is particularly useful for commonly used three-way tap points along distribution lines where three phase voltage measurement is not readily available. The system is capable of identifying faults under challenging circumstances, such faults occurring on unbalanced three phase power lines and faults occurring on tapped line segments where the currents are relatively small compared to the currents flowing in the main line segments.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: October 21, 2014
    Assignee: Southern States, LLC
    Inventors: Joseph R. Rostron, John H. Brunke, Bradley John Schafer, Richard Charles Leonhardt, David Lester Moore
  • Patent number: 8860427
    Abstract: A device can be used for detecting failures in an illumination device having a plurality of light emitting diodes connected in series. A first circuit node, a second circuit node, and a third circuit node interface the illumination device such that a voltage supplying the plurality of light emitting diodes is applied between the first and the second circuit node and a first fraction of the supply voltage drop is provided between the third and the second circuit node. An evaluation unit is coupled to the first circuit node, the second circuit node, and the third circuit node and configured to assess whether a voltage present at the third circuit node is within a pre-defined range of tolerance about a nominal value that is defined as a second fraction of the supply voltage present between the first and the second circuit node.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: October 14, 2014
    Assignee: Infineon Technologies AG
    Inventors: Fabrizio Cortigiani, Andrea Logiudice, Andreas Eder, Giovanni Capodivacca
  • Patent number: 8860429
    Abstract: A test system for testing a sensor system includes a high-impedance resistor for forming a voltage divider with any corrosion or foreign substance that might be present between a signal conductor and a ground conductor. While a voltage is applied across the voltage divider, the voltage can be measured across the high-impedance resistor for determining whether an undesirable amount of conductance exists between the signal wire and ground. The test system also includes switching means for switching between any number of signal wires of a system undergoing testing.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 14, 2014
    Assignee: Textron Innovations Inc.
    Inventor: Gary S. Froman
  • Publication number: 20140300370
    Abstract: A time reversal process for determining a fault location in an electrical power network comprising multi-conductor lines, comprises measuring at an observation point located anywhere along one of the multi-conductor lines, for each of the conductors of the multi-conductor line, respectively a fault-originated electromagnetic transient signal; defining a set of guessed fault locations each having a different determined location in the electrical power network, and each of the guessed fault locations is attributed a same arbitrary fault impedance; defining a network model for the electrical power network, based on its topology and multi-conductor lines electrical parameters capable of reproducing in the network model the electromagnetic traveling waves; and computing for each conductor a time inversion of the measured fault-originated electromagnetic transients signal.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 9, 2014
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Mario PAOLONE, Farhad RACHIDI-HAERI, Hossein MAHMOUDIMANESH, Reza RAZZAGHI, Gaspard LUGRIN
  • Patent number: 8854846
    Abstract: When determining a fault current portion IF in a differential current idiff(t) measured by an inverter, an AC voltage uAC(t) applied to an AC output of the inverter is measured and a periodic reference function y(t) of alternating sign is generated as a function of the measured AC voltage uAC(t) in order to determine an AC fault current portion IFAC in the differential current idiff(t). The differential current idiff(t) is multiplied by the periodic reference function y(t), and the product of the differential current idiff(t) and the reference function (y(t)) is averaged over an integral number of periods of the reference function y(t). The reference function y(t), at least for one operating state of the inverter, is generated with a predefined phase offset with respect to the measured AC voltage uAC(t) and/or with a frequency which is an integer multiple of the frequency of the measured AC voltage uAC(t).
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 7, 2014
    Assignee: SMA Solar Technology AG
    Inventors: Alexander Nuss, Christian Bode, Wilfried Groote
  • Patent number: 8854053
    Abstract: Provided is an apparatus for analyzing the state of oil-filled electrical devices. The apparatus simulates the state of an oil-filled electrical device in which copper wire wrapped in insulating paper is immersed in insulating oil. The apparatus for analyzing the state of oil-filled electrical devices includes a first paper-covered copper wire and a second paper-covered copper wire, which are adjacent to each other; a tank which holds the first and second paper-covered copper wires as well as insulating oil extracted from the oil-filled electrical device, thereby immersing the first and second paper-covered copper wires in the insulating oil; and a capacitance measurement unit which measures the capacitance between the first and second paper-covered copper wires. The first and second paper-covered copper wires includes copper wire and insulating paper wrapped therearound.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Electronics Corporation
    Inventor: Noboru Hosokawa
  • Patent number: 8841917
    Abstract: The present techniques include methods and systems for detecting the grounding condition of an electrical system to automatically determine a suitable electrical drive configuration. The drive includes a test resistor which may be connected or disconnected from the drive to measure different drive voltages. The measured drive voltages are analyzed to determine a type of grounding configuration of the electrical system in which the drive is to be installed. Embodiments also include determining ground resistance condition such as a high resistance ground (HRG) fault or a ground resistance fault when the drive is in operation.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: September 23, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Lixiang Wei, David W. Kirschnik, Richard A. Lukaszewski, Gary L. Skibinski
  • Patent number: 8841900
    Abstract: A combined measurement device for measuring current and/or voltage of an electrical conductor, comprising a supporting body, a current sensor housed inside the supporting body, and a voltage sensor located at least partially inside the supporting body. A shielding is positioned around the current sensor. The current sensor and the voltage sensor are mutually arranged so as the shielding shields at least partially both the current sensor and the voltage sensor against external electric field disturbances.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: September 23, 2014
    Assignee: ABB Technology AG
    Inventors: Radek Javora, Petr J. Kral
  • Publication number: 20140260638
    Abstract: Methods and apparatus for determining an estimated physical location of a fault in a pipeline or electrical transmission line using localization devices coupled thereto. In an embodiment, a first and second localization device each generate time values representing times when the respective localization device detected the fault. The estimated fault location is calculated, by one of the localization devices or a separate computing device, based upon the reported time values. In some embodiments, the calculation is further based upon characteristics of the pipeline or electrical transmission line, or based upon characteristics of matter transported through the pipeline. In some embodiments, the localization devices transmit time or sequence values to the other device, and the values received by the devices just before the detection of the fault may additionally be utilized to calculate the estimated physical location of the fault.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventor: Telefonaktiebolaget L M Ericsson (publ)
  • Patent number: 8816699
    Abstract: The present disclosure discloses a voltage source for calibrating a very fast transient voltage measurement system, comprising a DC high voltage power supply, a discharging gap, a high voltage travelling wave line concluding a high voltage conductor and an earthing conductor. The present disclosure also provides a method for calibrating a fast transient voltage measurement system: the high voltage conductor is insulated from the earthing conductor, and is open circuit at one end and at the other end is connected with the earthing conductor via the discharging gap, applying a high voltage between the high voltage conductor and earthing conductor and making breakdown of the discharging gap, a very fast transient high voltage is produced on the high voltage conductor and its waveform can be determined by theoretical calculation, the very fast transient high voltage with known waveform is used as the calibration voltage for calibrating the measurement system.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: August 26, 2014
    Assignees: Tsinghua University, State Grid Corporation of China, China Electric Power Research Institute
    Inventors: Weidong Liu, Weijiang Chen, Shaowu Wang, Gongchang Yue, Chengyu Wang, Zhibing Li
  • Patent number: 8810251
    Abstract: Certain embodiments of the invention include systems, methods, and apparatus for locating faults on an electrical distribution network. According to an example embodiment of the invention, a method is provided for locating faults on an electrical distribution network. The method can include monitoring, by one or more smart meters, a plurality of voltage values associated with the electrical distribution network; and when one or more of the plurality of monitored voltage values are detected to be less than or equal to a predetermined voltage for a specified time: storing at least a portion of monitored line voltage values; indicating a detected fault by transmitting one or more messages from the one or more smart meters or line sensors to a central station receiver, and determining a fault location based at least in part on the one or more messages and a topological and electrical model of the electrical distribution network.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 19, 2014
    Assignee: General Electric Company
    Inventors: Ajay Koliwad, Mark Adamiak
  • Patent number: 8810253
    Abstract: Embodiments of methods and apparatuses for characterizing an electrical power distribution system are disclosed. One method includes applying a plurality of test signals to a first plurality of test points of the electrical power distribution system, measuring a plurality of response signals at a second plurality of test points of the electrical distribution system, deriving a characterization matrix for the electrical power distribution system from the plurality of test signals and response signals, and characterizing the electrical power distribution system based on the derived characterization matrix.
    Type: Grant
    Filed: March 18, 2012
    Date of Patent: August 19, 2014
    Inventors: Thomas L. Marzetta, Bertrand M. Hochwald
  • Patent number: 8797043
    Abstract: An apparatus comprises an integrated circuit and an open connection detection circuit within the integrated circuit. The integrated circuit includes a plurality of inputs for connecting with a plurality of outputs of a multi-cell battery pack. The open connection detection circuit within the integrated circuit detects an open connection on at least one of the plurality of inputs from the multi-cell battery and generates a fault condition responsive thereto.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 5, 2014
    Assignee: Intersil Americas Inc.
    Inventors: Edgardo Laber, Anthony Allen, Carlos Martinez
  • Patent number: 8796998
    Abstract: Method and circuits for sensing a bidirectional current without requiring an external sense resistor are disclosed. In a preferred embodiment the invention is applied for fuel gauging of one or more batteries and comprises a charger/active diode, which can source current into the battery and sink current from the battery to supply a mobile electronic device. The invention can be applied to any other application requiring sensing of bidirectional currents. A regulated cascode forces a voltage drop over a power transistor and a sense transistor to be the same. A feedback current is measured by an ADC. The integration of these current measurements over time is equal to the actual charge of the battery.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: August 5, 2014
    Assignee: Dialog Semiconductor GmbH
    Inventors: Christian Wolf, Stefano Scaldaferri
  • Patent number: 8793087
    Abstract: A modular device having at least one master integrated circuit, and one or more slave integrated circuit modules coupled to the at least one master integrated circuit with each slave integrated circuit module of the one or more slave integrated circuit modules coupled to and associated with only a single cell of the battery. Each slave integrated circuit module of the one or more slave integrated circuit modules further comprises: detection circuitry adapted to detect data comprising one or more of the temperature, voltage or charge status, and malfunctioning of the single cell associated with and monitored by the slave integrated circuit; and an interface operable to send said detected data to the at least one master integrated circuit. The at least one master integrated circuit is adapted to send commands to a slave integrated circuit module in response to the detected data detected by the slave integrated circuit module.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: July 29, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventor: Fabrizio Librizzi
  • Publication number: 20140198420
    Abstract: A method, device, and system for detecting a fault for a protective device. The device can receive an input signal and detect a power spike in the input signal. If a power spike is detected in the input signal, the device simultaneously disables the trip mechanism for one or more protective devices and starts a time period. During the remainder of the time period, the device compares the input signal and the threshold value. If, during the remainder of the time period, the input signal exceeds the threshold value, and if the fault originates within a region between the multiple sensing devices, then the trip mechanism for each protective device is again enabled.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: COOPER TECHNOLOGIES COMPANY
    Inventor: Ljubomir A. Kojovic
  • Patent number: 8782442
    Abstract: An apparatus and method for multi-point detection in a power source equipment (PSE) device is provided. During multi-point detection, a series of at least four currents is sequentially applied to a link port of the PSE device. Each current is applied during a different measurement interval. A voltage measurement sample is obtained for each of the measurement intervals. A difference in voltage between alternating voltage samples is determined and used by a detection module to determine whether a valid power device is coupled to the link port of the PSE.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: July 15, 2014
    Assignee: Broadcom Corporation
    Inventors: Agnes Woo, Anil Tammineedi, Ichiro Fujimori, David Chin, John Perzow
  • Patent number: 8773144
    Abstract: To detect whether energy accumulated in an inductive load section has been discharged. Provided is a test apparatus that tests a device under test, comprising a power supply section that generates a power supply voltage to be supplied to the device under test; an inductive load section that is provided in a path between the power supply section and the device under test; a housing section that houses a substrate that includes at least the inductive load section; and a lock maintaining section that keeps an opening/closing section, which allows an operator to access the substrate within the housing section, in a locked state when a voltage at a predetermined position on the substrate is greater than a set voltage.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Advantest Corporation
    Inventor: Kenji Hashimoto
  • Patent number: 8766653
    Abstract: A measuring device for measuring insulation resistance of an electric vehicle includes a measuring unit, a voltage detecting unit, and a control unit. The measuring unit includes a first tap, a second tap, a switch, and a measuring resistor. The first tap is to be electrically coupled to a high potential side of a high voltage system. The second tap is to be electrically coupled to a ground side of a low voltage system. The switch and the measuring resistor are connected in series between the first tap and the second tap. The voltage detecting unit is for detecting a voltage formed between the first tap and the second tap. The control unit is operable for controlling ON and OFF states of the switch, and is configured to determine the high potential insulation resistance and the low potential insulation resistance after operating the switch in the ON and OFF states.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 1, 2014
    Assignee: Automotive Research & Testing Center
    Inventors: Chia-Cheng Tu, Jia-Sing Hsu
  • Patent number: 8760170
    Abstract: Systems, methods, and circuits are disclosed for detecting continuity of a fuse or other current protection device in a circuit. For example, a signal is generated and coupled onto a closed circuit in which the continuity of the fuse closes the circuit. The signal is then coupled from the closed circuit to a signal detector, which detects the presence of the signal and provides an output indicative of the presence of the signal. If the fuse blows, the circuit is opened, prohibiting the signal from being coupled to the signal detector, in which case the signal detector provides an output indicative of the absence of the signal. This example, however, are not exhaustive.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 24, 2014
    Assignee: Schneider Electric Solar Inverters USA, Inc.
    Inventors: Ralph McDiarmid, Zoran Miletic
  • Patent number: 8760094
    Abstract: An apparatus and method for protecting a power system comprising a generator providing power to an alternating current bus, a power converter for converting alternating current power on the alternating current bus to direct current power on a direct current bus, and a direct current load powered by the direct current power on the direct current bus. An undesired condition is identified at the input to the power converter from the alternating current bus. The undesired condition is caused by at least one of the power converter, the direct current bus, or the load. The power converter is disconnected from the alternating current bus in response to identifying the undesired condition for at least a time delay. The time delay is selected such that the power converter is disconnected from the alternating current bus before the alternating current bus is disconnected from the generator due to the undesired condition.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 24, 2014
    Assignee: The Boeing Company
    Inventors: Eugene V. Solodovnik, Jeffrey J. White
  • Patent number: 8754663
    Abstract: A circuit for simulating an electrical load at a terminal of a test circuit having at least one first switch and at least one second switch includes a third switch connected to the first switch of the test circuit via a first external connection point. A fourth switch is connected to the second switch of the test circuit via a second external connection point. The first switch and the second switch are connected via a shared, first internal connection point to the terminal of the test circuit and the third switch and the fourth switch are connected via a shared, second internal connection point such that that the first switch, the second switch, the third switch and the fourth switch form an H-bridge circuit. A voltage source is configured to provide the first and second external connection points with a supply voltage. A controllable voltage source is connected in a transverse bridge branch between the terminal and the second internal connection point. An inductance is active in the transverse bridge branch.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: June 17, 2014
    Assignee: Dspace Digital Signal Processing and Control Engineering GmbH
    Inventors: Thomas Schulte, Joerg Bracker
  • Publication number: 20140159740
    Abstract: A power supply line is divided into a plurality of sections by switching devices each having an associated measurement device that detects a current signal at a measurement point at the respective switching device. The current signal is sampled to form current sample values, and a current measurement variable is determined. Each measurement device forms a delta current value (difference between an instantaneous current and a prior measurement), compares the delta current value with a current threshold value and identifies a jump in current when the delta current value overshoots the threshold. The measurement device, upon identifying a current jump, sends a status message indicating the jump. A fault location device identifies a fault on that section of the power supply line delimited by a switching device that has identified a jump and one that has not identified a jump in current.
    Type: Application
    Filed: July 21, 2011
    Publication date: June 12, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Norbert Schuster, Markus Spangler
  • Patent number: 8749246
    Abstract: The invention relates to a method and a device for determining a maximum leakage current in unearthed power supply networks with a plurality of conductors. The method comprises the steps of: feeding of a measurement signal UP with a measurement frequency fPuls into a conductor arrangement, setting the measurement frequency fPuls, measuring a line-to-line voltage UL-E for each conductor, determining a maximum occurring line-to-line voltage UL-Emax from the measured line-to-line voltages UL-E, determining a voltage UZe across a measurement resistance RM for calculating a leakage impedance ZE, calculating the leakage impedance ZE, and calculating a maximum leakage current THC. The device comprises a signal generator for feeding in the UP with the fPuls, a network coupling circuit between the signal generator and the conductor arrangement, a voltage measuring circuit for measuring the UL-E, and an impedance measuring circuit for determining the Ze by means of the determining of the UZe.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: June 10, 2014
    Assignee: Bender GmbH & Co. KG
    Inventor: Oliver Schaefer
  • Patent number: 8742765
    Abstract: An apparatus includes at least one Rogowski coil and a processor. The at least one Rogowski coil is positioned within an electrical power distribution network to detect a first traveling wave current caused by a fault on an electrical power transmission line of the network, generate a first signal indicative of detection of the first traveling wave, detect a second traveling wave current caused by the fault on the transmission line, and generate a second signal indicative of detection of the second traveling wave. The processor is adapted to receive the first signal and the second signal and to determine, based on the first signal and the second signal, where on the transmission line the fault occurred.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 3, 2014
    Assignee: Cooper Technologies Company
    Inventors: Ljubomir A. Kojovic, Jules Esztergalyos
  • Patent number: 8742762
    Abstract: An accumulator control device includes a first electrical connection configured to connect the accumulator control device to a local accumulator. A second electrical connection is connected to the first electrical connection and configured to connect to a remote auxiliary electrical power supply device. A control unit is configured to measure at least one of a parameter of the accumulator and an environmental parameter and to transmit at least one of the at least one measured parameter and a value calculated using the at least one measured parameter to the remote auxiliary electrical power supply device via a communication interface.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: June 3, 2014
    Assignee: Phoenix Contact GmbH & Co. KG
    Inventors: Hartmut Henkel, Michael Heinemann, Andreas Neuendorf, Mike Wattenberg