Clock Bus Patents (Class 327/297)
  • Patent number: 11474703
    Abstract: An integrated circuit device includes a memory controller coupleable to a memory. The memory controller to schedule memory accesses to regions of the memory based on memory timing parameters specific to the regions. A method includes receiving a memory access request at a memory device. The method further includes accessing, from a timing data store of the memory device, data representing a memory timing parameter specific to a region of the memory cell circuitry targeted by the memory access request. The method also includes scheduling, at the memory controller, the memory access request based on the data.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 18, 2022
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Yi Xu, Nuwan S. Jayasena, Yuan Xie
  • Patent number: 11146255
    Abstract: A power supply circuit includes a first P-channel MOSFET and a first voltage application circuit. The first P-channel MOSFET is provided between an on-board power supply and a vehicular apparatus that is a power supply target, and is configured to switch a power-ON state in which electric power is supplied to the vehicular apparatus and a power-OFF state in which the supply of the electric power is interrupted. The first voltage application circuit is configured to apply a voltage having a potential lower than a potential of the on-board power supply to a gate terminal such that a state of the first P-channel MOSFET is switched to the power-ON state, and apply a voltage having a potential equal to the potential of the on-board power supply to the gate terminal such that the state of the first P-channel MOSFET is switched to the power-OFF state.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: October 12, 2021
    Assignee: JTEKT CORPORATION
    Inventors: Fumihiko Sato, Shingo Suzuki, Hiroaki Hanzawa, Masataka Okuda, Toshiyuki Mikida
  • Patent number: 11095272
    Abstract: An integrated circuit includes a semiconductor substrate and a plurality of circuit elements in or on the substrate. The circuit elements are defined by standard layout cells selected from a cell library. The circuit elements including a plurality of flip-flops. Each flip-flop has a data input terminal, a data output terminal, a clock input terminal, and a clock output terminal. A first one of the flip-flops directly abuts a second flip-flop such that the clock output terminal of the first flip-flop electrically connects with the clock input terminal of the second flip-flop.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Yu Steve Wang, Chien-Te Wu, Shang-Chih Hsieh, Nick Tsai
  • Patent number: 10956044
    Abstract: An integrated circuit device includes a memory controller coupleable to a memory. The memory controller to schedule memory accesses to regions of the memory based on memory timing parameters specific to the regions. A method includes receiving a memory access request at a memory device. The method further includes accessing, from a timing data store of the memory device, data representing a memory timing parameter specific to a region of the memory cell circuitry targeted by the memory access request. The method also includes scheduling, at the memory controller, the memory access request based on the data.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 23, 2021
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Yi Xu, Nuwan S. Jayasena, Yuan Xie
  • Patent number: 10902906
    Abstract: Apparatuses and methods are provided for logic/memory devices. An example apparatus comprises a plurality of memory components adjacent to and coupled to one another. A logic component is coupled to the plurality of memory components. At least one memory component comprises a memory device having an array of memory cells and sensing circuitry coupled to the array. The sensing circuitry includes a sense amplifier and a compute component. Timing circuitry is coupled to the array and sensing circuitry and configured to control timing of operations for the sensing circuitry. The logic component comprises control logic coupled to the timing circuitry. The control logic is configured to execute instructions to cause the sensing circuitry to perform the operations.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 26, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Richard C. Murphy
  • Patent number: 10672439
    Abstract: The present disclosure relates to a structure which includes at least one keeper circuit which is configured to hold data to a precharged state during a first operation and be disabled during a second operation.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: June 2, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Dhani Reddy Sreenivasula Reddy, Md Nadeem Iqbal
  • Patent number: 9965019
    Abstract: In one embodiment, a processor includes a plurality of functional units each to independently execute instructions and a clock distribution circuit having a clock signal generator to generate a clock signal. The clock distribution circuit is coupled to receive a first operating voltage from a first voltage rail and the functional units are coupled to independently receive at least one second operating voltage from one or more second voltage rails. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: May 8, 2018
    Assignee: Intel Corporation
    Inventors: Tapan A. Ganpule, Inder M. Sodhi, Yair Talker, Inbar Falkov, Tanveer R. Khondker
  • Patent number: 9490812
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: November 8, 2016
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y. Chang
  • Patent number: 9419589
    Abstract: A clock distribution network having a separate power supply for top levels thereof is disclosed. In one embodiment, an integrated circuit includes a clock distribution network configured to distribute a clock signal to each of a number of clock consumers. The clock distribution network is arranged in a hierarchy of levels, with each of the levels including at least one buffer, and with the upper levels being closer to a source of the clock signal and the lower levels being closer to the clock consumers. The buffers of the upper levels are coupled to receive power from a first power source, via a first power grid. The buffers of the lower levels are coupled to receive power from a second power source, separate from the first, via a second power grid.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 16, 2016
    Assignee: Apple Inc.
    Inventor: Rohit Kumar
  • Patent number: 9349682
    Abstract: A semiconductor chip is provided. The semiconductor chip includes a first circuit, a second circuit, a third circuit, a first signal path and a second signal path. The first circuit provides a reference signal. The first signal path includes a first conductive trace and transmits the reference signal from the first circuit to the second circuit. The second signal path transmits the reference signal from the first circuit to the third circuit. Timing skews of the first and second signal paths are balanced and the first and second signal paths are routed globally.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 24, 2016
    Assignee: MEDIATEK INC.
    Inventors: Der-Ping Liu, Tai-You Lu
  • Patent number: 9335784
    Abstract: In an embodiment, a clock distribution circuit includes a global delay locked loop (DLL) configured to receive a global clock input signal (RCLK), a lead/lag input signal and to output a clock signal. The circuit includes a plurality of clock distribution blocks, each clock distribution block configured to receive the output of the global DLL, a lead/lag signal and to output a leaf node clock signal, each clock distribution block further comprises a local DLL. The global DLL is further configured to align one of the leaf node clock signals to a reference clock based on its lead/lag input signal. Each clock distribution block is further configured to align its leaf node clock signal to a reference clock based on its lead/lag signal.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 10, 2016
    Assignee: Cavium, Inc.
    Inventor: Suresh Balasubramanian
  • Patent number: 9024673
    Abstract: An integrated circuit includes a first vertical clock bus and a first interface circuit coupled to provide first global clock signals to the first vertical clock bus. The first interface circuit is coupled to a first external terminal of the integrated circuit. The integrated circuit also includes a second vertical clock bus and a second interface circuit coupled to provide second global clock signals to the second vertical clock bus. The second interface circuit is coupled to a second external terminal of the integrated circuit. A third horizontal clock bus is coupled to provide the first and the second global clock signals from the first and the second vertical clock buses to a center region of the integrated circuit.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: May 5, 2015
    Assignee: Altera Corporation
    Inventors: Ramanand Venkata, Ryan Fung, Ketan H. Zaveri
  • Patent number: 8981854
    Abstract: A clock distributor includes a first oscillator and a second oscillator, to each of which a signal controlling an oscillation frequency is input and to one of which a clock is input; a wiring portion that connects the first oscillator and the second oscillator; a first conversion element that converts an output from the first oscillator into electric current, and outputs a result to a first connection portion connecting to the wiring portion; a second conversion element that converts voltage of the first connection portion into electric current, and outputs a result to the first oscillator; a third conversion element that converts an output from the second oscillator into electric current, and outputs a result to a second connection portion connecting to the wiring portion; and a fourth conversion element that converts voltage of the second connection portion into electric current, and outputs a result to the second oscillator.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Limited
    Inventors: Yasumoto Tomita, Hirotaka Tamura
  • Patent number: 8975936
    Abstract: An integrated circuit includes a plurality of resonant clock domains of a resonant clock network. Each resonant clock domain has at least one clock driver that supplies a portion of clock signal to an associated resonant clock domain. The resonant clock network operates in a resonant mode with inductors connected to pairs of resonant clock domains at boundaries between the resonant clock domains. Each inductor forms an LC circuit with clock load capacitance in the pair of resonant clock domains to which the inductor is connected.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: March 10, 2015
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Visvesh S. Sathe, Samuel D. Naffziger
  • Patent number: 8947149
    Abstract: Embodiments of a clock distribution device and a method of clock distribution are described. In one embodiment, a clock distribution device includes a stacked clock driver circuit configured to perform clock signal charge recycling on input clock signals that swing between different voltage ranges and a load circuit. The stacked clock driver circuit includes stacked driver circuits configured to generate output clock signals that swing between the different voltage ranges. The load circuit includes load networks of different semiconductor types. Each of the load networks are configured to be driven by one of the output clock signals. Other embodiments are also described.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 3, 2015
    Assignee: NXP B.V.
    Inventors: Ajay Kapoor, Ralf Malzahn, Rinze Ida Mechtildis Peter Meijer, Peter Thueringer
  • Publication number: 20140355204
    Abstract: Electronic circuit device (ECD) and method for conveying clock signal in an ECD. The ECD includes: a cooling fluid conduit network (CFCN) including at least one conduit adapted for conveying an electromagnetic signal, wherein the CFCN is arranged in thermal communication with a first set of one or more components of the ECD and is in signal communication with a second set, and wherein the CFCN is configured to convey both a cooling fluid in the at least one conduit and an electromagnetic signal via the at least one conduit; a clock signal injection unit configured to inject an electromagnetic clock signal (ECS) at an input location of the CFCN; and a clock signal collection unit configured to collect at an output location of the CFCN, an ECS for one or more components of the second set, wherein the ECS is conveyed via a conduit of the CFCN.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 4, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mircea Gusat, Bruno Michel, Thomas E. Morf, Maria Soimu
  • Patent number: 8902007
    Abstract: A clock distributor includes unit circuit parts each including an oscillator, a first element configured to convert output voltage of the oscillator into a current, a second element having a voltage current conversion characteristic of an opposite phase to that of the first element, the second element being feedback connected to the first element and the oscillator, a third element configured to convert output voltage of the oscillator into a current, a fourth element having a voltage current conversion characteristic of an opposite phase to that of the third element, the fourth element being feedback connected to the third element and the oscillator; a wiring part to connect a connection part of the first and second elements of a unit circuit part to a connection part of the third and fourth elements of another unit circuit part; and a synchronization circuit connected to the oscillator of a unit circuit part.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: December 2, 2014
    Assignee: Fujitsu Limited
    Inventors: Yasumoto Tomita, Hirotaka Tamura
  • Publication number: 20140240021
    Abstract: Recycling energy in a clock distribution network is provided. A method includes creating a resonant clocking circuit including a clock grid. The method further includes providing resonant structures distributed in the clock grid. The method further includes providing switches that control the resonant structures to switch between a non-resonant mode and a resonant mode. The method further includes determining a switch size that minimizes power consumption of the resonant clocking circuit by iteratively increasing sizes of the switches and, for each iterative increase in size, determining power consumed by the resonant clocking circuit.
    Type: Application
    Filed: December 20, 2013
    Publication date: August 28, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jason D. HIBBELER, William R. REOHR, Phillip J. RESTLE
  • Patent number: 8730073
    Abstract: A method for digitizing an analog signal through a pipelined analog-to-digital converter (ADC) may include pipelining a sample sub-stage, a quantization sub-stage and an amplification sub-stage to an ADC lane. Within a first of multiple pipelined stages, clock phases may be assigned to the ADC lane, including a sample clock phase, a quantization clock phase, and an amplification clock phase such that the quantization clock phase is non-overlapping with the sample clock phase and the amplification clock phase. The non-overlapping feature may be facilitated by generating multiple reference clock phases for the sub-stages of multiple ADC lanes, and interleaving assignment of the sample clock phase, the quantization clock phase, and the amplification clock phase to the reference clock phases among the multiple lanes.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: May 20, 2014
    Assignee: Broadcom Corporation
    Inventors: Tao Wang, Chun-Ying Chen, Jiangfeng Wu
  • Patent number: 8680913
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: March 25, 2014
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y. Chang
  • Patent number: 8659588
    Abstract: A display substrate includes a base substrate including a display area and a peripheral area, a pixel disposed on the display area, wherein the pixel includes; a pixel transistor connected to a gate line and a data line which cross each other, and a pixel electrode connected to the pixel transistor and the pixel electrode, and a gate driving circuit disposed on the peripheral area, wherein the gate driving circuit outputs a gate signal to the gate line and comprises a plurality of stages, an n-th stage of the gate driving circuit including a plurality of circuit transistors and a boosting capacitor including a first capacitor and a second capacitor, the plurality of circuit transistors and the first capacitor being disposed on a first area and the second capacitor being disposed on a second area of the peripheral area positioned between the first area and the display area.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Bon-Yong Koo
  • Patent number: 8653875
    Abstract: Provided is a semiconductor device which inputs an input clock signal of predetermined frequency and outputs a plurality of clock signals of the same frequency, the semiconductor device including: an input unit configured to input the input clock signal of the predetermined frequency; and a delay unit configured to generate a plurality of clock signals of the same frequency by providing predetermined delay time period to the input clock signal to be delayed in order to reduce load applied to a power supply in common with the plurality of the clock signals. According to the semiconductor device, output waveform distortion of the clock signals can be improved even with simple structure.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 18, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Morihiko Tokumoto, Masayu Fujiwara, Satoshi Mikami
  • Patent number: 8638251
    Abstract: A continuous time delta-sigma modulator is provided that includes an integrator stage including a plurality of integrators; a quantizer to receive an input signal from the integrator stage and output a quantizer signal; a global feedback path providing feedback from the quantizer to the integrator stage; a local feedback path connecting the quantizer and a preceding integrator of the integrator stage configured to compensate for delay attributed to the global feedback path; and a delay compensation circuit. The delay compensation circuit is configured to calculate a delay value based on sources of additional delay within a local feedback loop, and to supply the additional delay value to the quantizer to compensate for delay within the local feedback loop.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 28, 2014
    Assignee: McAfee, Inc.
    Inventors: Merit Hong, James Riches
  • Publication number: 20130314126
    Abstract: A non-overlapping clock generator circuit supplies clock signals to a stage of a pipelined ADC, which includes parallel switched capacitor circuitry. The non-overlapping clock generator circuit includes: a first trigger generation circuit that generates first and second trigger signals; a second trigger generation circuit that generates third and fourth trigger signals; a first clock generation branch that receives the first, second and fourth trigger signals and generates first sampling cycle and delayed sampling cycle clock signals; a second clock generation branch that receives the first, second and third trigger signals and generates second sampling cycle and delayed sampling cycle clock signals; a third clock generation branch that receives the second trigger signal and generates first gain cycle and delayed gain cycle clock signals; and a fourth clock generation branch that receives the first trigger signal and generates second gain cycle and delayed gain cycle clock signals.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventor: Douglas A. Garrity
  • Patent number: 8594170
    Abstract: A method in a mixed-signal system to prevent overlapping of clock edges of one or more digital clock signals and clock edges of one or more analog clock signals where the digital clock signals and the analog clock signals are digitally controlled includes generating one or more timing window pulses that are centered around the clock edges of one of the digital clock signals or the analog clock signals; combining the timing window pulses to generate a gating signal, the gating signal having an active logical level at each of the timing window pulses; and applying the gating signal to gate or delay clock edges of the other one of the digital clock signals or the analog clock signals.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: November 26, 2013
    Assignee: SiGear Europe Sarl
    Inventors: Friederich Mombers, Alain-Serge Porret, Melly Thierry
  • Publication number: 20130194019
    Abstract: The semiconductor integrated circuit includes a clock tree that transmits a clock signal to a plurality of tree branches, a plurality of pulse generators, and a plurality of pulse distribution networks. Each pulse generator generates a pulse in response to the clock signal transmitted through the tree branches. Each pulse distribution network is in communication with a pulse generator of the plurality of pulse generators, and is constructed and arranged to transmit the pulse generated by each pulse generator to a plurality of pulse sinks.
    Type: Application
    Filed: September 13, 2012
    Publication date: August 1, 2013
    Inventors: Hoi Jin Lee, Gun Ok Jung
  • Patent number: 8441314
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: May 14, 2013
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y. Chang
  • Patent number: 8390358
    Abstract: Integrated jitter compliant clock signal generation apparatus and methods are provided. Input signals having different frequencies are used to generate respective clock signals having closely spaced frequencies. The input signals might be generated, for example, in adjacent Phase Locked Loops (PLLs) which receive reference clock signals. The reference clock signals, or signals from which the reference clock signals originate, are also closely spaced. The closely spaced reference clock signals are effectively separated for cleanup and then brought back together to provide the closely spaced clock signals. This allows cleanup of the closely spaced reference clock signals to occur at staggered and more widely spaced frequencies. These techniques could also be applied to reference clock signals which are harmonically related and are used to generate harmonically related output clock signals.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Cortina Systems, Inc.
    Inventors: Shawn Scouten, Malcolm Stevens, Kevin Parker
  • Patent number: 8339209
    Abstract: An inductor architecture for resonant clock distribution networks is described. This architecture allows for the adjustment of the natural frequency of a resonant clock distribution network, so that it achieves energy-efficient operation at multiple clock frequencies. The proposed architecture exhibits no inductor overheads. Such an architecture is generally applicable to semiconductor devices with multiple clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs. Moreover, it is applicable to the binning of semiconductor devices according to achievable performance levels.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 25, 2012
    Assignee: Cyclos Semiconductor, Inc.
    Inventors: Marios C. Papaefthymiou, Alexander Ishii
  • Patent number: 8253484
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: August 28, 2012
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y. Chang
  • Publication number: 20120032721
    Abstract: The invention concerns a computer implemented method of circuit conception of a clock tree (200) comprising: a plurality of pulse generators (202) each being coupled to the input of one or more pulsed latches and being arranged to generate a pulsed signal (PS); and a tree of buffers (204) for supplying a clock signal (CLK) to the pulse generators, the method comprising: the conception of the clock tree without pulse generators based on a timing analysis by the computer of the propagation of clock edges in the clock tree; and replacing by the computer in the clock tree at least one buffer, coupled to the input of each pulsed latch, by a pulse generator.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Applicant: Dolphin Integration
    Inventors: Yahia MALLEM, Mickael GIROUD, Lionel JURE
  • Patent number: 8072260
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 6, 2011
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y. Chang
  • Patent number: 8060654
    Abstract: A data communication network may include two or more master clocks, and a synchronization system connected to the master clocks. The synchronization system may determine a time-base for the master clocks. The synchronization system may control the master clocks according to the determined time-base. The data communication network may include one or more slave clocks. The slave clocks may be controlled by a slave clock time-base controller based on time information of a single selected master clock selected from the master clocks.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: November 15, 2011
    Assignee: Freescale Semiconductor, Inc
    Inventors: Florian Bogenberger, Mathias Rausch
  • Patent number: 7996705
    Abstract: A multilevel input interface device connected to a signal bus including one or more data lines that transmit an M-level signal and a clock line that transmits a transmission clock signal indicating the timings of reading level information for the M-level signal, includes: a threshold value generation unit that produces a plurality of voltage outputs as a plurality of variable comparison reference signals according to the level-varying supply voltage; a level detection unit that compares, in synchronization with the transmission clock signal, the M-value level signal with the variable comparison reference signals and generates a logic output corresponding to an instantaneous value of the M-level signal; and a logic circuit unit that converts the logic output to a data signal.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 9, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 7990200
    Abstract: A PWM control system includes a multi-phase PWM controller and at least one single-phase PWM controller. The multi-phase PWM controller is capable of generating a multi-phase PWM signal. The at least one single-phase PWM controller is capable of generating a single-phase PWM signal. A phase difference between the single-phase PWM signal and the multi-phase signal is greater than 0 degree and less than 180 degree.
    Type: Grant
    Filed: September 20, 2009
    Date of Patent: August 2, 2011
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Shi-Tao Chen, Hsiang-Jui Hung, Sheng-Chung Huang, Kun-Lung Wu, Yi-Ping Li
  • Publication number: 20110084736
    Abstract: An architecture for controlling the clock waveform characteristics, including but not limited to the clock amplitude and clock rise and/or fall times, of resonant clock distribution networks is proposed. This architecture relies on controlling the size of clock drivers and the duty cycles of reference clocks. It is targeted at resonant clock distribution networks and allows for the adjustment of resonant clock waveform characteristics with no need to route an additional power grid. Such an architecture is generally applicable to semiconductor devices with multiple clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: Cyclos Semiconductor, Inc.
    Inventors: Marios C. Papaefthymiou, Alexander Ishii
  • Patent number: 7859329
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: December 28, 2010
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y. Chang
  • Publication number: 20100308885
    Abstract: Methods and systems for clock distribution utilizing leaky wave antennas (LWAs) in a wireless device are disclosed and may include configuring voltage-controlled oscillators (VCO) to generate one or more clock signals at desired clock frequencies and configuring LWAs at a resonant frequency corresponding to the clock frequencies, which may be generated at the desired clock frequencies utilizing the VCO. The clock signals may be communicated via LWAs in the wireless device and may be amplified utilizing one or more low-noise amplifiers. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. LWAs may be configured to enable beamforming. One or more of the LWAs may comprise microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on spacing between conductive lines in the waveguides. The LWAs may be integrated in one or more integrated circuits, integrated circuit packages, and/or printed circuit boards.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 9, 2010
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 7812659
    Abstract: A programmable logic device (“PLD”) or the like has a plurality of data transmitter channels. Certain circuitry is shared by the channels. The shared circuitry includes at least one phase-locked loop (“PLL”) circuit for producing a primary clock signal, and global frequency divider circuitry for producing at least one global secondary clock signal based on the primary signal. The primary and global secondary signal(s) are distributed to the channels. Each of the channels includes local frequency divider circuitry for producing at least one local secondary clock signal based on the primary signal. Each channel also includes selection circuitry for selecting either the global or local secondary signal(s) for use by clock utilization circuitry of the channel. The clock utilization circuitry may include serializer circuitry for converting data from parallel to serial form.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: October 12, 2010
    Assignee: Altera Corporation
    Inventors: Sergey Shumarayev, Rakesh H Patel, William W Bereza, Tim Tri Hoang, Thungoc Tran
  • Publication number: 20100231282
    Abstract: In a particular embodiment, a method of generating an advanced gating cell clock tree includes determining a timing margin for a path between a clock gating cell and a digital data storage element such as a latch or flip flop. The circuit contains a clock source and when the timing margin for the path meets a predetermined threshold, the clock gating cell is automatically moved closer to the clock source. In a particular embodiment, the timing margin is automatically determined. A clock tree synthesis is performed to insert one or more buffers into the path and create an advanced gating cell clock tree.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 16, 2010
    Applicant: QUALCOMM INCORPORATED
    Inventor: Chandrasekhar Singasani
  • Patent number: 7768334
    Abstract: A semiconductor integrated circuit has a plurality of clock tree cells arranged in a tree structure on clock signal lines transmitting a clock signal, the plurality of clock tree cells forming a clock tree. The clock tree cells include first power supply lines connected to the clock tree cells, second power supply lines connected to logic circuits receiving a clock signal supplied from the clock tree, and a plurality of power supply pads connected to the first power supply lines and the second power supply lines.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: August 3, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Fumiyuki Yamane
  • Publication number: 20100188130
    Abstract: A system includes an input device, an output device, a printed circuit board, and a semiconductor device. The semiconductor device includes a semiconductor die. The semiconductor die includes a clock distribution network that distributes a primary clock signal. The clock distribution network includes a low RC local clock distribution structure. The low RC local clock distribution structure includes a conductor, a first clock signal incident on the conductor, a local gain buffer pair that receives the first clock signal and outputs a second clock signal corresponding to the first clock signal, and a shorting bar that shorts the second clock signal to a plurality of conductors.
    Type: Application
    Filed: January 28, 2009
    Publication date: July 29, 2010
    Applicant: Sun Microsystems, Inc.
    Inventor: Robert P. Masleid
  • Publication number: 20100148843
    Abstract: A clock distribution network includes: a primary clock signal and a distribution tree coupled to the primary clock signal. The distribution tree derives a plurality of separate clock signals from the primary clock signal and provides each of the plurality of separate clock signals to each of a plurality of loads. The distribution tree comprises a plurality of bow tie elements.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 17, 2010
    Applicant: Sun Microsystems, Inc.
    Inventor: Robert P. Masleid
  • Patent number: 7646237
    Abstract: In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 12, 2010
    Assignee: Altera Corporation
    Inventors: Gregory Starr, Kang Wei Lai, Richard Y Chang
  • Patent number: 7629827
    Abstract: The semiconductor integrated circuit includes a first subordinate clock tree 802 and a second subordinate clock tree 803, wherein a clock is delayed by a variable delay circuit 805 and inputted into the second subordinate clock tree 803 so that the phases are matched each other of the output clocks from the end clock drivers with the same position in respective trees, thereby reducing clock skew.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: December 8, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuya Fukuoka, Shigeru Nakahara, Minoru Motoyoshi
  • Patent number: 7622979
    Abstract: A timing-constrained circuit (e.g., a self-timed circuit) of optimal performance is achieved by allowing the delay of the circuit to be changed dynamically as a function of operating conditions (e.g., operating voltages or temperatures). The delay of timing signals in the timing-constrained circuit for a given operating condition may be selected to have the minimum margin for that operating condition among the available delays to maximize performance over the entire dynamic range of operating conditions.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 24, 2009
    Assignee: Sun Microsytems, Inc.
    Inventors: Ajay Bhatia, Rajesh Khanna
  • Patent number: 7586355
    Abstract: A clock distribution tree for an integrated circuit memory includes a set of data drivers, a corresponding set of input buffers coupled to the data drivers, a first clock distribution tree coupled to the data drivers, and a second clock distribution tree coupled to the input buffers, wherein the first and second clock distribution tree are substantially matched and mirrored distribution trees. The line width of the first clock distribution tree is substantially the same as the line width of the second clock distribution tree. The line spacing of the first clock distribution tree is substantially the same as the line spacing of the second clock distribution tree. Numerous topologies for the first and second clock distribution trees can be accommodated, as long as they are matched and mirrored. Valid times for the integrated circuit memory are maximized and data and clock skew is minimized.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: September 8, 2009
    Assignees: United Memories, Inc., Sony Corporation
    Inventors: Michael C. Parris, Oscar Frederick Jones, Jr.
  • Publication number: 20090140788
    Abstract: A semiconductor integrated circuit has a plurality of clock tree cells arranged in a tree structure on clock signal lines transmitting a clock signal, the plurality of clock tree cells forming a clock tree. The clock tree cells include first power supply lines connected to the clock tree cells, second power supply lines connected to logic circuits receiving a clock signal supplied from the clock tree, and a plurality of power supply pads connected to the first power supply lines and the second power supply lines.
    Type: Application
    Filed: November 4, 2008
    Publication date: June 4, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Fumiyuki YAMANE
  • Publication number: 20090079488
    Abstract: Clock skew can be reduced by suppressing fluctuation in wiring leads between the final stage clock buffers and the clock distribution circuit for supplying the clock. In view of attaining such reduction of clock skew, an upstream of the clock distribution circuit is formed in an H tree structure and the final stage is formed in a local fishbone structure. A plurality of main clock lines connected to the final stage buffer include a first main clock line and a second main clock line. The number of cell arrangement allowable rows where a plurality of first flip-flops for receiving the clock from the first main clock line are located is different from the number of cell arrangement allowable rows where a plurality first flip-flops for receiving the clock from the second main clock line are located.
    Type: Application
    Filed: July 2, 2008
    Publication date: March 26, 2009
    Inventors: Minoru MOTOYOSHI, Yasuhiro Fujimura, Shigeru Nakahara
  • Publication number: 20080238519
    Abstract: Integrate circuit systems and semiconductor devices for generating, transmitting, receiving, and manipulating clock and/or data signals. A semiconductor device including a clock circuit having field effect transistors and a clock driver circuit having bipolar junction transistors is disclosed. The clock circuit may provide a first clock output having a first voltage swing. The clock driver circuit may receive the first clock output and provide a second clock output having a second voltage swing substantially less than the first voltage swing. The field effect transistors can be junction field effect transistors or insulated gate field effect transistors, or the like. The system/devices further including a translator circuit, for translating signals with a lower voltage swing into signals with a higher voltage swing, and a circuit block, for operating at such higher voltage swing.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Inventor: Ashok Kumar Kapoor