Complementary Metal-oxide Semiconductor (cmos) Patents (Class 327/391)
  • Patent number: 12142547
    Abstract: There is provided a semiconductor device including a multi-gate transistor having a plurality of gates in a common active region, in which the multi-gate transistor has a comb-shaped metal structure in which a first metal is drawn out and bundled in a W length direction from contacts arranged in a single row in each of a source region and a drain region, and the multi-gate transistor has a wiring layout in which a root section of the first metal coincides immediately above an end of the source region and the drain region or is disposed inside the end of the source region and the drain region in the W length direction.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: November 12, 2024
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuki Yanagisawa, Yushi Koriyama
  • Patent number: 11728798
    Abstract: Methods, apparatus, systems, and articles of manufacture are disclosed for cross-conduction detection. An example apparatus includes a cross detector circuit including a first transistor and a second transistor, the first transistor coupled to a load, a third transistor coupled to a first controlled delay circuit and the first transistor, a fourth transistor coupled to a second controlled delay circuit and to the third transistor at a phase node, and a control circuit coupled to the first controlled delay circuit, the second controlled delay circuit, and the load.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 15, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Gaetano Maria Walter Petrina, Michael Lueders, Nicola Rasera
  • Patent number: 11353901
    Abstract: An electronic circuit includes a first transistor, a second transistor, and a variable resistor. The first transistor has a first threshold voltage. The second transistor has a second threshold voltage that is different from the first threshold voltage. The second transistor is coupled to the first transistor. The variable resistor is coupled to the first transistor and the second transistor. The variable resistor is configured to adjust a temperature coefficient of the electronic circuit. The electronic circuit is configured to generate a reference voltage based on a difference of the first threshold voltage and the second threshold voltage.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: June 7, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajat Chauhan, Joseph Alan Sankman, Avinash Shreepathi Bhat
  • Patent number: 11258443
    Abstract: A switching system can include a main switching device configured to switch a voltage, a gate driver having an output coupled to a drive terminal of the main switching device and configured to deliver a drive signal to the main switching device, and a clamp circuit. The clamp circuit can be coupled to the drive terminal of the main switching device. The clamp circuit can include a logic gate configured to drive a clamp switching device coupled to and configured to clamp a voltage at the drive terminal of the main switching device. A drive signal of the clamp switching device can be substantially complementary to the main switching device drive signal. The logic gate can provide at least a portion of a delay between switching transitions of the main switching device and switching transitions of the clamp switching device.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: February 22, 2022
    Assignee: Apple Inc.
    Inventors: Ashish K. Sahoo, Brandon Pierquet
  • Patent number: 11159133
    Abstract: A buffer circuit for a radio frequency (RF) signal includes a single leg and a feedback mesh. The single leg is coupled between a voltage supply and ground. The single leg includes a pMOS FET and an nMOS FET, and an output terminal defined at drain terminals of the pMOS FET and the nMOS FET. The buffer circuit includes an input terminal capacitively coupled to gates of the pMOS FET and the nMOS FET. The input terminal is configured to receive the RF signal, and a buffered signal is provided on the output terminal. The feedback mesh is coupled to the output terminal and coupled to the gates of the pMOS FET and the nMOS FET. The feedback mesh includes a series-coupled inductive-resistive feedback impedance, and a resistive feedback impedance in parallel with the series-coupled inductive-resistive feedback impedance.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 26, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Alfio Zanchi
  • Patent number: 9853640
    Abstract: A floating core network for secure isolation of a circuit from an external supply interface is described. Isolation of a core is accomplished through a dynamic current limiting network providing an isolated core voltage to the core; and an isolated supply for the corresponding core that is continuously recharged by the dynamic current limiting network. The dynamic current limiting network can include two control loops, one control loop providing a fixed gate voltage to a p-type transistor supplying current to the isolated supply and another control loop providing a fixed gate voltage to an n-type transistor sinking current from the isolated supply.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: December 26, 2017
    Assignee: Chaologix, Inc.
    Inventors: Timothy Arthur Bell, Brent Arnold Myers
  • Patent number: 9847706
    Abstract: In accordance with embodiments of the present disclosure, systems and methods may include an input configured to indicate a switching node voltage of a switching node of a power converter comprising a first switch device coupled at its non-gate terminals between a ground voltage and the switching node and a second switch device coupled at its non-gate terminals between an output supply node and the switching node. The systems and methods may also include a predriver circuit coupled to the input and a gate terminal of the first switch device, the predriver circuit configured to drive an input voltage signal to the gate terminal of the first switch device and configured to select an effective impedance of the gate terminal of the first switch device based on the input.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 19, 2017
    Assignee: Cirrus Logic, Inc.
    Inventors: Lingli Zhang, Dan Shen, Johann Gaboriau
  • Patent number: 9564833
    Abstract: A phase leg for a multilevel inverter includes a positive DC lead, a first outer MOSFET connected to the positive DC lead, a first inner IGBT connected to the first outer MOSFET, a second inner IGBT connected to the first inner IGBT, and a second outer IGBT connected to the second inner IGBT. The first and second outer MOSFETs are superjunction MOSFETs voltage balanced by the first and second IGBTs for reducing voltage stress in the solid-state switch phase leg when the superjunction MOSFET and the IGBT are conducting current from the DC lead to the AC lead.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: February 7, 2017
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Adam M. White, Joshua S. Parkin, Christopher J. Courtney
  • Patent number: 9335870
    Abstract: Clamping of a circuit element of a touch screen, such as a gate line of the display system of the touch screen, to a fixed voltage is provided. The circuit element can be clamped during a touch phase and unclamped during a display phase of the touch screen. A gate line system of a touch screen can include a first transistor with a source or drain connected to a first gate line, a second transistor with a source or drain connected to a second gate line, and a common conductive pathway connecting gates of the first and second transistors. A synchronization system can switch the first and second transistors to connect the first and second gate lines to a fixed voltage during a touch phase, and can switch the first and second transistors to disconnect the first and second gate lines from the fixed voltage during a display phase.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: May 10, 2016
    Assignee: Apple Inc.
    Inventors: Marduke Yousefpor, Steven Porter Hotelling, Kevin J. White
  • Patent number: 9104214
    Abstract: A voltage providing circuit includes a first circuit, a second circuit coupled with the first circuit, and a third circuit coupled with the second circuit. The first circuit is configured to receive a first input signal and to generate a first output signal. The second circuit is configured to receive the first input signal and the first output signal as inputs and to generate a second output signal. The third circuit is configured to receive the second output signal and to generate an output voltage.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: August 11, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: I-Han Huang, Chia-En Huang, Chih-Chieh Chiu, Fu-An Wu, Chun-Jiun Dai, Hong-Chen Cheng, Jung-Ping Yang, Cheng Hung Lee
  • Patent number: 9054073
    Abstract: Disclosed is a semiconductor device in which a resistance component resulting from wiring is reduced. A plurality of transistor units are arranged side by side in a first direction (Y direction in the view), each of which has a plurality of transistors. The gate electrodes of the transistors extend in the first direction. First source wiring extends between first transistor unit and second transistor unit, and first drain wiring extends between the second transistor unit and third transistor unit. Second drain wiring extends on the side of the first transistor unit opposite to the side where the first source wiring extends, and second source wiring extends on the side of the third transistor unit opposite to the side where the second drain wiring extends.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: June 9, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Akira Matsumoto, Yoshinao Miura, Yasutaka Nakashiba
  • Patent number: 9041438
    Abstract: An output buffer comprises a series connection of a first field effect transistor and a second field effect transistor, wherein the first field effect transistor is connected to a first supply potential terminal and the second field effect transistor is connected to a second supply potential terminal. An output terminal is connected to a common connection of the first transistor and the second transistor. The output buffer has a series connection of a resistive element and a capacitive element, wherein the capacitive element is connected to the output terminal, and a control circuit, to which an input signal is provided. The control circuit controls the transistors in such a way that turning off of a transistor is performed immediately, while turning on of a transistor is performed depending on the charging or discharging of the capacitive element, thus achieving a defined slew rate of the output signal at the output terminal.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: May 26, 2015
    Assignee: ams AG
    Inventor: Gonggui Xu
  • Publication number: 20150137872
    Abstract: A voltage controlled switching element gate drive circuit makes it possible to suppress an occurrence of a malfunction, while suppressing surge voltage, surge current, and switching noise, when switching in a voltage controlled switching element. A gate drive circuit that supplies a gate voltage to the gate of a voltage controlled switching element, thus driving the voltage controlled switching element, includes a high potential side switching element and low potential side switching element connected in series, first variable resistors interposed between at least the high potential side switching element and a high potential power supply or the low potential side switching element and a low potential power supply, and a control circuit that adjusts the resistance values of the first variable resistors.
    Type: Application
    Filed: December 22, 2014
    Publication date: May 21, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Satoshi SUGAHARA
  • Patent number: 8912828
    Abstract: A driving circuit of flat display including a charging circuit path, a discharging circuit path, and a detecting circuit is provided. The charging circuit path has first and second impedance states, wherein an impedance value of the first impedance state is smaller than that of the second impedance state. The discharging circuit path has third and fourth impedance states, wherein an impedance value of the third impedance state is smaller than that of the fourth impedance state. The detecting circuit detects whether the charging circuit path or the discharging circuit path is in an unstable first state or stable second state, controls the charging circuit path to the first impedance state or the discharging circuit path to the third impedance state in the first state, and controls the charging circuit path to the second impedance state or the discharging circuit path to the fourth impedance state in the second state.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 16, 2014
    Assignee: Novatek Microelectronics Corp.
    Inventors: Ju-Lin Huang, Yueh-Hsiu Liu
  • Patent number: 8847665
    Abstract: A semiconductor device has an analog switch, in which a P channel transistor and an N channel transistor are connected in parallel between an input terminal and an output terminal; a variable voltage circuit, which variably generates, according to an input voltage applied to the input terminal, potentials of a first gate voltage and first back gate voltage of the P channel transistor and of a second gate voltage and second back gate voltage of the N channel transistor; and a control circuit, which supplies to the variable voltage circuit a control signal controlling the analog switch to be conducting or non-conducting. In response to the control signal causing the analog switch to be conducting, the variable voltage circuit outputs the variable-generated first gate voltage and second gate voltage to the respective gates of the P channel transistor and N channel transistor.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Ryota Araki, Tohru Mizutani
  • Patent number: 8823425
    Abstract: Disclosed herein are an output driving circuit and a transistor output circuit. The output driving circuit includes: a reference voltage generating unit generating a reference voltage; a level shift unit including a transistor latch and turning off a first transistor of a driving circuit or driving the first transistor; a driving circuit unit including the first transistor that is driven to apply power to a gate of an output transistor and a second transistor that is driven complementarily to the first transistor to lower a gate voltage of the output transistor and drive the output transistor; and an withstand voltage protecting unit that is driven by receiving a reference voltage and includes a first withstand voltage protecting unit for protecting transistors of the transistor latch and the first transistor for stable operations thereof and a second withstand voltage protecting unit for protecting the output transistor for a stable operation thereof.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: September 2, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Chang Jae Heo
  • Patent number: 8810288
    Abstract: An output buffer is disclosed. The output buffer includes an input-stage circuit, an output-stage circuit and a compensation circuit. The compensation circuit includes a capacitor, a first switch, a second switch, a third switch, and a fourth switch. The input-stage circuit receives a differential input signal and outputting a response signal. The output-stage circuit receives the response signal and outputting an output signal. The first switch controls a connection between the input-stage circuit and a first terminal of the capacitor. The second switch controls the connection between an output terminal of the compensation circuit and a second terminal of the capacitor. The third switch controls the connection between the input-stage circuit and the second-terminal of the capacitor. The forth switch controls the connection between the output terminal of the compensation circuit and the first terminal of the capacitor.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 19, 2014
    Assignee: Novatek Microelectronics Corp.
    Inventor: Chun-Hung Chen
  • Patent number: 8791745
    Abstract: A linear voltage stabilizing circuit includes a main stabilizing unit, a first resistor, a second resistor, and a sub-stabilizing unit. The main stabilizing unit includes a first transistor connected between a signal input terminal and a signal output terminal, and a first comparator controlling the first transistor. The first and the second resistor are connected between the signal input terminal and ground. The voltage between the first resistor and the second resistor is equal to a first reference voltage. The sub-stabilizing unit includes a third resistor, a fourth resistor, a second transistor connected between the signal input terminal and the first transistor, and a second comparator. The third and fourth resistor are connected between the second comparator and ground. The node of the third and fourth resistor is connected to the node between the first and the second resistor. The second comparator controls the second transistor turn on or off.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 29, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Yong-Zhao Huang
  • Patent number: 8766700
    Abstract: A sampled CMOS switch includes first and second NMOS devices in series between input and output nodes. The first and second NMOS devices are activated by a sample signal. A pair of low-voltage DEPMOS devices is connected in a “T” configuration between the input and output nodes. The low-voltage DEPMOS devices are activated by an inverted sample signal. A feedback circuit includes the DEPMOS devices together with a third high-voltage NMOS device and a current source. The third NMOS device is controlled by a signal on the input node. A switch switchably connects an analog voltage source to a source of the third NMOS device and gates of the DEPMOS devices in accordance with a phase of an inverted sample signal. The construction of the sampled CMOS switch enables the protection of the gate oxide insulation of the low-voltage DEPMOS transistors from high voltage damage.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Vineet Mishra, Rajavelu Thinakaran
  • Patent number: 8754701
    Abstract: An interleaved filter circuit has a delay element configured to receive an input signal. An interleaved output buffer has a first input which receives the input signal and a second input which receives the output of the delay element. An output of the interleaved output buffer is driven when the first input and the second input are at a same logic level.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: June 17, 2014
    Assignee: The Boeing Company
    Inventors: Ethan Cannon, Manuel F. Cabanas-Holmen, Salim A. Rabaa
  • Patent number: 8749022
    Abstract: A capacitor device includes a substrate including a first well having a first conductivity type and a first voltage applied thereto and a second well having a second conductivity type and a second voltage applied thereto; and a gate electrode disposed on an upper portion of the first well or an upper portion of the second well in such a way that the gate electrode is insulated from the first well or the second well, wherein capacitances of the capacitor device include a first capacitance between the first well and the second well and a second capacitance between the first well or the second well and the gate electrode.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 10, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Ryul Chang, Hwa-Sook Shin
  • Patent number: 8736349
    Abstract: The present invention provides a current limit circuit apparatus, coupled with the gate of a GaN transistor. The current limit circuit comprises a diode, a first transistor, a second transistor, a first resistor, a second resistor, a third resistor and a fourth resistor. The source and the drain of the first transistor couple with the diode. The source of the second transistor couples with the gate of the first transistor. The source of the first transistor couples with the first transistor. The source of the second transistor couples with the second resistor. The third resistor couples with the fourth resistor and the gate of the first transistor. The first transistor turned off and the gate current is limited. When the current of the gate of the GaN transistor exceeds the predetermined value, the breakdown voltage is increased by limiting the gate current.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: May 27, 2014
    Assignee: National Chiao Tung University
    Inventors: Tsung-Lin Chen, Edward Yi Chang, Wei-Hua Chieng, Stone Cheng, Shyr-Long Jeng, Shin-Wei Huang
  • Patent number: 8729944
    Abstract: A device may include first, second, and third buffer stages. The device may further include a selector circuit to selectively output one of an output of the second buffer stage or an output of the third buffer stage. The device may include an output to provide a first clock signal, where the first clock signal is an output of the first buffer stage, and the device further include an output to provide a second clock signal, where the second clock signal is an output of the selector circuit.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 20, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bruce A. Doyle, Emerson S. Fang, Alvin L. Loke, Shawn Searles, Stephen F. Greenwood
  • Publication number: 20140132332
    Abstract: An interleaved filter circuit has a delay element configured to receive an input signal. An interleaved output buffer has a first input which receives the input signal and a second input which receives the output of the delay element. An output of the interleaved output buffer is driven when the first input and the second input are at a same logic level.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: THE BOEING COMPANY
    Inventor: THE BOEING COMPANY
  • Patent number: 8698358
    Abstract: A circuit is provided that includes a parasitic power circuit that powers a parasitic circuit. The parasitic power circuit derives a supply voltage from an external AC or other signal suitable for use as a communications signal. A PMOS transistor or transistors is utilized to enable a supply voltage capacitor to charge substantially to the same voltage as the channel voltage of the communications signal.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: April 15, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Marvin L. Peak, Jr., Bradley M. Harrington, Matthew R. Harrington
  • Patent number: 8698546
    Abstract: A sampled CMOS switch includes first and second NMOS devices in series between input and output nodes. The first and second NMOS devices are activated by a sample signal. A pair of low-voltage DEPMOS devices is connected in a “T” configuration between the input and output nodes. The low-voltage DEPMOS devices are activated by an inverted sample signal. A feedback circuit includes the DEPMOS devices together with a third high-voltage NMOS device and a current source. The third NMOS device is controlled by a signal on the input node. A switch switchably connects an analog voltage source to a source of the third NMOS device and gates of the DEPMOS devices in accordance with a phase of an inverted sample signal. The construction of the sampled CMOS switch enables the protection of the gate oxide insulation of the low-voltage DEPMOS transistors from high voltage damage.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: April 15, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Vineet Mishra, Rajavelu Thinakaran
  • Patent number: 8675811
    Abstract: A circuit which is constituted by a plurality of n-channel transistors includes, in at least one embodiment, a transistor (T1) which has a drain terminal to which an input signal is supplied and a source terminal from which a output signal is supplied; and a transistor (T2) which has a drain terminal to which a control signal is supplied and a source terminal connected to a gate terminal of the transistor (T1). A gate terminal of the transistor (T2) is connected to the source terminal of the transistor (T2). With the arrangement, it is possible to provide (i) a semiconductor device which is constituted by transistors having an identical conductivity type and which is capable of reducing an influence of noise, and (ii) a display device including the semiconductor device.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: March 18, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Etsuo Yamamoto, Yasushi Sasaki, Yuhichiroh Murakami, Shige Furuta
  • Patent number: 8648642
    Abstract: A switch for an analog signal may include a main MOS transistor whose source forms an input terminal of the switch and whose drain forms an output terminal of the switch, a capacitor having a first terminal permanently connected to the source of the main transistor, a circuit for charging the capacitor, and a first auxiliary transistor configured to connect the second terminal of the capacitor to the gate of the main transistor in response to a control signal. The charge circuit may include a resistor permanently connecting the second terminal of the capacitor to a power supply line. The capacitor and the resistor may form a high-pass filter having a cutoff frequency lower than the frequency of the analog signal.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: February 11, 2014
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Hugo Gicquel, Beatrice Lafiandra, Christophe Forel
  • Publication number: 20140009208
    Abstract: Transmit modules typically constitute passive matching circuitry, harmonic trap filters and an antenna switch to provide isolation between the transmit bands as well as between transmit and receive functions. In complementary metal-oxide semiconductor (CMOS) processes the switch function is difficult to implement as a large voltage swing may result in breakdown of the MOS oxide, drain diode, source diode as well as substrate diodes. Therefore a switching function is provided at a node that has low impedance during transmit that limits the voltage swing that the MOS switches experience. The approach is particularly useful, but not limited to, half duplex transmissions such as those used in global system for mobile (GSM) communication, enhanced data for GSM Evolution (EDGE), and time division synchronous code division multiple access (TDSCDMA).
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: AMALFI SEMICONDUCTOR, INC.
    Inventor: Malcolm Smith
  • Patent number: 8525575
    Abstract: A system includes a pass switch circuit and a first pass switch activation circuit. The pass switch circuit includes an impedance circuit and a pass transistor having a first source/drain connection, a second source/drain connection, and a gate input. The pass switch circuit passes an electronic signal from the first source/drain connection to the second source/drain connection in response to activation of the gate input. An impedance transfer function of the pass switch circuit is determined at least in part by an impedance of the impedance circuit and the impedance is sized to minimize attenuation of the electronic signal due to the impedance transfer function of the pass switch circuit. The first pass switch activation circuit provides a first activation signal to the gate input in response to an enable signal.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: September 3, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Kenneth P. Snowdon
  • Patent number: 8519751
    Abstract: A gate drive circuit capable of turning on a semiconductor switching element at high speed, which includes: a buffer circuit including a turn-on-drive switching element and a turn-off-drive switching element that are complementarily turned on and off, for driving the semiconductor switching element; a first DC voltage supply including a positive electrode connected to the source or emitter of the turn-on-drive switching element and a negative electrode connected to a reference potential; and a second DC voltage supply including a positive electrode connected to the source or emitter of the turn-off-drive switching element and a negative electrode connected to the reference potential.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: August 27, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tatsuya Kitamura, Hiroshi Nakatake, Yasushi Nakayama
  • Patent number: 8461905
    Abstract: An adaptive switch circuit is provided, which includes a CMOS switch, an off-level voltage generator, and a booster circuit. The CMOS switch includes first PMOS and NMOS coupled transistors. The generator provides, via first and second outputs, first and second voltage levels, and includes second PMOS and NMOS transistors. The second PMOS transistor is series connected between VDD and a first bias source and the second NMOS transistor is series connected between VSS and a second bias source. The booster circuit, which is coupled to the generator between its outputs, and to the PMOS and NMOS gates of the CMOS switch, capacitively stores during off level first and second boost voltages, which are coupled to the PMOS and NMOS gates. The boost voltages are offset from VDD and VSS, respectively, each by approximately a threshold voltage of the respective transistor type.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 11, 2013
    Assignee: Zentrum Mikroelektronic Dresden AG
    Inventor: Mathias Krauss
  • Patent number: 8461882
    Abstract: A driver supports differential and single-ended signaling modes. Complementary transistors with a common tail node are provided with complementary input signals in the differential mode. A current source coupled to the tail node maintains a relatively high tail impedance and a constant tail current in the differential mode. The tail node is set to a low impedance in single-ended modes to decouple the two transistors, allowing them to amplify uncorrelated input signals. The current source thaws multiple current levels in the single-ended mode to compensate for changes in tail current that result from changes in the relative values of the uncorrelated data in the single-ended modes. A termination block provides termination resistance in the differential mode, pull-up transistors in a single-ended mode that employs push-pull drivers, and is omitted in a single-ended mode that lacks driver-side termination.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 11, 2013
    Assignee: Rambus Inc.
    Inventors: Ken Kun-Yung Chang, Kashinath Prabhu, Hae-Chang Lee
  • Patent number: 8354873
    Abstract: Provided is a transmission gate capable of adapting to various input voltages to attain high S/N characteristics. The transmission gate includes: a PMOS transistor (11) which includes a drain to which an input voltage (Vin) is input, is turned ON when a voltage (Vin?Vs1) is input to a gate thereof, and includes a source from which the input voltage (Vin) is output as an output voltage (Vout); and an NMOS transistor (12) which has a gate length, a gate width, a gate oxide thickness, and an absolute value of a threshold voltage which are the same as those of the PMOS transistor (11), includes a drain to which the input voltage (Vin) is input, is turned ON when a voltage (Vin+Vs1) is input to a gate thereof, and includes a source from which the input voltage (Vin) is output as the output voltage (Vout).
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: January 15, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Takashi Ono
  • Patent number: 8344761
    Abstract: Included are embodiments of a 3-level line driver. At least one embodiment of a method includes generating a repetitive wave; receiving an input signal and a complement of the input signal; providing a 3-level output signal; and filtering a feedback signal, the means for filtering including at least one of the following: a 0th order filter, and an even order filter.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: January 1, 2013
    Assignee: Ikanos Communications, Inc.
    Inventors: Kadaba Lakshmikumar, Sander Laurentius Johannes Gierkink
  • Patent number: 8283968
    Abstract: An analog switch including at least one first MOS transistor capable of transferring a signal from a first terminal to a second terminal; a connection circuit for bringing a substrate terminal of the first transistor to a voltage which is a function of the voltages of the first and second terminals; and a circuit for controlling a control voltage of the first transistor with the signal.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 9, 2012
    Assignee: STMicroelectronics (Grenoble) SAS
    Inventor: Serge Ramet
  • Patent number: 8115256
    Abstract: A semiconductor device includes an inverter having an NMOSFET and a PMOSFET having sources, drains and gate electrodes respectively, the drains being connected to each other and the gate electrodes being connected to each other, and a pnp bipolar transistor including a collector (C), a base (B) and an emitter (E), the base (B) receiving an output of the inverter.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 14, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Haruki Yoneda, Hideaki Fujiwara
  • Patent number: 8115518
    Abstract: An integrated circuit allows for the correction of distortion at an input of a sampling network. The integrated circuit contains a first bootstrap circuit to drive a sampling network transistor and a second bootstrap circuit to separate the back-gate terminal of the transistor from a voltage input by a resistance inserted in series. The presence of the inserted resistance counteracts the effect of the nonlinear back-gate capacitance on the distortion at the input.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: February 14, 2012
    Assignee: Analog Devices, Inc.
    Inventor: Ahmed Mohamed Abdelatty Ali
  • Publication number: 20110298523
    Abstract: Apparatuses and methods for well buffering are disclosed. In one embodiment, an apparatus includes a complimentary metal oxide semiconductor (CMOS) switch having a gate, a drain, a source, and a well. The source and drain are formed in the well, and the gate is formed adjacent the well between the source and drain. The source is configured to receive a bias voltage from a power amplifier. The apparatus further includes a gate bias control block for biasing the gate voltage of the switch, a well bias control block for biasing the well voltage of the switch, and a buffer circuit for increasing the impedance between the well bias control block and the well of the switch.
    Type: Application
    Filed: July 27, 2010
    Publication date: December 8, 2011
    Applicant: Skyworks Solutions, Inc.
    Inventors: David K. Homol, Karl J. Couglar
  • Patent number: 8063671
    Abstract: The present invention relates to a driving circuit of switch device. The present invention employs transformer isolated driving. The number of said transformers is two. The primary sides of the two transformers are connected to two driving modulators, respectively. The input terminal of a high frequency carrier signal and the input terminal of a driving signal are connected to the input terminal of a first driving modulator. The input terminal of a driving signal being connected with an inverter together with the input terminal of the high frequency carrier signal are connected to the input terminal of a second driving modulator. The first secondary side of the first transformer is connected to a power supply circuit which may provide a necessary voltage for turning on the switch device during a high level period of the driving signal.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 22, 2011
    Assignee: Liebert Corporation
    Inventor: Xueli Xiao
  • Patent number: 8044689
    Abstract: A pseudo differential circuit is a circuit system taking the advantages of both a CMOS circuit and a differential circuit. However, when process variability and the like are taken into account, a cross point of positive and negative outputs is not constant, thereby increasing a variation in duty of an output waveform. A semiconductor circuit according to the present invention includes: a first transistor being of a first conductivity type, coupled between a first power supply and an output terminal, and applied with an input signal; a second transistor being of a second conductivity type and coupled between a second power supply and the output terminal; a third transistor being of the second conductivity type and coupled between the first power supply and the output terminal; and a fourth transistor being of the first conductivity type and coupled between the second power supply and the output terminal.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 25, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuhiro Mori
  • Patent number: 7936209
    Abstract: Described embodiments provide for protecting from DC and transient over-voltage conditions an input/output (“I/O”) buffer having first and second I/O transistors. The first I/O transistor is coupled to a first over-voltage protection circuit adapted to prevent an over-voltage condition on at least the first I/O transistor. The second I/O transistor is coupled to a second over-voltage protection circuit adapted to prevent an over-voltage condition on at least the second I/O transistor. First and second bias voltages are generated from an operating voltage of the buffer. A third bias voltage is generated from either i) the first bias voltage, or ii) an output signal voltage of the buffer and a fourth bias voltage is generated from either i) the second bias voltage, or ii) the output signal voltage of the buffer. The third and fourth bias voltages are provided to the first and second over-voltage protection circuits, respectively.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 3, 2011
    Assignee: LSI Corporation
    Inventors: Dipankar Bhattacharya, Makeshwar Kothandaraman, John Kriz, Jeffrey Nagy, Yehuda Smooha, Pankaj Kumar
  • Patent number: 7924083
    Abstract: An isolation circuit is provided. The isolation circuit is coupled to an output and an input node and includes a first set, a second switch set, and a body bias voltage generator. The first switch set couples a switch control node to a second voltage when a first voltage is at a first voltage level, and couples the switch control node to the input node when the first voltage is at a second voltage level. The second switch set couples the output node to the input node when the first voltage is at the first voltage level, and isolates the output node from the input node when the first voltage is at the second voltage level. The body bias voltage generator selectively provides a higher one of the first voltage and a voltage on the input node to a body of the second switch set.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: April 12, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Fa Chou, Ding-Ming Kwai
  • Patent number: 7884639
    Abstract: An apparatus and system are provided to adjust an output voltage of an integrated circuit (IC) die. For instance, the apparatus can include an on-chip source termination and a bias generator. The bias generator can be configured to provide a source current to the on-chip source termination to adjust the output voltage. In particular, when adjusting the output voltage of the IC die, the bias generator can adjust the source current using a first current with a first adjustable current gain and a second current source with a second adjustable current gain.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 8, 2011
    Assignee: Broadcom Corporation
    Inventor: Kevin Tunghai Chan
  • Patent number: 7880694
    Abstract: An emission driver may include a first signal processor adapted to receive a clock signal, an input signal and an inverse input signal, and generate a first output signal, a second signal processor adapted to receive the first output signal, an inverse clock signal and negative feedback signals, and generate a second output signal, a third signal processor adapted to receive the second output signal and the input signal, and generate a third output signal that is an inverse of the second output signal based on the input signal, a fourth signal processor adapted to receive the second output signal, and generate a fourth output signal based on the second output signal, the fourth output signal being an inverse signal of the third output signal, and a fifth signal processor adapted to receive the fourth output signal and output a fifth output signal based on a stored predetermined voltage.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: February 1, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Bo-yong Chung
  • Patent number: 7852976
    Abstract: A bidirectional controlling device is utilized for receiving two input signals, which are respectively provided from a first input terminal and a second input terminal, and for respectively providing two output signals to a first output terminal and a second output terminal, by controlling a plurality of switch sets.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: December 14, 2010
    Assignee: AU Optronics Corp.
    Inventors: Chen-Ming Chen, Kuang-Hsiang Liu, Sheng-Chao Liu
  • Patent number: 7834677
    Abstract: A transmission gate circuit includes a first PMOS device, a first NMOS device, a second PMOS device, a second NMOS device, and a third transistor. A gate electrode, a first electrode and a second electrode of the first PMOS device are coupled to a first control signal, an input end, and an output end, respectively. A gate electrode, a first electrode and a second electrode of the first NMOS device are coupled to a second control signal, the input end, and the output end, respectively. A gate electrode, a first electrode and a second electrode of the second PMOS device are coupled to the first control signal, an input end, and a body electrode of the first PMOS device, respectively. A gate electrode, a first electrode, and a second electrode of the second NMOS device are coupled to the second control signal, a body electrode of the first PMOS device, and the output end, respectively.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: November 16, 2010
    Assignee: Genesys Logic, Inc.
    Inventor: Ching-jung Yu
  • Patent number: 7816971
    Abstract: A switch circuit includes a pair of metal oxide semiconductor (MOS) switches and an adjusting unit. Each of the MOS switches has an input terminal and an output terminal. The MOS switches receive a pair of differential input voltages at the input terminals thereof, and output a pair of differential output voltages at the output terminals thereof when the MOS switches conduct. The adjusting unit changes a difference between common mode levels of the input terminals and the output terminals of the MOS switches so as to adjust linearity of differential mode resistances of the MOS switches.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: October 19, 2010
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chao-Cheng Lee, Ren-Chieh Liu
  • Publication number: 20100244928
    Abstract: Reducing electromagnetic radiation from semiconductor devices. At least some of the illustrative embodiments are methods comprising driving a Boolean state to a signal pad of a semiconductor device (the driving through a transistor with a first drain-to-source impedance during the driving), and maintaining the Boolean state applied to the signal pad through the transistor with a second drain-to-source impedance, higher than the first drain-to-source impedance.
    Type: Application
    Filed: June 10, 2010
    Publication date: September 30, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Kevin P. Lavery, Jim D. Childers, Praven P. Patel
  • Patent number: RE41926
    Abstract: The present invention discloses an output circuit that is able to adjust the output voltage slew rate and avoid short-circuit current, comprising: a control circuit for receiving an input data and generating a first set of control signals based on the input data; an output control device consisting of a first field effect transistor (FET) connected in series with a second field effect transistor (FET) and the point of connection is the output end for generating an output signal; a first capacitor having one end connected to a first working voltage and generates a first control voltage by charging/discharging on another end to control the gate of the first field effect transistor; a first switch for controlling charging/discharging of the first capacitor device based on the first set of control signals; a first current source for providing charging current for the first capacitor device; a second capacitor having one end connected to a second working voltage and generates a second control voltage by charging/d
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: November 16, 2010
    Assignee: Realtek Semiconductor Corp.
    Inventor: An-Ming Lee