Propagation Through Plural Delay Devices Or Paths Patents (Class 327/395)
  • Patent number: 11183995
    Abstract: In a delay control circuit having a plurality of series-coupled delay stages, an input signal is routed through one of the series-coupled delay stages via a first delay element if a first delay control value is in a first state, the first delay element imposing a first signal propagation delay according to a first bias signal. If the delay control value is in a second state, the input signal is routed through the one of the series-coupled delay stages via a second delay element instead of the first delay element, the second delay element imposing a second signal propagation delay according to a second bias signal. The first and second bias signals are calibrated such that the second signal propagation delay exceeds the first propagation delay by a predetermined time interval that is substantially briefer than the first signal propagation delay.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: November 23, 2021
    Assignee: Rambus Inc.
    Inventors: Anirudha Shelke, Navin Kumar Mishra
  • Patent number: 8779836
    Abstract: A method an apparatus for a power switch acceleration scheme during wakeup is disclosed. In one embodiment, an integrated circuit includes at least one power gated circuit block. The power gated circuit block includes a virtual voltage node from which a voltage is provided to the circuitry of the block when active. Power switches are coupled between the virtual voltage node and a corresponding global voltage node. When the power gated circuit block is powered on, power switches are activated sequentially. The rate at which power switches are activated is increased as the voltage on the virtual voltage node increases. Sequentially activating the power switches may prevent an excess of current inrush into the power gated circuit block. The increase in the rate at which power switches are activated when the voltage on the virtual voltage node is at least at a certain level may allow for a faster wakeup.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: July 15, 2014
    Assignee: Apple Inc.
    Inventors: Toshinari Takayanagi, Shingo Suzuki
  • Patent number: 8710913
    Abstract: According to one aspect of this disclosure, a circuit arrangement is provided, the circuit arrangement including an electronic component coupled to at least one common power supply node and configured to provide a first signal having a variation in time that is based on power supply via the at least one common power supply node; a detecting circuit coupled to the electronic component, the detecting circuit being configured to detect the first signal and to provide a digital switch array control signal based on the variation in time of the first signal; and a switch array coupled between the at least one common power supply node and at least one power supply source, the switch array being configured to control the power supply via the at least one common power supply node based on the digital switch array control signal.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 29, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thomas Baumann, Christian Pacha, Peter Mahrla
  • Patent number: 8704584
    Abstract: A driver device drives a load circuit by a common output signal from a first driver transistor and a second driver transistor. The driver device includes a first pre-driver unit that outputs a first driver control signal to the first driver transistor in response to the input signal; and a second pre-driver unit that outputs a second driver control signal to the second driver transistor in response to the input signal. The first pre-driver unit controls the first driver control signal in such a manner that the first driver control signal is rounded in the vicinity of a threshold of the first driver transistor and is sharply changed in a region exceeding the threshold.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: April 22, 2014
    Assignee: Fujitsu Limited
    Inventors: Yoji Shimazaki, Naoya Shibayama
  • Patent number: 8547179
    Abstract: A PLL circuit includes a phase detector, a loop filter (LF), a voltage-controlled oscillator (VCO), and a frequency divider. The phase detector compares a phase of a signal Fs which is input from outside with a phase of a signal Fo/N which is input from the frequency divider. The loop filter generates a signal Vin by removing alternating current components from a signal input from the phase detector. The voltage-controlled oscillator outputs a signal Fo based on the signal Vin input from the loop filter. The frequency divider converts the signal Fo output from the voltage-controlled oscillator into Fo/N (frequency division by N), and outputs it to the phase detector.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Takeshi Osada
  • Patent number: 8542054
    Abstract: A method an apparatus for a power switch acceleration scheme during wakeup is disclosed. In one embodiment, an integrated circuit includes at least one power gated circuit block. The power gated circuit block includes a virtual voltage node from which a voltage is provided to the circuitry of the block when active. Power switches are coupled between the virtual voltage node and a corresponding global voltage node. When the power gated circuit block is powered on, power switches are activated sequentially. The rate at which power switches are activated is increased as the voltage on the virtual voltage node increases. Sequentially activating the power switches may prevent an excess of current inrush into the power gated circuit block. The increase in the rate at which power switches are activated when the voltage on the virtual voltage node is at least at a certain level may allow for a faster wakeup.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: September 24, 2013
    Assignee: Apple Inc.
    Inventors: Toshinari Takayanagi, Shingo Suzuki
  • Patent number: 8212547
    Abstract: An apparatus and method for measuring the duty cycle of a clock signal, the apparatus having a first multi-tap delay module, a second multi-tap delay module, and a multi-element detecting module, the input terminal of the first multi-tap delay module and the input terminal of the second multi-tap delay module coupled to an input node IN, the first multi-tap delay module receiving the clock signal and then providing it a first constant incremental delay at each tap, the second multi-tap delay module receiving the same clock signal CLK and then providing it a second constant incremental delay at each tap, and the multi-element detecting module determining the ratio of the number of outputs of the multi-element detecting module in which the sampled clock level is high with respect to the total number of steps covering one complete clock cycle.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: July 3, 2012
    Assignee: STMicroelectronics International N.V.
    Inventors: Anurag Ramesh Tiwari, Kallol Chatterjee
  • Patent number: 8143927
    Abstract: A pulse control device is maintained with a constant pulse width corresponding to a change of process or temperature. The pulse control device comprises a fuse set for selectively outputting a delay increase signal and a delay decrease signal that have a different state based on a cutting or non-cutting state of a fuse on which information on a change of process is programmed, and a pulse generator provided with a plurality of delay cells with predetermined time delay for selectively increasing or decreasing the number of the plurality of delay cells depending on the delay increase signal and the delay decrease signal to generate an internal clock with a pulse width corresponding to the number of the increased or decreased delay cells.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 27, 2012
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Kyoung-Nam Kim, Tae-Yun Kim
  • Patent number: 8063675
    Abstract: Provided is a delay circuit that has a delay time period independent of a power supply voltage and has the equal delay time period between a case of a change in input signal from Low to High and a case of a change in input signal from High to Low. The delay time period is determined as a time period necessary for a voltage of a capacitor (17) (internal voltage (Va)) to increase from a ground voltage (VSS) to a voltage equal to or higher than an inverting threshold voltage of a constant current inverter (19) (threshold voltage (Vtn) of an NMOS transistor (16)). Therefore, the delay time period is determined with reference to the ground voltage (VSS). Note that the same holds true for an internal delay circuit (20). If the input signal (Vin) becomes High, the delay circuit utilizes the delay time period caused by an internal delay circuit (10). On the other hand, if the input signal (Vin) becomes Low, the delay circuit utilizes the delay time period caused by the internal delay circuit (20).
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: November 22, 2011
    Assignee: Seiko Instruments Inc.
    Inventors: Atsushi Igarashi, Masakazu Sugiura
  • Patent number: 7622973
    Abstract: Provided is a pulse control device is maintained with a constant pulse width corresponding to a change of process or temperature. The pulse control device comprises a fuse set for selectively outputting a delay increase signal and a delay decrease signal that have a different state based on a cutting or non-cutting state of a fuse on which information on a change of process is programmed, and a pulse generator provided with a plurality of delay cells with predetermined time delay for selectively increasing or decreasing the number of the plurality of delay cells depending on the delay increase signal and the delay decrease signal to generate an internal clock with a pulse width corresponding to the number of the increased or decreased delay cells.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 24, 2009
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Kyoung-Nam Kim, Tae-Yun Kim
  • Patent number: 7372310
    Abstract: Digital delay-locked loops (DLLs) and methods are provided for signal frequency multiplication. Analog delay elements of typical frequency-multiplying DLLs are replaced with digital and digitally-controlled elements including a variable delay line. The number of unit delay elements in the delay line can be selected to produce a desired output signal delay. Phase-mixing of multiple variable delay line outputs achieves finer delay-time adjustments.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: May 13, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Seong-Hoon Lee
  • Patent number: 7332950
    Abstract: A memory device, delay lock loop circuit (DLL) and DLL reset circuitry are described. The DLL includes a shift register and a measured delay for pre-loading the shift register. The reset circuitry selectively filters a clock signal propagation through the measured delay during a reset operation.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Greg A. Blodgett
  • Patent number: 7123104
    Abstract: The present invention is directed to a system and method for measuring a current in an integrated circuit comprising measuring a first output count from a first voltage controlled oscillator (VCO) using a first measurement voltage, simultaneously measuring a second output count from a second VCO using a second measurement voltage, and calculating the current in the integrated circuit using a voltage proportional to a difference between the first and second output counts.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: October 17, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Christopher J. Bostak, Samuel D. Naffziger, Christopher A. Poirier, Eric S. Fetzer
  • Patent number: 7054205
    Abstract: A circuit and method is provided for determining the delay of an integrated circuit common associated with chip-to-chip variations in the manufacturing process, changes in operating voltage, and fluctuations in temperature. A clock signal is inverted, thus generating an inverted clock signal which is then delayed multiple times, resulting in several delayed versions of the inverted clock signal, with each version being delayed a different length of time. The logical state of each delayed version of the inverted clock signal is then stored. That stored logical state provides an indication as to the magnitude of the delay of the integrated circuit which may then be used to tune critical signals of the integrated circuit to avoid timing problems resulting from variations in IC propagation delay.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: May 30, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Douglas C. Buhler, John Howard Cook, III
  • Patent number: 6982579
    Abstract: Digital delay-locked loops (DLLs) and methods are provided for signal frequency multiplication. Analog delay elements of typical frequency-multiplying DLLs are replaced with digital and digitally-controlled elements including a variable delay line. The number of unit delay elements in the delay line can be selected to produce a desired output signal delay. Phase-mixing of multiple variable delay line outputs achieves finer delay-time adjustments.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: January 3, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Seong-hoon Lee
  • Patent number: 6542099
    Abstract: A method of equalizing total signal delay across a digital to analog interface includes constructing a plurality of unit digital to analog converter cells each having a clock input and a data input and an analog output; constructing an analog output network for summing the analog outputs for delivery to a termination which in combination with the analog output network defines a first predetermined time delay between the unit cells; constructing a clock input distribution network for propagating a clock input to each of the unit cells tapped along the clock input distribution network; and connecting a second termination to the clock input distribution network for establishing the clock input distribution network as a transmission line and defining in combination with the clock input distribution network a second predetermined time interval delay between the clock input to the unit cells equal to the first predetermined in the interval delay for synchronizing the propagation of the clock inputs propagating alon
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: April 1, 2003
    Assignee: Analog Devices, Inc.
    Inventors: William G. J. Schofield, Douglas A. Mercer
  • Patent number: 6529571
    Abstract: An apparatus for and method of generating a signal for equalizing propagation delay among parts of a transceiver are disclosed. The parts each have a plurality of channels, and each channel is configured to receive the signal. The apparatus includes a master circuit and a dummy channel circuit. The master circuit is configured to receive and lock to a reference clock signal, and in accordance therewith generate a reference delay signal and an adjusted clock signal. The dummy channel circuit is configured to receive the adjusted clock signal, the reference delay signal and a dummy data signal, and in accordance therewith generate an intermediate data signal, the dummy data signal and one or more control signals. The control signals correspond to a delay between the adjusted clock signal and the intermediate data signal. In this manner a uniform delay may be provided to all parts and channels.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: March 4, 2003
    Assignee: National Semiconductor Corporation
    Inventor: Brian C. Gaudet
  • Patent number: 6512420
    Abstract: A variable frequency oscillator provides an output frequency that is adjustable by selectively combining different delay signals from separate signal paths. The present invention's oscillator includes first and second differential signal paths, each exhibiting a different time delay or “phase.” Each signal path includes a series coupling of multiple delay elements, where each delay element comprises a single differential amplifier transistor pair. Each signal path's delay is established by setting the biasing and geometry of the signal paths' differential amplifier transistor pairs. A combiner, separately coupled to each signal path, selectively combines signals from the paths to provide a representative output. This output is also fed back as input to both signal paths. As an example, the combiner may be provided by two non-nested differential amplifier transistor pairs.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: January 28, 2003
    Assignee: Applied Mirco Circuits Corporation
    Inventors: Mehmet M Eker, Thomas Bryan
  • Patent number: 6501316
    Abstract: A clock control circuit for reducing jitter has at least one averaging circuit for generating, and outputting from an output terminal, a signal having a time difference obtained by internally dividing a time difference between first and second signals input respectively from first and second input terminals. First and second clock signals are supplied respectively to the first and second input terminals of the timing averaging circuit, and a clock in which a time difference between pulses of the first and second clock signals is averaged is generated.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: December 31, 2002
    Assignee: NEC Corporation
    Inventor: Takanori Saeki
  • Patent number: 6388486
    Abstract: The slew rate of a digital logic output signal delivered from an output pad of an integrated circuit is controlled relative to a load connected to the output pad. At least two pluralities of trigger signals at sequentially spaced time intervals are generated, and the time intervals between the first and second trigger signals or the temporal occurrence of the first and second trigger signals in relation to the load connected to the output pad is selected to change the slew rate of the output signal. The timing of the plurality of trigger signals is established in relation to an input signal to which the driver circuit responds and in relation to the change in the output signal with time as influenced by the load connected to the output pad.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: May 14, 2002
    Assignee: LSI Logic Corporation
    Inventor: Richard T. Schultz
  • Patent number: 6278311
    Abstract: A method for minimizing instantaneous currents ina signal bus is disclosed. The method involves providing a programmable delay element in each of the signal buffers driving the signal on the bus. The programmable delay element in each signal buffer is selectable enabled to include a predetermined time delay. The method involves programming the delay elements in a selected group of the signal buffers t includde the predetermined time delay, so that the selected group of signal buffers each generate an output signal switching after the predetermined delay relative to the switching of output signals generated by other signal buffers.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: August 21, 2001
    Assignee: Lattice Semiconductor Corporation
    Inventors: Albert Chan, Ju Shen, Cyrus Y. Tsui, Rafael C. Camarota
  • Patent number: 6127872
    Abstract: A delay circuit is constituted by connecting a plurality of delay elements in series, each delay element is constituted by a pMOS transistor P1 and a nMOS transistor N1 having a larger driving capability than P1 and by a nMOS transistor N2 and a pMOS transistor P2 having a larger driving capability than N2, an input signal is applied to the gate of the transistor P1, a precharge signal is applied to the gate of the transistor N1, an inverted signal of the precharge signal is applied to the gate of the transistor P2, the gate of the transistor N2 is connected to an intermediate node A, an input signal S.sub.IN is input to each delay element as the precharge signal, and when the input signal S.sub.IN is at a high level, the node A is in the state of a low level and the output terminal OUT is in the state of a high level, the falling edge of the input signal S.sub.IN is sequentially propagated by delay elements, and thus a delay signal is obtained.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: October 3, 2000
    Assignee: Sony Corporation
    Inventor: Ichiro Kumata
  • Patent number: 6060939
    Abstract: An apparatus and method for delaying a signal using a variable delay line circuit. A variable delay line circuit includes first and second delay lines, each including a plurality of delay elements. A multiplexer is coupled to respective outputs of the first and second delay lines and selectively couples the output of one of the first or second delay lines to an output of the multiplexer. A control circuit is coupled to the multiplexer and the first and second delay lines, and controls the multiplexer so as to produce a delayed signal at the multiplexer output using one of the first or second delay lines, and changes a delay factor of the other one of the first or second delay lines by varying a resistance and a current of one or more delay elements of the other one of the first or second delay lines.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: May 9, 2000
    Assignee: International Business Machines Corporation
    Inventors: Dana Marie Woeste, James David Strom
  • Patent number: 6040724
    Abstract: A bus driver circuit for high speed data transmission includes a plurality of delay blocks connected in series one to another which varies a rise and fall time of an input signal in order to shape an output waveform. Each block includes one or more delay elements for providing a predetermined delay period. A selector input is provided for each delay block such that one or more of the predetermined delay periods can be selected. Hence, the rise and fall time of the input signal can be varied depending upon which block or combination of blocks have been selected to shape the resultant waveform. An output circuit is also included which superimposes the input signal on the resultant output waveform.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: March 21, 2000
    Assignee: NEC Corporation
    Inventor: Hiroshi Kamiya
  • Patent number: 5727021
    Abstract: A printed circuit board tester that compensates for the different propagation length of each channel including a single-input delay cell, at least one multiple-input delay cell, and a multiplexor. The delay cells are connected to one another in a chain. Further, the single-input delay cell is the first delay cell in the chain, and each multiple-input delay cell has the ability to select one of its inputs. A timing signal is applied to each delay cell, and to the multiplexor. The inputs of the multiple-input delay cells are connected to the output of the single-input delay cell, and to the outputs of any preceding multiple-input delay cells in the chain. The single-input delay cell delays the timing signal. Each multiple-input delay cell is programmed by the tester to select one of its inputs; it then delays the selected input. Finally, the multiplexor is programmed by the tester to select either the timing signal or one of the outputs of the delay cells.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: March 10, 1998
    Assignee: Teradyne, Inc.
    Inventor: Eric L. Truebenbach
  • Patent number: 5596296
    Abstract: A clock driver circuit comprises a first driver including first and second inverters cascaded between an input terminal and a first output terminal for outputting a non-inverted signal delayed from the clock signal applied to the input terminal by a delay amount corresponding to two stages of inverters. The clock driver circuit also comprises and a second driver including third, fourth and fifth inverters cascaded between the input terminal and a second output terminal and a sixth inverter connected between the input terminal and the second output terminal. With this arrangement, a first signal delayed from the clock signal applied to the input terminal by a first delay amount corresponding to the third, fourth and fifth inverters, is synthesized by a wired-OR at the second output terminal with a second signal delayed from the clock signal applied to the input terminal by a second delay amount corresponding to the sixth inverter.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: January 21, 1997
    Assignee: NEC Corporation
    Inventor: Hiroshi Asazawa
  • Patent number: 5594391
    Abstract: A VCO includes an oscillator and a controller for controlling the operation of the oscillator. The oscillator is formed by connecting odd number of stages of delay circuits in a ring form. The controller creates a second control voltage based on an input first control voltage. The second control voltage is set in a symmetrical relation to the first control voltage with respect to an intermediate potential between the power supply and the ground set as a reference. Each of the delay circuits includes an inverter, first and second current control circuits, and first and second current value setting circuits. The inverter includes a first transistor of first conductivity type and a second transistor of second conductivity type to receive and output a signal. The first current control circuit is connected between the first transistor and the ground, for controlling a current flowing in the first transistor when the first transistor is set in the conductive state according to the first control voltage.
    Type: Grant
    Filed: April 19, 1994
    Date of Patent: January 14, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akihiko Yoshizawa
  • Patent number: 5530400
    Abstract: Circuits embodying the invention include means for sensing certain characteristics (e.g. speed of response and conductivity) of the transistors formed on an integrated circuit (IC) and for using the sensed results to control the operation and structure of a circuit formed on the IC. An output driver circuit embodying the invention includes numerous pull-up transistors connected in parallel between a high power supply line and an output terminal and numerous pull-down transistors connected in parallel between the output terminal and the low power supply line. The number of transistors which are turned-on at any one time is selectively controlled as a function of the characteristics (e.g. conductivity and speed of response) of the transistors of the circuit. The higher the speed of response or the conductivity of the transistors, the fewer the number of pull-up or pull-down transistors which are turned-on.
    Type: Grant
    Filed: December 21, 1993
    Date of Patent: June 25, 1996
    Assignee: General Instruments Corp.
    Inventor: Chinh L. Hoang
  • Patent number: 5497263
    Abstract: A variable delay circuit including delay devices each having a plurality of delay units connected successively, only some of the delay units of the delay devices being connected to a signal transmission line, wherein a delay time is controlled by activating or inactivating the plurality of delay units according to control signals applied to control input terminals provided respectively for said plurality of delay units.
    Type: Grant
    Filed: September 7, 1993
    Date of Patent: March 5, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Noboru Masuda, Kazumichi Yamamoto, Kazunori Nakajima, Toshihiro Okabe, Akira Yamagiwa, Mikio Yamagishi, Kazuo Koide, Bunichi Fujita, Seiichi Kawashima
  • Patent number: 5485114
    Abstract: A semiconductor integrated circuit detecting a change in the internal propagation delay and self-compensating such a change. A combination of semiconductor integrated circuits can self-compensate a change in the total propagation delay of the circuit. There is provided a ring oscillator composed of dummy device elements separate from an actually-used logic circuit portion. The oscillating pulses of the ring oscillator are counted relative to a reference pulse signal. The semiconductor integrated circuit has a delay time compensation control circuit block which generates control data used to compensate the change in the propagation delay based on the difference between the first-counted value and a subsequently counted value. In a combination of semiconductor integrated circuits, the delay time compensation control circuit block may be provided for each channel. Alternatively, the delay time compensation control circuit block may be provided for common use by many channels.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: January 16, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Teruhiko Funakura, Naomi Higashino
  • Patent number: 5465062
    Abstract: A transition detection circuit is provided comprising input means receiving the signal to be monitored for generating a first pulse having a first predetermined pulsewidth when a transition occurs in the signal being monitored; and output means responsive to the first pulse from the input means for generating a second pulse having a second predetermined pulsewidth which is less than the first predetermined pulsewidth. The present invention permits a large number of signals to be monitored for transition yet provide a highly precise output pulsewidth, all with a minimum of circuitry. Preferably the input means include a plurality of input channels, each channel being assigned to a different signal being monitored and each channel providing the first predetermined pulsewidth using simple, non-precision time delay circuits. The output state employs a single, high precision time delay circuit to provide the second predetermined pulsewidth.
    Type: Grant
    Filed: February 3, 1994
    Date of Patent: November 7, 1995
    Assignee: Rohm Corporation
    Inventor: Vincent L. Fong
  • Patent number: 5463343
    Abstract: The delay device 10 includes an ECL gate 11, the current source 16 and two resistive load elements 14, 15 of which are associated with an adjusting circuit 23 producing an adjusting voltage Vd, to cause the polarization current of the current source to vary hyperbolically, and a voltage Vh for keeping constant the voltage at the collectors of the transistors 12 and 13 of the gate 11. The delay device 10 causes the delays between the input signals IN, IN* and output signals OUT, OUT* to vary linearly. The invention is applicable in particular to systems for the transmission of digital data at a very high rate, of more than 1 gigabit per second, for example.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: October 31, 1995
    Assignee: Bull, S.A.
    Inventor: Roland Marbot
  • Patent number: 5452324
    Abstract: An improved data sampling system for sampling data transmission in a computer system includes a reference clock, a delay locked loop circuit, a packet enable circuit, a delayed selector control circuit, a sample selector, and a sample circuit. The devices may be constructed on a single semiconductor substrate and may be connected to a bus structure having a microcomputer and a plurality of boards coupled to it. The delay locked loop circuit generates accurate delayed clock signals based on the reference clock. A positive edge synchronizer circuit, within the delay locked loop, serves as a programmable phase adjust for the sampling system. The positive edge synchronizer ensures proper phase relationship between the chosen delayed clock signal and the incoming data across semiconductor process variations. Packet enable circuit informs the delayed control circuit and the sample circuit when a start bit or stop bit is initiated in a data packet and enables those circuit blocks accordingly.
    Type: Grant
    Filed: September 23, 1992
    Date of Patent: September 19, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Clarence Lewis, Khodor Elnashar, Jay T. Cantrell
  • Patent number: 5436573
    Abstract: A semiconductor integrated circuit device has a first wire for transmitting a first signal and a second wire adjacent to the first wire, for transmitting a second signal having the stronger probability of having an opposite phase to that of the first signal. A space between the first and second wires is wider than a standard wiring space, to reduce a delay in the operation speed of the device due to wiring capacitance produced between the first and second wires.
    Type: Grant
    Filed: August 31, 1993
    Date of Patent: July 25, 1995
    Assignee: Fujitsu Limited
    Inventors: Rokutarou Ogawa, Taichi Saitoh, Tosiaki Sakai
  • Patent number: 5434525
    Abstract: A variable delay line having a string of "slow" logic inverters and an equal number of "fast" inverters with inputs connected to corresponding "slow" inverter inputs. Transmission gates, coupling the "fast" inverter outputs to corresponding "slow" inverter outputs, vary the amount of current from the "fast" inverters added to the output current of the corresponding "slow" inverters. Maximum delay occurs when substantially no current from the "fast" inverter is added to the "slow" inverter output current and minimum delay occurs when substantially all the current from the "fast" inverter is added to the "slow" inverter output current. The variable delay line may be configured into a variable frequency ring oscillator, useful in phase-locked-loops or the like.
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: July 18, 1995
    Assignee: AT&T Corp.
    Inventor: Robert H. Leonowich
  • Patent number: RE40053
    Abstract: A delay circuit includes a delay part delaying a signal by a delay time which can be varied based on a control current, and a control current adjustment circuit adjusting the control current so that the delay time changes linearly based on a variation in a resistance value.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: February 12, 2008
    Assignee: Fujitsu Limited
    Inventor: Satoshi Eto