With Logic Or Bistable Circuit Patents (Class 327/43)
  • Patent number: 10033352
    Abstract: A phase shifter, which carries out a ninety-degree phase shift of a sinusoidal input signal having an input frequency, at the same input frequency, envisages: a continuous-time all-pass filter stage, which receives the sinusoidal input signal and generates an output signal phase-shifted by 90° at a phase-shift frequency that is a function of a RC time constant of the all-pass filter stage; and a calibration stage, which is coupled to the all-pass filter stage and generates a calibration signal for the all-pass filter stage, such that the phase-shift frequency is equal to the input frequency of the sinusoidal input signal, irrespective of variations of the value of the input frequency and/or of the RC time constant with respect to a nominal value.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 24, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Germano Nicollini, Roberto Modaffari, Marco Garbarino, Federico Guanziroli
  • Patent number: 10031176
    Abstract: A circuit device includes a detection circuit to which first and second detection signals forming differential signals are input from a physical quantity transducer and a diagnosis circuit. The detection circuit includes first and second charge/voltage conversion circuits. The diagnosis circuit includes a first capacitor which is provided between a first node and a first input node to which the first detection signal is input and a second capacitor which is provided between the first node and a second input node to which the second detection signal is input and has a different capacitor value from the first capacitor. In a diagnosis mode, a diagnosis signal is input to the first node.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: July 24, 2018
    Assignee: Seiko Epson Corporation
    Inventor: Takashi Aoyama
  • Patent number: 9444523
    Abstract: A system for sensing proximity using EHF signals may include a communication circuit configured to transmit via a transducer an EM signal at an EHF frequency, and a proximity sensing circuit configured to sense a nearby transducer field-modifying object by detecting characteristics of a signal within the communication circuit. A system for determining distance using EHF signals may include a detecting circuit coupled to a transmitting communication circuit and a receiving communication circuit, both communication circuits being mounted on a first surface. The transmitting communication circuit may transmit a signal toward a second surface, and the receiving communication circuit may receive a signal relayed from the second surface. The detecting circuit may determine distance between the first surface and a second surface based on propagation characteristics of the signals.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 13, 2016
    Assignee: Keyssa, Inc.
    Inventors: Gary Davis McCormack, Ian A. Kyles
  • Patent number: 9274151
    Abstract: A frequency comparator outputs an input reference signal and a comparison target signal as pulse-form signals, and is charged or discharged with a voltage corresponding to the reference signal to output a reference voltage having a variable first frequency range, and charged or discharged with a voltage corresponding to the comparison target signal to output a comparison target voltage having a variable second frequency range. The frequency comparator compares the reference voltage having the first frequency range and the comparison output voltage having the second frequency range.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 1, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hui Dong Lee, Jae Ho Jung
  • Patent number: 9136826
    Abstract: Embodiments of an integrated circuit (IC) comprising frequency change detection circuitry are described. Some embodiments include first circuitry to generate a second clock signal based on a first clock signal, wherein the first clock signal has a first clock frequency, and wherein the second clock signal has a second clock frequency that is an integral multiple of the first clock frequency. The embodiments further include second circuitry to obtain samples by oversampling the first clock signal using the second clock signal. Additionally, the embodiments include third circuitry to detect a change in the first clock frequency based on the samples.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 15, 2015
    Assignee: RAMBUS INC.
    Inventors: Kambiz Kaviani, Kashinath Prabhu, Brian Hing-Kit Tsang, Jared L. Zerbe
  • Patent number: 8823564
    Abstract: A sampling circuit includes a continuous section which is a circuit for transmitting a continuous signal; a digital section for transmitting a signal which is sampled and quantized; and a sampling and holding section for transmitting a signal which is sampled but not quantized between the continuous section and the digital section. The sampling and holding section includes capacitors for accumulating charge generated by an input signal and plural switches for accumulating the charge in the capacitors. The plural switches receive plural clock signals having different operation timings and perform an ON/OFF operation in response to the supplied clock signals.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: September 2, 2014
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Junya Nakanishi, Yutaka Nakanishi
  • Patent number: 8717067
    Abstract: Methods and apparatus are provided for counter-based digital frequency lock detection. A counter-based digital frequency lock detector in accordance with the present invention comprises a reference counter clocked by a reference clock and a target counter clocked by a target clock. The target counter is n bits and n is less than a number of bits of the reference counter. A frequency offset violation of the target clock is detected by comparing a value of the target counter to an n bit counter.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 6, 2014
    Assignee: Agere Systems LLC
    Inventor: Xingdong Dai
  • Patent number: 8664978
    Abstract: A time to current conversion apparatus and methods. An impedance having an input for selectively receiving a time varying periodic signal or a known voltage signal is provided; and a current output is coupled to the impedance. By observing the average current through the impedance for the known voltage signal over a time period, and by observing the average current through the impedance for a time varying periodic signal, the duty cycle of the time varying periodic signal may be determined by evaluating a ratio of a first average current observed at the current output while the time varying periodic signal is coupled to the impedance to a second average current observed at the current output while the known voltage signal is coupled to the impedance. An embodiment time to current converter circuit is disclosed. Method embodiments for determining the duty cycle of a time varying periodic signal are provided.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Lu, Chung-Chieh Yang, Chin-Hua Wen, Chih-Chiang Chang
  • Patent number: 8487659
    Abstract: An adaptive delay device that provides a delay to a signal based on circuit conditions such as temperature, supply voltage values and/or fabrication processes. The adaptive delay device may respond to circuit conditions by charging a capacitive device to a threshold voltage. A comparator may incorporate the adaptive delay device to provide adaptive timing for the comparator functions thereby attaining improved noise performance and/or reduce power consumption.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: July 16, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Ronald Kapusta
  • Publication number: 20130049810
    Abstract: A time to current conversion apparatus and methods. An impedance having an input for selectively receiving a time varying periodic signal or a known voltage signal is provided; and a current output is coupled to the impedance. By observing the average current through the impedance for the known voltage signal over a time period, and by observing the average current through the impedance for a time varying periodic signal, the duty cycle of the time varying periodic signal may be determined by evaluating a ratio of a first average current observed at the current output while the time varying periodic signal is coupled to the impedance to a second average current observed at the current output while the known voltage signal is coupled to the impedance. An embodiment time to current converter circuit is disclosed. Method embodiments for determining the duty cycle of a time varying periodic signal are provided.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Lu, Chung-Chieh Yang, Chin-Hua Wen, Chih-Chiang Chang
  • Patent number: 8354867
    Abstract: The present invention relates to a PLL circuit and an associated method that allows the PLL circuit to operate at a higher operating frequency with a wider bandwidth and a better out-band noise suppression. The PLL circuit comprises a delay locked loop (DLL), a phase-frequency detector (PFD), a loop filter, a voltage controlled oscillator (VCO) and a frequency divider.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: January 15, 2013
    Assignee: National Taiwan University
    Inventors: Shey-Shi Lu, Hsien-Ku Chen
  • Patent number: 8169236
    Abstract: A frequency detection mechanism for a clock generation unit on an integrated circuit includes a clock generation unit and a detection unit. The clock generation unit may generate an output clock signal at a predetermined frequency that corresponds to a frequency multiple of a reference clock signal provided as an input to the clock generation unit. The detection unit may determine whether the output clock signal is at the predetermined frequency. As such, the detection unit includes a first counter that may generate a first count value based upon the reference clock signal and a second counter that may generate a second count value based upon the output clock signal. The detection unit also includes comparison logic that may perform a plurality of multiplication operations on the first and second count values and generate a final result that indicates whether the output clock signal is at the predetermined frequency.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 1, 2012
    Assignee: Apple Inc.
    Inventor: Daniel C. Murray
  • Patent number: 8154321
    Abstract: A time-differential analog comparator is disclosed. An example apparatus according to aspects of the present invention includes a source of a variable frequency signal having a frequency responsive to an analog input. A counting circuit is coupled to count cycles of the variable frequency signal. The counting circuit is coupled to count in a first direction for a first time interval and is coupled to count in a second direction opposite to the first direction for a second time interval that occurs after an end of the first time interval. An evaluation circuit is coupled to the counting circuit. The evaluation circuit is responsive to the count of the cycles of the variable frequency signal after an end of the second time interval.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 10, 2012
    Assignee: Power Integrations, Inc.
    Inventor: William M. Polivka
  • Patent number: 8125250
    Abstract: A frequency detection mechanism for a clock generation unit on an integrated circuit includes a clock generation unit and a detection unit. The clock generation unit may generate an output clock signal at a predetermined frequency that corresponds to a frequency multiple of a reference clock signal provided as an input to the clock generation unit. The detection unit may determine whether the output clock signal is at the predetermined frequency. As such, the detection unit includes a first counter that may generate a first count value based upon the reference clock signal and a second counter that may generate a second count value based upon the output clock signal. The detection unit also includes comparison logic that may perform a plurality of multiplication operations on the first and second count values and generate a final result that indicates whether the output clock signal is at the predetermined frequency.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: February 28, 2012
    Assignee: Apple Inc.
    Inventor: Daniel C. Murray
  • Patent number: 8040156
    Abstract: Provided are a lock detection circuit and a lock detecting method. The lock detection circuit includes two delay devices, four flip-flops and two logic gates, and can accurately detect a lock state of a phase locked loop (PLL) circuit. Therefore, the lock detection circuit can be implemented in a simple structure, and as a result, the lock detection circuit can be compact in size and can consume less electric power. Also, the lock detecting method enables lock detection process to be simpler, so that a lock state can be detected within a short time period.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: October 18, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hui Dong Lee, Kwi Dong Kim, Jong Kee Kwon
  • Patent number: 7965108
    Abstract: A frequency synthesizer. The frequency synthesizer comprises a harmonic locked phase/frequency detector, a low pass filter, a voltage controlled oscillator, and a frequency divider. The harmonic locked phase/frequency detector receives a reference signal and a divided signal. The low pass filter is coupled to the harmonic locked phase/frequency detector. The voltage controlled oscillator is coupled to the low pass filter and provides an output signal. The frequency divider is coupled between the voltage controlled oscillator and the harmonic locked phase/frequency detector. Frequency of the divided signal is a harmonic frequency of the reference signal.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: June 21, 2011
    Assignees: MediaTek Inc., National Taiwan University
    Inventors: Shen-Iuan Liu, Chih-Hung Lee
  • Patent number: 7786763
    Abstract: A clock circuit includes a phase-lock loop for generating an output clock signal based on a data signal and a harmonic frequency detector for detecting whether the frequency of the output clock signal is a harmonic frequency of a frequency of a reference clock signal. The harmonic frequency detector includes a counter for generating a first divided clock signal by dividing the frequency of the output clock signal by a first divisor. Additionally, the harmonic frequency detector includes a counter for generating a second divided clock signal by dividing the frequency of the reference clock signal by a second divisor. The harmonic frequency detector also includes a frequency comparator for generating an output indicating whether the frequency of the output clock signal is a harmonic frequency of the frequency of the reference clock signal based on the first divided clock signal and the second divided clock signal.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 31, 2010
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jagdeep Bal, Tao Jing
  • Patent number: 7785284
    Abstract: The joint (36) comprises a tubular body (37) having two connecting zones (38, 39) each connected by an end to a tubular element (40) of a fluid transport line, giving continuity to passage of fluid. The tubular body is made of a mixture of an electrically-conductive material such as PVC, with carbon black to give it electrical conductivity. The joint has an internal surface (41) which is destined to come into contact with the transported fluid, and an external surface which is destined to have a grounded galvanic contact. The joint is inserted in the discharge fluid drainage line of a dialyzer filter, in an apparatus for intensive treatment of acute renal insufficiency, for eliminating ECG artefacts due to functioning of peristaltic pumps in the apparatus.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: August 31, 2010
    Assignee: Gambro Lundia AB
    Inventors: Vincenzo Baraldi, Annalisa Delnevo, Gianfranco Marchesi, Andrea Ligabue, Massimo Zaccarelli
  • Patent number: 7764088
    Abstract: A frequency detection circuit and a detection method thereof suitable for a clock data recovery (CDR) circuit are provided. The frequency detection circuit includes a phase detector, a first delayer, a frequency detector, and a logic circuit. The phase detector samples a data signal according to a first clock signal provided by the CDR circuit and provides a phase instruction signal according to the sampling. The first delayer delays the first clock signal to obtain a second clock signal. The frequency detector samples the data signal according to the second clock signal and provides a frequency instruction signal according to the sampling. The logic circuit generates a clock instruction signal according to the phase instruction signal and the frequency instruction signal. The CDR circuit adjusts the frequency of the first clock signal according to the status of the clock instruction signal.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: July 27, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Kuan-Yu Chen, Wen-Ching Hsiung, Cheng-Tao Chang, Chia-Liang Lai
  • Patent number: 7750683
    Abstract: PFD includes UP and DOWN signal modules, and RESET signal module. UP and DOWN signal modules transmit UP and DOWN signals according to reference and fed-back clock signals. RESET module includes UP-RESET and DOWN-RESET signal modules. UP-RESET signal module resets UP signal module according to pre-trigger fed-back signal, UP and DOWN signals. Pre-trigger fed-back signal is generated according to original fed-back clock signal and calculation of logic gates and inverting delay module. DOWN-RESET signal module resets DOWN signal module according to pre-trigger reference signal, UP and DOWN signals. Pre-trigger reference signal is generated according to original reference clock signal and calculation of logic gates and inverting delay module.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: July 6, 2010
    Assignee: Etron Technology, Inc.
    Inventors: Hsien-Sheng Huang, Feng-Chia Chang
  • Patent number: 7719331
    Abstract: Disclosed is a PLL circuit including a phase frequency detector (PFD) for comparing phase and frequency between an input signal and an output signal, a charge pump circuit for charging a capacitor when an up-signal from the PFD is activated, discharging the capacitor when a down-signal is activated, and for outputting the terminal voltage of the capacitor as a control voltage, and a VCO for outputting an output signal of a frequency in accordance with the control voltage. An output of the VCO is fed back as an output signal to the PFD as input. The PFD includes a delay adjustment circuit for exercising control for resetting the up-signal and the down-signal with a preset delay as from a time point both up-signal and the down-signal have been activated. There is also provided a comparator amplifier circuit for comparing a reference voltage, corresponding to a control voltage when both up-signal and down-signal are activated, to supply first and second control signals to the delay adjustment circuit.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: May 18, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Shotaro Kobayashi
  • Publication number: 20100097102
    Abstract: A semiconductor integrated circuit includes a clock generator for generating a second clock signal having a frequency that varies over time by using a first clock signal having a fixed frequency, a test circuit for generating a digital signal according to a difference between a first frequency corresponding to the first clock signal and a second frequency corresponding to the second clock signal by a digital logic operation based on the first clock signal and the second clock signal, and a signal path for outputting the digital signal generated by the test circuit.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 22, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Shunichiro MASAKI
  • Patent number: 7692501
    Abstract: A stream of data may flow over a fiber or other medium without any accompanying clock signal. The receiving device may then be required to process this data synchronously. Embodiments describe clock and data recovery (CDR) circuits which may sample a data signal at a plurality of sampling points to partition a clock cycle into four phase regions P1, P2, P3, and P4 which may be represented on a phase plane being divided into four quadrants. A relative phase between a data signal transition edge and a clock phase may be represented by a phasor on the phase plane. The clock phase and frequency may be adjusted by determining the instantaneous location of the phasor and the direction of phasor rotation in the phase plane.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: April 6, 2010
    Inventors: Yu-Li Hsueh, Miaobin Gao, Chien-Chang Liu
  • Patent number: 7613254
    Abstract: A phase detector that compares the phases of data and four-phase first to fourth clocks having a half rate of the data and being 90° out of phase with one another. Exemplary embodiments of the phase detector include first to fourth sampling circuits that sample the data by the four-phase first to fourth clocks; a first comparator that compares sampling data obtained by sampling according to the adjacent two-phase first and second clocks using the first and second sampling circuits, respectively, and when the sampling data is different, outputs a first up signal; and a second comparator that compares sampling data obtained by sampling according to the adjacent two-phase fourth and first clocks using the fourth and first sampling circuits, respectively, and when the sampling data is different, outputs a first down signal.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: November 3, 2009
    Assignee: Kawasaki Microelectronics, Inc.
    Inventor: Ryuichi Moriizumi
  • Patent number: 7388408
    Abstract: A phase-frequency detector generates output signals at a first and a second output end based on input signals received at a first and a second input end. The phase-frequency detector includes two latch circuits, two pulse generators, two inverting circuits, two sensing devices, and a reset control circuit. The sensing devices control the pulse generators based on signals received at corresponding first ends of the sensing devices. The inverting circuits generate signals to the first and second output ends of the phase-frequency detector based on signals received at corresponding first ends of the inverting circuits. The reset control circuit generates reset signals based on signals received at the first and second output ends of the phase-frequency detector.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: June 17, 2008
    Assignee: VIA Technologies Inc.
    Inventors: Sen-You Liu, Pi-An Wu
  • Publication number: 20080122491
    Abstract: The present invention discloses a frequency comparator for comparing frequencies of a first signal and a second signal. The frequency comparator includes: a frequency detecting circuit for generating a reference signal according to the first signal and an input voltage; a frequency generator for generating the second signal according to the input voltage; a charge pump circuit for enabling a charging current according to either the reference signal or the second signal to increase an voltage level, and for enabling a discharging current according to the other signal to decrease the voltage level; and a decision logic coupled to the charge pump circuit for indicating a frequency relation between frequencies of the first signal and the second signal according to the voltage level.
    Type: Application
    Filed: December 3, 2006
    Publication date: May 29, 2008
    Inventor: Chien-Wei Kuan
  • Patent number: 7378880
    Abstract: A frequency comparator comparing frequencies of a first clock signal and a reference clock signal. The frequency comparator includes a phase-frequency detector and a comparison module. The phase-frequency detector receives the first clock signal and the reference clock signal, and outputs an up clock signal and a down clock signal. The pulse-width difference between the up clock signal and the down clock signal corresponds to the phase difference between the first clock signal and the reference clock signal. The comparison module compares the frequencies of the first clock signal and the reference clock signal based on how many times the pulse width of the up clock signal is larger or shorter than that of the down clock signal in a predetermined period.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: May 27, 2008
    Assignee: Faraday Technology Corp.
    Inventors: Song-Rong Han, Yuh-Kuang Tseng
  • Patent number: 7049852
    Abstract: A phase-locked loop circuit has a fractional-frequency-interval phase frequency detector, a charge pump, an oscillator, and a divider. The fractional-frequency-interval phase frequency detector has a phase frequency detector unit that is utilized as or comprises a plurality of phase frequency detector units. The divider is responsive to the oscillator and provides divider values for dividing an oscillator frequency by the divider values to provide a feedback frequency of a feedback loop signal of the phase-locked loop circuit. A reference input frequency is input as a first input into the phase frequency detector unit. The feedback frequency is input and selectively delayed as second inputs into the phase frequency detector unit so that the second inputs are aligned for input according to the reference input frequency and an oscillator frequency is, in effect, responsive to the phase frequency detector units and allowed to be divided by a fractional-integer divider value.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 23, 2006
    Inventor: John L. Melanson
  • Patent number: 7015727
    Abstract: A PLL lock generator using one circuit (lock detection block) to indicate whether an output clock signal is locked to an input reference signal, and another circuit to determine whether the signals are out-of-lock. A lock generation blocks examines several indications of lock detection before generating a lock signal. Short term fluctuations (such as jitter) in lock and out-of-lock indications may be ignored. An embodiment of lock detection block contains a first flip-flop latching an up signal and clocked by a down signal, and a second flip-flip latching the down signal and clocked by an up signal. The up and down signals may be generated by a phase frequency detector. An examination circuit examines the output of lock detection block to generate the lock indications.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 21, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Suresh Balasubramanian
  • Patent number: 6982592
    Abstract: A frequency discriminators (FD) and frequency modulation (FM) demodulators, utilizing single sideband (SSB) complex conversion directly to zero IF, suitable for direct demodulation at high frequencies of analog FM or digital FSK modulated signals, as well as for high speed frequency discrimination (or frequency comparison) in applications such as frequency acquisition in frequency synthesizers. The complex SSB down-converter consists of a quad of mixers and quadrature splitters in both the signal path and local oscillator (LO) path. Each mixer receives both the signal and the LO, each either in-phase or quadrature. The outputs of mixers are combined in pairs, to produce the SSB in-phase (I) baseband signal and the SSB quadrature (Q) baseband signal. Both I and Q signals are then delayed, each multiplied by un-delayed version of the other one. The multiplication products are summed together, to produce an FD error signal, or an FM demodulated signal at the output.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: January 3, 2006
    Assignee: Broadband Innovations, Inc.
    Inventors: Branislav A. Petrovic, Maxim Ashkenasi
  • Patent number: 6960960
    Abstract: A reference clock signal or a clock signal delayed in phase from the clock signal by ?/2 is input to D input terminal of a flip-flop circuit. An FSM receives signals input to the flip-flop circuits and signals which have been held by the flip-flop circuits, and outputs an up signal and a down signal. The flip-flop circuits and the FSM operate in synchronization only with a rising edge of a data signal.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 1, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Masahiko Ishiwaki
  • Patent number: 6859107
    Abstract: A frequency comparator apparatus used with a reference clock, a voltage controlled oscillator circuit and a phase locked loop circuit includes a reference loop circuit wherein the reference loop circuit is activated when the frequency difference between the reference clock and the voltage controlled oscillator circuit is greater than about a first threshold. Also included is a data loop circuit wherein the data loop circuit is activated when the frequency difference between the reference clock and the voltage controlled oscillator circuit is less than about a second threshold.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: February 22, 2005
    Assignee: Silicon Image, Inc.
    Inventors: Yongsam Moon, Gijung Ahn, Deog-Kyoon Jeong
  • Patent number: 6847255
    Abstract: A frequency discriminators (FD) and frequency modulation (FM) demodulators, utilizing single sideband (SSB) complex conversion directly to zero IF, suitable for direct demodulation at high frequencies of analog FM or digital FSK modulated signals, as well as for high speed frequency discrimination (or frequency comparison) in applications such as frequency acquisition in frequency synthesizers. The complex SSB down-converter consists of a quad of mixers and quadrature splitters in both the signal path and local oscillator (LO) path. Each mixer receives both the signal and the LO, each either in-phase or quadrature. The outputs of mixers are combined in pairs, to produce the SSB in-phase (I) baseband signal and the SSB quadrature (Q) baseband signal. Both I and Q signals are then delayed, each multiplied by un-delayed version of the other one. The multiplication products are summed together, to produce an FD error signal, or an FM demodulated signal at the output.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: January 25, 2005
    Assignee: Broadband Innovations, Inc.
    Inventors: Branislav A. Petrovic, Maxim Ashkenasi
  • Patent number: 6834093
    Abstract: A frequency comparator circuit is configured to compare whether the frequency of two input signals are within a tolerance of each other. The frequency comparator circuit includes two counter circuits, an AND gate, and a frequency detector circuit that is configured to provide two reset signals. The two counter circuits are arranged to be clocked by a respective one of the two input signals, and further arranged to be reset by a respective one of the two reset signals. Further, the AND gate is arranged to perform an AND function on the overflow outputs of the first and second counter circuits to provide an status signal. If the status signal is high, the difference in frequency between the two input signals is less than the tolerance. If the status signal is low, the difference in frequency between the two input signals exceeds the tolerance.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: December 21, 2004
    Assignee: National Semiconductor Corporation
    Inventor: Hon K. Chiu
  • Patent number: 6707319
    Abstract: A frequency comparator detects the phase of a data signal DATA by using four-phase clocks ICLK, /ICLK, QCLK and /QCLK as a reference and detects a change in the phase. A counting processing unit counts a period in which a control signal UP2 or DN2 is activated within a predetermined period, and outputs an overflow detection signal LOL2 if the frequency is high. A hysteresis generating unit changes a signal LOL to the L level only after signal LOL goes low X times consecutively. On the other hand, after signal LOL is set to the L level once, the hysteresis generating unit changes signal LOL to the H level only after signal LOL2 goes high X times consecutively. With such a configuration, a phase-locked state detecting circuit with reduced malfunction even when a data signal having larger jitter is input can be provided.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: March 16, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tsutomu Yoshimura
  • Patent number: 6650146
    Abstract: A digital frequency comparator includes two double-edge triggered flip-flops and a combination logic. Each of the double-edge triggered flip-flops includes two D-type flip-flops and two multiplexers. The first D-type flip-flop receives a first reference clock pulse and is triggered by a data signal. The second D-type flip-flop receives the first reference clock pulse and is triggered by the reverse of the data signal. The first multiplexer provides the output of the first D-type flip-flop when the data signal is 1 and the output of the second D-type flip-flop when the data signal is 0. The second multiplexer provides the output of the first D-type flip-flop when the data signal is 0 and the output of the second D-type flip-flop when the data signal is 1. The combination logic enables an UP pulse when the data signal transmission clock is faster in frequency than the first reference clock signal.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: November 18, 2003
    Assignee: Silicon Integrated Systems Corporation
    Inventors: Yin-shang Liu, Kuo-sheng Huang, Hung-chih Liu
  • Patent number: 6621307
    Abstract: A method and circuit for determining variation between an input clock signal (CLK0) and a reference clock signal (REFCLK) is provided. A plurality of time shifted input clock signals (CLK0, CLK1, . . . , CLK09) can be generated from a single input clock signal (CLK0). The plurality of time shifted input clock signals (CLK0, CLK1, . . . , CLK09) can be sampled at successive periodic intervals occurring relative to the reference clock signal (REFCLK). For each of the time shifted input clock signals (CLK0, CLK1, . . . , CLK09), a sampled value for a succeeding and a preceding periodic interval can be compared to determine whether there is a variation between an input clock signal (CLK0) and a reference clock signal (REFCLK).
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: September 16, 2003
    Assignee: Xilinx, Inc.
    Inventors: Ahmed Younis, Michael A. Nix
  • Patent number: 6617904
    Abstract: An electronic circuit has a clock input for receiving an input clock signal. A clock processing circuit derives derived clock signals from the input clock signal, for example by frequency dividing the input clock signal. A dual edge triggered sampling circuit samples the derived clock signals at both rising and falling edges of the input clock signal. The sampled clocks are thus synchronized and are used to control operation of processing circuitry.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: September 9, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Patrik Schwarz, Stefan Studerus
  • Patent number: 6577694
    Abstract: A phase detector for a clock and data recovery circuit from random non-return-to zero (NRZ) data signal includes a plurality (e.g., preferably three) edge-triggered flip-flops. The incoming NRZ data are sampled by a pair of edge-triggered flip-flops using the transition of the clock generated by the clock recovery circuit. A third edge-triggered flip-flop processes the outputs from the edge-triggered flip-flop pair to indicate whether the generated clock leads or lags the received data.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: June 10, 2003
    Assignee: International Business Machines Corporation
    Inventor: Mounir Meghelli
  • Patent number: 6559683
    Abstract: A bi-directional high-voltage RESURF EDMOS (REduced SURface Extended Drain MOS) transistor which can endure a high voltage at its source by providing drift regions at both sides, i.e., the source and drain of the conventional RESURF LDMOS (Lateral DMOS) transistor, and exchanging the drain and the source when an analog signal of high voltage is inputted. Further, the bi-directional high-voltage RESURF EDMOS transistor provides a high-voltage analog multiplexer circuit employing a RESURF EDMOS transistor which is capable of reducing the number of necessary high-voltage elements and performing a stable operation, by constructing a high-voltage analog multiplexer having at least three inputs and a multistage high-voltage multiplexer circuit of push-pull type, pass transistor type, and combined form of push-pull type and pass transistor type by using the bi-directional high-voltage, RESURF EDMOS transistor.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: May 6, 2003
    Assignee: Hyundai Electronics Industries, Co., Ltd.
    Inventors: Oh-Kyong Kwon, Koan-Yel Jeong
  • Publication number: 20020175714
    Abstract: A process of making a laser diode device includes these steps: applying a bonding layer such as molybdenum manganese to surfaces of first and second bodies of dielectric material such as beryllium oxide; joining the first and second bodies together to form a cavity; and bonding a sectored conductor ring to the bonding layer within the cavity.
    Type: Application
    Filed: May 23, 2001
    Publication date: November 28, 2002
    Inventor: Timothy L. Irwin
  • Patent number: 6448820
    Abstract: A phase frequency detector (PFD) circuit (516) compares two clock signals and generates a number of outputs to indicate a phase difference between these two clock signals (513, 519). The phase frequency detector has more than three states. The PFD circuit may be used in phase locked loop (PLL) or delay locked loop (DLL) circuit in order to maintain or lock a phase relationship between the two clock signals. The PFD circuitry will allow for a fast lock acquisition time, even when there is a relatively wide frequency range between the two clock signals.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: September 10, 2002
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Joseph Huang, Bonnie I. Wang, Khai Nguyen, Wayne Yeung, In Whan Kim
  • Patent number: 6407642
    Abstract: A three-state phase detector, including two latches and one NAND gate, is provided with two additional latches. To detect a phase difference between first and second input clock signals R and V, the phase detector alternates among three states responsive to a rising edge of the input R or V signal. Each of the two additional latches and an associated latch in the phase detector together constitute one shift register. When the phase detector gets back to its neutral state, the NAND gate generates a reset signal, thereby resetting all of these four latches. Two isolated pulse generators are further provided. Each of the pulse generators makes the pulse width of a frequency difference pulse signal, output from associated one of the additional latches, constant and then outputs the pulse signal with the constant width.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: June 18, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shiro Dosho, Naoshi Yanagisawa, Masaomi Toyama
  • Patent number: 6404291
    Abstract: A method and an apparatus relating to a PLL circuit for frequency synthesizer applications. By using a composite PFD large and small phase variations between a reference signal and the divider output are compensated for. The composite phase frequency detector (PFD) has both a digital phase frequency detector (digital PFD) and an analog phase detector (analog PD) with the digital PFD compensating for large phase differences and the analog PD compensating for smaller phase differences. The PLL automatically chooses between these two components in the composite PFD by controlling the pulse width of the divider output. This is accomplished by synchronizing the dead zone of the digital PFD with the active pulse width of the divider output and by similarly synchronizing the phase detector window of the analog PD to be within both the dead zone of the digital PFD and the active pulse width of the divider output.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: June 11, 2002
    Assignee: Philsar Semiconductor Inc.
    Inventor: Thomas A. D. Riley
  • Patent number: 6392495
    Abstract: A frequency detector embodying the invention includes circuitry for comparing first (e.g., a reference) and second (e.g., a recovery clock) signals having first and second frequencies, respectively, and for producing an output signal having: (a) a first condition characterized as a “dead zone” when their frequency difference is within a predetermined frequency range; (b) a second condition when the frequency of the first signal is greater than that of the second signal by the predetermined range; and (c) a third condition when the frequency of the second signal is greater than that of the first by the predetermined range. Frequency detectors embodying the invention are suitable for use in frequency tuning systems.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: May 21, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventor: Patrik Larsson
  • Patent number: 6278134
    Abstract: A bi-directional semiconductor light source is formed that provides emission in response to either a positive or negative bias voltage. In a preferred embodiment with an asymmetric injector region in a cascade structure, the device will emit at a first wavelength (&lgr;−) under a negative bias and a second wavelength (&lgr;+) under a positive bias. In other embodiments, the utilization of an asymmetric injector region can be used to provide a light source with two different power levels, or operating voltages, as a function of the bias polarity.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: August 21, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: Federico Capasso, Alfred Yi Cho, Claire F. Gmachl, Albert Lee Hutchinson, Deborah Lee Sivco, Alessandro Tredicucci
  • Publication number: 20010007436
    Abstract: A three-state phase detector, including two latches and one NAND gate, is provided with two additional latches. To detect a phase difference between first and second input clock signals R and V, the phase detector alternates among three states responsive to a rising edge of the input R or V signal. Each of the two additional latches and an associated latch in the phase detector together constitute one shift register. When the phase detector gets back to its neutral state, the NAND gate generates a reset signal, thereby resetting all of these four latches. Two isolated pulse generators are further provided. Each of the pulse generators makes the pulse width of a frequency difference pulse signal, output from associated one of the additional latches, constant and then outputs the pulse signal with the constant width.
    Type: Application
    Filed: January 3, 2001
    Publication date: July 12, 2001
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shiro Dosho, Naoshi Yanagisawa, Masaomi Toyama
  • Patent number: 6198355
    Abstract: There is disclosed a phase detector which triggers on both rising and falling edges of an input pulse signal. This effectively doubles the frequency of the input signal. When the phase detector is used in a phase locked loop, the doubled frequency means that a lower division ratio can be used, thereby reducing any noise contribution introduced thereby.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: March 6, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Björn Lindquist, Magnus Nilsson
  • Patent number: 6177813
    Abstract: An improved low frequency detection circuit is disclosed. The low frequency detection circuit employs as an internal clock signal of the system the negative delay signal CK1 generated in accordance with the negative delay signal generator when the externally applied clock signal is in high frequency, and the externally applied clock signal can be employed as an internal clock signal of the system when it is in low frequency, thereby simplifying and miniaturizing a required circuit. The circuit includes a negative delay signal generator for receiving an input signal and outputting a negative delay signal and a plurality of low frequency detection signals, a low frequency detector for receiving the plurality of low frequency detection signals and outputting a flag signal, and a signal selector for outputting one selected from the input signal and the negative delay signal in accordance with the flag signal.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: January 23, 2001
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventor: Ju Han Kim
  • Patent number: 6114880
    Abstract: An over frequency detection circuit which is based on the concept of a critical path in a design to protect an IC chip from running at a rate which will produce unpredictable results. The over frequency detection circuit will compare the output of a critical path generation circuit with that of a known path generation circuit. The known path generation circuit must have a delay which is guaranteed to be much shorter than the delay of the critical path generation circuit. If the output of the critical path generation circuit is not the same as the output of the known path generation circuit, then the critical path generation circuit has begun to fail and the IC chip should be disabled.
    Type: Grant
    Filed: March 14, 1997
    Date of Patent: September 5, 2000
    Assignee: Philips Semiconductor VLSI, Inc.
    Inventors: Mark Leonard Buer, Bing Yup