Input Signal Applied Directly To Local Oscillator Patents (Class 329/324)
  • Patent number: 11342903
    Abstract: A bandpass filter configured to receive a temporally modulated periodic input signal Vin(t), and to deliver an output signal Vout(t), and includes, in combination: a phase comparator configured to receive, on a first input, the temporally modulated periodic input signal Vin(t) as first signal, and to generate an output signal with a variable duty cycle; coupled to an injection-locked oscillator configured to receive as input, the output signal from the phase comparator, and to generate a signal Vr(t) that is phase-offset with respect to the output signal from the phase comparator; the phase-offset signal being applied to a second input of the phase comparator as second input signal; and the output signal from the phase comparator being the output signal Vout(t) from the bandpass filter and being representative of the phase difference between the two input signals Vin(t) and Vr(t).
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 24, 2022
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Nicolas Goux, Franck Badets
  • Patent number: 10439444
    Abstract: A method for wireless energy transfer includes forming a plurality of energy beams. Each energy beam includes one or more electromagnetic (EM) waves having a same fundamental frequency as another EM wave of another one of the energy beams. A device response of an energizable device to the plurality of energy beams incident thereon is tracked. The one or more EM waves for each of the plurality of energy beams is directed to power the energizable device. A respective phase of the one or more EM waves for at least one of the energy beams is aligned to another phase of another EM wave of another one of the energy beams. A received power level received by the energizable device is maximized according to the device response by optimizing for at least one of the energy beams, the directing, and the aligning of the phase, of the one or more EM waves.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 8, 2019
    Assignee: Teslonix Inc.
    Inventors: James Stuart Wight, Rony Everildo Amaya, Cezary Paul Slaby
  • Patent number: 9444433
    Abstract: A novel and useful wideband FM demodulator operating across an 8 GHz IF bandwidth for application in low-power, wideband heterodyne receivers. The demodulator includes an n-stage ring oscillator that is injection locked to a wideband input signal. Locking to the input frequency, it divides the FM deviation by n, thereby facilitating as well as reducing the energy required for wideband demodulation. The quadrature-phased output of the ring oscillator is phase correlated using a low-power folded CMOS mixer capable of detecting FM up to 400 Mb/s over a 2-10 GHz IF frequency range.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: September 13, 2016
    Assignee: Technische Universiteit Delft
    Inventors: Akshay Visweswaran, John Robert Long, Robert Bogdan Staszewski
  • Publication number: 20140355720
    Abstract: A novel and useful wideband FM demodulator operating across an 8 GHz IF bandwidth for application in low-power, wideband heterodyne receivers. The demodulator includes an n-stage ring oscillator that is injection locked to a wideband input signal. Locking to the input frequency, it divides the FM deviation by n, thereby facilitating as well as reducing the energy required for wideband demodulation. The quadrature-phased output of the ring oscillator is auto correlated using a low-power folded CMOS mixer capable of detecting FM up to 400 Mb/s over a 2-10 GHz IF frequency range.
    Type: Application
    Filed: April 8, 2014
    Publication date: December 4, 2014
    Applicant: Technische Universiteit Delft
    Inventors: Akshay Visweswaran, John Robert Long, Robert Bogdan Staszewski
  • Patent number: 8310303
    Abstract: Disclosed herein is a demodulator, including: a frequency synchronization section adapted to synchronize a frequency of a local oscillation signal to be produced on the demodulator side with a local oscillation frequency of a modulation signal transmitting from a modulator side; a demodulation signal production section adapted to produce a demodulation signal based on the local oscillation signal synchronized by the frequency synchronization section and the modulation signal transmitted from the modulator; and a direct current correction section adapted to detect a direct current voltage of the demodulation signal from the demodulation signal produced by the demodulation signal production section and correct the direct current voltage of the demodulation signal so that the direct current voltage becomes equal to a reference voltage set in advance.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 13, 2012
    Assignee: Sony Corporation
    Inventor: Kenji Komori
  • Patent number: 8306067
    Abstract: The invention discloses a dual frequency multiplexer by which a first and second coaxial harmonic oscillator type band pass filters are disposed in a box. The box includes a base body, a cover plate and a cover body. The two coaxial harmonic oscillator type hand pass filters are located on the base body and spaced each other by a metal plate; the multiplexer port, first and second ports are positioned on lateral side of the base body. The blocking capacitors are contained in the coaxial chamber of the two coaxial harmonic oscillator type band pass filters. The cover plate is secured on the base body; the first and second direct current circuits are placed on the cover plate; the low pass filters of the first and second direct current circuits are fixed on an edge of a top surface of the coaxial chamber by means of a support member; the cover body and the base body are fastened with each other. The blocking capacitors each are of distributed parameter capacitor.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: November 6, 2012
    Assignee: Comba Telecom System (China) Ltd.
    Inventors: Yingjie Di, Tao He, Bin He, Mengmeng Shu, Jingmin Huang
  • Patent number: 8170151
    Abstract: A receiver includes a band-pass filter that limits a passband of an IF (Intermediate Frequency) signal, an FSK detector that detects the IF signal passing through the band-pass filter to generate a detection signal, and a control block that controls a modulation sensitivity of the FSK detector and a pass bandwidth of the band-pass filter, in which the control block controls the modulation sensitivity of the FSK detector according to the pass bandwidth of the band-pass filter.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: May 1, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Shigeya Suzuki
  • Patent number: 8077818
    Abstract: A radio receiver including a reception processing system that uses discrete-time frequency conversion to acquire a signal having a sampling rate corresponding to a local frequency, wherein the reception characteristic is improved when the reception processing system is applied to a system having a wide reception channel band. The radio receiver comprises an A/D converting part that quantizes a discrete-time analog signal to a digital value to output a received digital signal; a channel selection filtering part that uses a tap coefficient value to perform a digital filtering process of the received digital signal; and a frequency response characteristic correcting part that generates the tap coefficient in accordance with the sampling rate.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Katsuaki Abe, Akihiko Matsuoka, Kentaro Miyano
  • Patent number: 7623570
    Abstract: There is provided a multi sub-carrier communication system for providing improved performance of a frequency equalizer and a method thereof. The multi sub-carrier communication system includes a frequency equalization coefficient (vector) calculation unit that receives an equalized signal outputted from a frequency equalizer and periodically calculates a new frequency equalizer coefficient (vector) which is used to update the frequency equalizer coefficient (vector) used by the frequency equalizer. The multi sub-carrier communication system periodically updates the frequency equalization coefficient (vector) (after an initialization interval for initially estimating a channel characteristic) by periodically calculating the frequency equalization coefficient (vector) during a data receiving interval and thus, it is possible to dynamically adapt to changes of the channel characteristic over the passage of time, thereby improving performance of the frequency equalizer.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: November 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jun-Young Jeong
  • Patent number: 7593491
    Abstract: The present invention is a quadrature multi-mode RF receiver that uses a single quadrature mixer for tuning to desired frequency bands. In a direct conversion mode of operation, the RF receiver down converts a received RF signal directly into a baseband signal. In a VLIF mode of operation, the RF receiver down converts a received RF signal into a VLIF signal. When receiving a wanted RF signal, the frequency of the resulting VLIF signal is called the wanted VLIF frequency, and is based on the signal strength of the received RF signal. In one embodiment of the present invention, the wanted VLIF frequency is selected to be one of two VLIF frequencies. The wanted VLIF frequency is inversely related to the signal strength of the received RF signal.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: September 22, 2009
    Assignee: RF Micro Devices, Inc.
    Inventors: Nadim Khlat, Marcus Granger-Jones, Mark Alexander John Moffat
  • Patent number: 7557647
    Abstract: An electronic receiver for decoding data encoded into electromagnetic radiation (e.g., light) is described. The light is received at an ultra-small resonant structure. The resonant structure generates an electric field in response to the incident light and light received from a local oscillator. An electron beam passing near the resonant structure is altered on at least one characteristic as a result of the electric field. Data is encoded into the light by a characteristic that is seen in the electric field during resonance and therefore in the electron beam as it passes the electric field. Alterations in the electron beam are thus correlated to data values encoded into the light.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: July 7, 2009
    Assignee: Virgin Islands Microsystems, Inc.
    Inventors: Jonathan Gorrell, Mark Davidson
  • Patent number: 7535976
    Abstract: A receiver to process a RF input signal having a plurality of channels includes a direct down conversion circuit, a demodulation circuit, and a local oscillator circuit. The direct down conversion circuit provides a downconverted signal based on the RF input signal and a local oscillator signal. The demodulation circuit receives the downconverted signal and provides a demodulated signal. The local oscillator circuit sets a frequency of the local oscillator signal based on a selected channel of the plurality of channels.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 19, 2009
    Assignee: Broadcom Corporation
    Inventors: Steven Jaffee, Donald McMullin, Ramon Gomez
  • Patent number: 7394874
    Abstract: A multi-channel RF receiver uses an image rejection mixer (e.g. double quadrature mixer) in the IF down conversion stage for image side band rejection (whereby use of an IF narrow band filter for image rejection may be omitted if desired) and comprises a simplified frequency synthesizer which generates both a “wandering” IF oscillator frequency and an RF oscillator frequency for the up/down conversion stages (being, for down conversion, from RF to IF and from IF to base band. The IF used for a particular RF carrier (channel) is selected so as to be both an integer (N) sub-harmonic of that RF carrier and within the operating frequency band of the image rejection mixer. Advantageously, the synthesizer comprises only one loop and one VCO, wherein the IF oscillator signal is produced from the RF oscillator signal by means of a frequency divider.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: July 1, 2008
    Assignee: Zarbana Digital Fund LLC
    Inventors: Alexander Neil Birkett, James Stuart Wight
  • Patent number: 7194044
    Abstract: A multi-channel RF receiver uses an image rejection mixer (e.g. double quadrature mixer) in the IF down conversion stage for image side band rejection (whereby use of an IF narrow band filter for image rejection may be omitted if desired) and comprises a simplified frequency synthesizer which generates both a “wandering” IF oscillator frequency and an RF oscillator frequency for the up/down conversion stages (being, for down conversion, from RF to IF and from IF to base band. The IF used for a particular RF carrier (channel) is selected so as to be both an integer (N) sub-harmonic of that RF carrier and within the operating frequency band of the image rejection mixer. Advantageously, the synthesizer comprises only one loop and one VCO, wherein the IF oscillator signal is produced from the RF oscillator signal by means of a frequency divider.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: March 20, 2007
    Inventors: Alexander Neil Birkett, James Stuart Wight
  • Patent number: 7138857
    Abstract: A signal processing device includes a conversion device configured to output a differential current signal at two taps on the basis of an input signal and an oscillator signal. A respective controllable current source is coupled to one of the two taps. An amplification device having a current signal input has a first connection to the first tap and a second connection coupled to the second tap of the conversion device. The amplification device has two output taps; a first charge store is connected to a connection of the amplification device and to the second tap of the amplification device, and a first resistive load is connected in parallel with said first charge store. A second charge store is connected to the second connection of the amplification device and to the first tap of the amplification device, and a second resistive load is connected in parallel with said second charge store.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: November 21, 2006
    Assignee: Infineon Technologies AG
    Inventor: Werner Schelmbauer
  • Patent number: 6369647
    Abstract: A demodulator circuit (10) includes an oscillator (12) and an injection circuit (14). An Automatic Frequency Control (AFC) signal adjusts the tail current of a current source (28) provided in the oscillator (12) and the tail current of a current source (44) provided in the injection circuit (14). A phase detector (16) compares the phase of the signal generated by the oscillator (12) with the phase of the injected input signal. The phase detector (16) generates an output signal V0 having a value of zero when the input signal is in quadrature with the signal generated by the oscillator (12), but generates a non-zero signal that is used to adjust the AFC signal when the input signal and the signal generated by the oscillator (12) are not in quadrature.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: April 9, 2002
    Assignee: Motorola, Inc.
    Inventors: William Eric Main, Danielle L. Coffing, Klaas Wortel
  • Patent number: 6356599
    Abstract: An AFC (Automatic Frequency Control) device and a method of controlling reception frequency in a dual-mode terminal. When a dual-mode terminal uses one or two AFC devices, the time required for acquiring tracking synchronization in a PLL circuit for a first frequency can be reduced using a test augmentation frequency which is an integer multiple of a tracking synchronization acquiring residual frequency of a PLL circuit for a second frequency to which the first frequency transitions for reliable synchronization acquisition. Errors with respect to an output dynamic range caused by use of two AFCs are reduced and thus the demodulation performance of a receiver is ensured by varying quantization bits of an A/D clock based on the dynamic range of residual errors in a frequency area. The demodulation performance can also be ensured by operating an ACPE circuit for an AFC device having many residual frequency errors.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: March 12, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyun-Kyu Lee
  • Patent number: 6133802
    Abstract: A simple carrier recovery circuit capable of accurately detecting and synchronizing an incoming carrier frequency without the use of a phase locked loop (PLL) is provided. Instead of a PLL, the carrier recovery circuit includes an injection locked oscillator. The injection locked oscillator includes an input for connection to the received modulated signal. The gain of an inverter stage of a amplifier in the injection locked oscillator is modulated by the received modulated signal using an injection transistor connected between the power source and the output of the inverter stage. The gate of the injection transistor receives a signal corresponding to the received modulated signal.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: October 17, 2000
    Assignee: Lucent Technologies Inc.
    Inventor: Zhigang Ma
  • Patent number: 6035002
    Abstract: A digital super-regenerative receiver is provided having an analog RF detector and a regenerative oscillator. The output of the RF detector is used to generate a digital signal from which the oscillator bias is adjusted, in order to maintain the oscillator start-up time at a fixed level. The circuit senses if the start-up time is earlier or later than the predetermined start-up time and produces an output when the majority of the start times are ahead of the expected start time.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: March 7, 2000
    Assignee: The Chamberlain Group, Inc.
    Inventor: Fred Freybler Schleifer
  • Patent number: 5731745
    Abstract: The high frequency circuit includes an oscillator connected in a Colpitts configuration. Negative feedback to the oscillator is applied through an amplifier, both to stabilize the circuit and to permit frequency modulation of the carrier signal generated by the circuit. This feedback incorporates a capacitance to neutralize the Miller effect, thereby enabling it to operate at exceedingly high carrier frequencies. A variation of the circuit permits it to be simultaneously controlled by both a voltage and a current control signal. Also, by applying a frequency modulated carrier signal at a particular node of the oscillator, a demodulated output signal may be obtained.
    Type: Grant
    Filed: February 15, 1997
    Date of Patent: March 24, 1998
    Assignee: PSI Electronics, LLC
    Inventor: O. D. Parham
  • Patent number: 5650749
    Abstract: A demodulator circuit (100) and method for producing a demodulated signal V.sub.OUT from an input signal V.sub.IN. A frequency detection circuit (101) produces a quadrature signal V.sub.QUAD which is compared to the input signal V.sub.IN to produce a detected output signal. The phase and frequency of the quadrature signal V.sub.QUAD are responsive to a control signal I.sub.CONTROL. The demodulator circuit (100) has an output terminal (114) which provides the demodulated signal V.sub.OUT. Nonlinearity in the demodulated output signal V.sub.OUT in relation to a modulating signal is reduced by a linearizing feedback circuit (102). Automatic tuning is provided by a tuning feedback circuit (103). The output signals produced at the respective output terminals (114) and (113) of the linearizing feedback circuit (102) and tuning feedback circuit (103) are summed to produce the control current I.sub.CONTROL.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: July 22, 1997
    Assignee: Motorola, Inc.
    Inventor: William Eric Main
  • Patent number: 5239585
    Abstract: Generally, and in one form of the invention, a composite signal decoder (60) is disclosed which does not require synchronizing the sampling rate to the phase of the incoming pilot signal. Curve fitting filter (126) up-samples and interpolates the incoming composite signal (A) using a bank of coefficient filters selected from filter coefficient bank storage (122) by Bank Selector (124). Bank selector (124) operates in response to a phase offset value produced by phase calculator (112). Because curve fitting filter (126) need not be synchronous with the incoming pilot signal, the output sample rate can be asynchronous from the input sample rate. Other devices, systems and methods are also disclosed.
    Type: Grant
    Filed: July 30, 1991
    Date of Patent: August 24, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Randall C. Restle
  • Patent number: 4928068
    Abstract: An FM demodulator circuit uses an oscillator to provide a switch control signal synchronized to an FM signal, and a current supply to provide differentially alternating currents at first and second outputs flowing through a commutator circuit to the first and second outputs of the FM demodulator circuit. The commutator circuit is responsive to the switch control signal for alternately switching the first and second outputs of the current supply between the first and second outputs of the FM demodulator circuit thereby providing an alternating current flowing in the first and second outputs of the FM demodulator circuit which has an average value over each half cycle of the switch control signal proportional to the deviation of the frequency of the FM signal from the free-running frequency of the oscillator.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: May 22, 1990
    Assignee: Motorola Inc.
    Inventor: William E. Main