Parallel Wire Type Patents (Class 331/99)
  • Publication number: 20010026195
    Abstract: A negative resistance circuit having an output terminal is connected to a first terminal of a strip shaped resonator. Anode of a variable capacitance diode is connected to a second terminal of the strip shaped resonator via a capacitor 1′. Cathode of the variable capacitance diode is grounded. One terminal of a high impedance strip shaped line is connected to the anode of the variable capacitance diode. Other terminal of the strip shaped line is grounded via a capacitor 4. The capacitor 4 has sufficiently low impedance at an oscillation frequency.
    Type: Application
    Filed: March 23, 2001
    Publication date: October 4, 2001
    Applicant: FUJITSU QUANTUM DEVICES LIMITED
    Inventors: Tsuneo Tokumitsu, Osamu Baba
  • Publication number: 20010019293
    Abstract: In a microwave oscillation circuit using a dielectric resonator, a bias resistor for determining a bias voltage supplied to a base terminal of a transistor is located in the neighborhood of a connection point between a feedback circuit side stub for the dielectric resonator and the base terminal of the transistor. The bias resistor has a resistance which basically determines a bias voltage supplied to the base terminal of the transistor and which is enough to make high the impedance of a bias voltage supplying circuit including the bias resistor, viewed at the input terminal of the transistor. Thus, a stable oscillation can be maintained independently of variation in a load impedance.
    Type: Application
    Filed: March 2, 2001
    Publication date: September 6, 2001
    Inventors: Yasushi Kose, Akihiro Ogisou
  • Patent number: 6259332
    Abstract: A microwave oscillator is disclosed, that comprises an FET, a series feedback short-circuited stub connected to the source terminal of said FET, a transmission line and a capacitor connected in series to the gate terminal of said FET, a gate bias circuit connected to said transmission line through a resistor, a drain bias circuit connected to the drain terminal of said FET through said transmission line, and an output matching circuit, a resonating circuit, and a load resistor connected in series to said transmission line, wherein said output matching circuit is composed of a transmission line and a matching open stub, said resonating circuit being composed of a first open stub and a second open stub, the length of the first open stub being shorter than (2n−1)/4 (where n=1, 2, . . .
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: July 10, 2001
    Assignee: NEC Corporation
    Inventor: Kenichi Hosoya
  • Patent number: 6246295
    Abstract: A planar radiating oscillator apparatus for micro- and milliwaves includes a pair of conductor patches disposed with their pointed portions in proximity and their far edges on opposite sides, a high-frequency transistor disposed between and connected to the conductor patches, a conductor planar surface disposed under and parallel to the fan-shaped conductor patches from which it is separated by a distance equal to between one-fifteenth and one-fifth the generated wavelength therefrom, and at least one direct current power source connected to the conductor patches and having a ground potential in common with a source potential of the high-frequency transistor.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: June 12, 2001
    Assignees: Communications Research Laboratory, Ministry of Posts and Telecommunications
    Inventors: Toshiaki Matsui, Masami Murata
  • Patent number: 6175283
    Abstract: The invention relates to a microwave pulse generator for generating microwave pulses with a pulse duration in the nanosecond range. The microwave pulse generator includes a pulse generator for generating control pulses of a constant pulse duration and a microwave oscillator generating microwave oscillations. The microwave oscillator includes a transistor amplifier, to which a frequency-determining resonant circuit and an ohmic device for reducing the resonant Q-value are connected in such a way that a control pulse of the pulse generator applied to an input terminal of the transistor amplifier causes the microwave oscillator to produce a microwave oscillation that can be tapped at an output terminal of the microwave oscillator, wherein the microwave oscillation follows at least approximately the temporal course of the control pulse.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: January 16, 2001
    Assignee: Vega Grieshaber KG
    Inventors: Josef Fehrenbach, Gregor Storz, Daniel Schultheiss
  • Patent number: 6163688
    Abstract: An oscillator comprises a dielectric resonator, a circuit board, and an adjustment mechanism for adjusting the relative positional relationship between the dielectric resonator and the circuit board; the dielectric resonator having a dielectric substrate, electrodes provided on two opposite faces of the dielectric substrate, and electrode removal portions provided at predetermined positions on the electrodes; and the adjustment mechanism comprising screws and springs for moving the dielectric resonator.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: December 19, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasutaka Fujii, Koichi Sakamoto, Sadao Yamashita, Kenichi Iio, Takehisa Kajikawa
  • Patent number: 6124767
    Abstract: An RF/Microwave oscillator is disclosed that has the high-Q, low-loss, and phase noise performance of a DRO, without the need of a dielectric resonator to achieve such performance. The RF/Microwave oscillator includes a field effect transistor having a drain coupled to an output circuit, a source coupled to a series feedback circuit, and a gate coupled to a resonator circuit. Each of these circuits are comprised of cascaded pairs of coupled transmission lines designed to resonate at the operating frequency of the oscillator. The RF/Microwave oscillator may also include a frequency-adjustable bias circuit, a frequency-adjustable FET gate return, and a frequency tuning circuit.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: September 26, 2000
    Assignee: Delphi Components, Inc.
    Inventor: Donnie W. Woods
  • Patent number: 6114918
    Abstract: A low phase-noise device, like e.g. a microstrip-mounted voltage-controlled oscillator (VCO) is described, and also a method of reducing such a noise in such devices or other devices comprising a microstrip-mounted coaxial ceramic resonator. In practice, a recess is made in the metallic support, opening towards the substrate, extending beneath the terminal area of the ceramic resonator or, possibly, even beyond it. Said recess is filled with air and the layer of electrically conducting material between the substrate and the metallic support at said recess is removed.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: September 5, 2000
    Assignee: Alcatel
    Inventors: Marco Gris, Roberto Tosini, Graziano Vigano, Alberto Villa
  • Patent number: 6064276
    Abstract: An oscillator circuit comprising first and second mutually electromagnetically couplable resonant circuits, the second circuit comprising a dielectric element and excitation means operable to produce a first frequency of oscillation, the first circuit comprising the dielectric element, excitation means including a two-terminal Schottky device, preferably a Schottky diode, operable, responsive to an applied signal, to vary the resonant frequency of the first resonant circuit, and thereby vary the frequency of oscillation of the oscillator circuit.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: May 16, 2000
    Assignee: Microware Solutions Limited
    Inventors: John G. Hallatt, Ian R. Aldred
  • Patent number: 6060954
    Abstract: An oscillator device including at least an inductor, a resistor, a transistor and a capacitor is disclosed. The oscillator device further includes a first transmission layer for electrically connecting the capacitor, the resistor and the transistor; a second transmission layer for forming the inductor; two ground layers electrically connected to the first and the second transmission layers and interconnected for providing a standard potential level; and three isolation layers located between the transmission layers and the ground layers for isolating the transmission layers from the ground layers.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: May 9, 2000
    Assignee: Delta Electronic, Inc.
    Inventors: Chia-Wei Liu, Yu-Yuan Tsai
  • Patent number: 5982245
    Abstract: A radiating oscillator apparatus for micro- and millimeter waves includes paired fan-shaped conductor patches disposed with their pointed portions in proximity and their arcuate portions on opposite sides, at least one high-frequency transistor disposed between and connected to the fan-shaped conductor patches, a conductor planar surface disposed under and parallel to the fan-shaped conductor patches at an interval of between one-fifteenth and one-fifth the generated wavelength therefrom, and a pair of direct current power supplies connected to the fan-shaped conductor patches separately with a common ground potential.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: November 9, 1999
    Assignee: Communications Research Laboratory, Ministry of Posts and Telecommunications
    Inventors: Toshiaki Matsui, Masami Murata
  • Patent number: 5982244
    Abstract: A voltage controlled oscillator provides a trimming stub (3) for adjusting a free-running frequency in parallel to a microstrip line resonator (4). This arrangement makes it possible to easily perform fine adjustment of a free-running frequency used in the voltage controlled oscillator capable of supplying 2 GHz or higher oscillating frequency.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: November 9, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hirotaka Fujisaki
  • Patent number: 5942950
    Abstract: A low noise wide tuning bandwidth voltage controlled oscillator employs a resonator circuit formed from at least two microstrip lines which are electromagnetically coupled to one another. Each of the microstrip lines has one end electrically coupled to circuit ground to provide a substantially inductive resonator circuit which is substantially immune to parasitic end effects and radiation loses. The frequency of the voltage controlled oscillator circuit is controlled by a variable capacitance varactor circuit coupled to at least one of the microstrip transmission lines. The resonator circuit is well suited for use with a bipolar transistor configured as a negative resistance oscillator.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: August 24, 1999
    Assignee: AIL Systems, Inc.
    Inventor: Joseph Leonard Merenda
  • Patent number: 5929712
    Abstract: A phase locked loop includes a voltage controlled oscillator, a frequency divider for frequency-dividing an output from the voltage controlled oscillator, a phase comparator for comparing an output from the frequency divider with a phase of a reference signal, and a control circuit for controlling the oscillator frequency of the voltage controlled oscillator on the basis of an output from the phase comparator. The voltage controlled oscillator and the frequency divider are formed within a single integrated circuit chip, and the input terminal of the frequency divider is connected to a short stub having an open end connected to the voltage controlled oscillator.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: July 27, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuhiko Kuriyama
  • Patent number: 5852384
    Abstract: A dual band oscillator circuit according to the present invention comprises an oscillator circuit portion that oscillates at a first frequency, an oscillator circuit portion that oscillates at a second frequency, a buffer amplifier circuit portion to which an output of the first oscillator circuit portion is input through a first stage-to-stage coupling element and an output of the second oscillator circuit portion is input through a second stage-to-stage coupling element. Operation is switched between the first and second oscillator circuits by an externally applied control voltage signal.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: December 22, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Makoto Sakakura, Hisanaga Miyoshi, Kouji Hashimoto, Nobuo Fuse, Hiroaki Kosugi, Kaoru Ishida
  • Patent number: 5834981
    Abstract: A microwave source has an amplifying transistor capable of operating at microwave frequencies and a frequency selection circuit. The circuit has a whispering mode dielectric resonator and a feedback loop having a first microstrip line connected by an impedance adaptation circuit to a gate of said transistor and a second microstrip line connected by an impedance adaptation circuit to a drain of said transistor. The dielectric resonator is located between the first line and the second line for magnetic field coupling therewith.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: November 10, 1998
    Assignee: Matra Marconi Space France
    Inventors: Marc Trier, Aline Bazil
  • Patent number: 5821827
    Abstract: An oscillator circuit having a flip chip metalization pattern and base substrate metalization pattern is defined such that a common-drain oscillator is configured with the common drain interposed between the source and gate terminals, providing an effective RF common reference with reduced parasitic inductance elements which otherwise degrade oscillator power and phase noise at high frequencies. Multiple sets of such patterns on the substrate and such three-terminal devices on the flip chip are arranged such that conductor patterns on the substrate connecting separately from the gates and the sources of the multiple devices to the common-drain reference are easily configured into separable tuning (or resonator) and feedback circuits. A common-drain oscillator having an interdigitated capacitor coplanar cavity resonator circuit as the gate input circuit having reduced distributed inductance is realized utilizing the interposed common-drain connections provided thereby.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: October 13, 1998
    Assignee: Endgate Corporation
    Inventors: Clifford A. Mohwinkel, Edward B. Stoneham
  • Patent number: 5801590
    Abstract: An oscillator circuit including a metal plate secured to a dielectric substrate. A micro strip line is mounted on the dielectric substrate. One end of the micro strip line is connected to the gate terminal of a field effect transistor for microwave oscillation and the other end of the micro strip line is grounded to the metal plate via a terminal resistor. A dielectric resonator is secured with an ordinary adhesive to the inner wall of a shield case. Attaching the dielectric resonator to the shield case allows the degree of coupling, defined by the distance between the micro strip line and the dielectric resonator, to be freely set. A tuning screw is screwed through the metal plate and the dieletric substrate opposite to the dielectric resonator. The microwave oscillation circuit can be used with a down converter.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: September 1, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yukiro Kashima, Takayoshi Morino
  • Patent number: 5701104
    Abstract: In order to improve the phase noise and the temperature stability of a dielectric resonator oscillator, the cylindrical dielectric resonator which is important for the oscillation frequency is mounted on the substrate standing on its curved surface rather than lying on its end face, as conventionally customary. It is coupled to the RF lines in a higher mode (TM.sub.xxx mode) rather than in the fundamental mode (TE.sub.01.delta. mode).
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: December 23, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventor: Patric Heide
  • Patent number: 5652549
    Abstract: A monolithically integrated oscillator is implemented as ring oscillator with a line driver and a double line formed on one and the same chip. A running time of the double line is selected optimally long and a delay time of the line driver is selected optimally short. The double line can be loaded with controllable capacitors.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: July 29, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventors: Reinhold Unterricker, Bjoern Heppner
  • Patent number: 5617104
    Abstract: Three embodiments of a tunable ferroelectric transmitting system are included. Each embodiment includes a tunable oscillator and a tunable antenna. Two embodiments include a negative resistance diode, the frequency of oscillation being controlled by a single crystal tunable ferroelectric resonator. The third embodiment uses a transistor. The tunable antenna is made of a single crystal tunable ferroeletric resonator. All conducting depositions are made of films of a high Tc superconducting material.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: April 1, 1997
    Inventor: Satyendranath Das
  • Patent number: 5578969
    Abstract: A split dielectric resonator having two preferably half cylindrical dielectric elements is used to stabilize an oscillator operating at microwave frequencies. Fine tuning may be achieved by means of a tuning screw which has a thermal expansion coefficient between those of the dielectric elements and electrically conductive supporting walls. Additionally, fine tuning may be achieved by offsetting the two elements from each other within a horizontal or vertical plane. This oscillator can also be configured as an accelerometer or pressure or displacement sensor by substituting a movable deflecting member for the supporting wall.
    Type: Grant
    Filed: June 13, 1995
    Date of Patent: November 26, 1996
    Inventor: Aron Z. Kain
  • Patent number: 5561403
    Abstract: A printed circuit board includes an oscillator and a modulator. The oscillator includes a first printed inductor and a capacitive diode which are printed on one side of the printed circuit board. The modulator includes a second printed inductor coupled to the first printed inductor and printed on the same side of the printed circuit board as the oscillator. A conductive surface at a reference potential is arranged the other side of the printed circuit board and in the vicinity of the oscillator and the modulator and electrically coupled to the oscillator and the modulator using conductive through holes.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: October 1, 1996
    Assignee: Deutsche Thomson-Brandt GmbH
    Inventors: Bertram Fischer, Joachim Lange, Gerhard Maier
  • Patent number: 5512862
    Abstract: An oscillator (200) with improved sideband noise is disclosed. This improvement is accomplished without affecting the Q or the output power of the oscillator (200). The improvement is realized by increasing the rate of change of reactance over frequency. The increase in the rate of change is realized by placing two transmission lines (208, 210) in close proximity of each other. This increase assures oscillation while minimizing the sideband noise, and providing maximum bandwidth.
    Type: Grant
    Filed: January 23, 1995
    Date of Patent: April 30, 1996
    Assignee: Motorola, Inc.
    Inventors: Branko Avanic, Peter J. Yeh, Leng H. Ooi
  • Patent number: 5473287
    Abstract: An improved electronic oscillator of limited bandwidth for better phase noise and linearity characteristics, and method for production, where a transmission line of specific characteristics is introduced between major components of the frequency source to significantly improve phase noise and linearity, and minor adjustments to the L/C ratio of the transmission line during production testing further optimize phase noise and linearity without adverse effects on other circuit parameters. The improvement chiefly relates to the length, configuration and accessibility of a transmission line connecting a resonator and main tuning capacitor in a series resonant tank circuit of an oscillator.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: December 5, 1995
    Assignee: Micronetics, Inc.
    Inventors: David F. Robbins, Richard J. Landry
  • Patent number: 5446419
    Abstract: In a microwave oscillation apparatus including a negative resistance element, a microstrip line having a first end connected to the negative resistance element and a second end connected to a terminating resistor, and a dielectric resonator magnetically coupled to the microstrip line, a capacitive stub is provided on the microstrip line at a distance (1/4) .lambda..sub.s (2N-1) from the first end thereof, where .lambda..sub.s is a wavelength of a spurious oscillation frequency component and N is a positive integer.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: August 29, 1995
    Assignee: NEC Corporation
    Inventors: Tatsuya Miya, Kazuyoshi Uemura
  • Patent number: 5440276
    Abstract: A voltage controlled oscillating circuit is disclosed. The circuit includes: a .mu.-strip resonance circuit for deciding the resonance frequency in accordance with an external tuning voltage; an oscillation amplifying circuit for performing oscillations in accordance with the resonance frequency signals of the .mu.-strip resonance circuit; and a buffer amplifying circuit provided between the oscillating circuit and the load, and for preventing the load pulling phenomenon. The oscillation amplifying circuit forms a common collector oscillating circuit in with a single oscillation amplifying transistor, and the buffer amplifying circuit forms a single step amplifying circuit with a single buffer amplifying transistor. The oscillation amplifying transistor and the buffer amplifying transistor form a cascode amplifying transistor with a signal inducing coil and an RF choke coil for blocking the ac components and for forming a series of dc bias paths.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: August 8, 1995
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Jung H. Kim
  • Patent number: 5434542
    Abstract: A high-frequency oscillator is provided for a frequency range of 1.6 to 3 GHz. An oscillator stage includes an oscillator transistor and a voltage-controlled resonator unit. A buffer stage is connected at an output of the oscillator stage. The resonator unit includes an open resonator in the form of an etched structure with a wavelength which is shorter than lambda/4 (where lambda is an oscillator length). The resonator unit includes a voltage-controlled variable-capacitance diode, and a resonator terminal is connected between the voltage-controlled variable-capacitance diode of the resonator unit and the oscillator transistor of the oscillator stage. The resonator is preferably an open microstrip resonator, and the stages are disposed in a standardized housing in SMD (surface mounted device) technology.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: July 18, 1995
    Assignee: Siemens Aktiengesellschaft Oesterreich
    Inventors: Peter E. Veith, Janos Gila
  • Patent number: 5432482
    Abstract: An injection-locked variable-frequency high-power microwave frequency generator includes an injection source, a circulator, and an oscillator. The circulator includes an injection port to the injection source, an oscillator port to the oscillator, and a transmission port. The circulator directs the injection signal from the injection source into the oscillator and directs the oscillator output out the transmission port. The oscillator includes an IMPATT diode and a microstrip matching circuit. The matching circuit provides the sufficient conditions for broadband (9.1-9.5 GHz) oscillation of the diode. To this end, the matching circuit provides three resonators having three different but closely coupled resonant frequencies. The matching circuit also serves as a transformer, providing impedance matching to the circulator. A high-power output can be chirped or otherwise controlled by electronic control of the injection frequency.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: July 11, 1995
    Inventor: Michael J. Bailey
  • Patent number: 5345194
    Abstract: A FET comprising two or more gate pads or terminals, and a reflection type oscillator including the above-mentioned FET. In this oscillator, a dielectric resonator is connected through a coupling line to the first gate pad of the FET and an output terminal is connected to the second pad. When the drain pad of the FET is connected to ground, and a suitable value of capacitive reactance is added to the source pad, then a negative resistance -R appears on the first gate pad, and thus oscillation occurs at a resonance frequency fo of the dielectric resonator. If the load resistance value viewed from the second gate pad is set to R, the maximum oscillation output occurs.
    Type: Grant
    Filed: July 14, 1992
    Date of Patent: September 6, 1994
    Assignee: NEC Corporation
    Inventor: Isamu Nagasako
  • Patent number: 5341111
    Abstract: A microwave oscillator circuit is provided for decreasing the number of passive elements such as inductance, etc. in microwave oscillators and frequency doublers. A microwave oscillator circuit is connected to a resonator circuit generating a signal at a frequency f, and produces at its output a signal of frequency nf, and comprises a first field effect transistor having a gate connected to the resonator circuit, a second field effect transistor whose source/drain path is connected in series with the source/drain path of the first field effect transistor and a connecting circuit for coupling either the gate or source of the first field effect transistor to the gate of the second field effect transistor. A signal of frequency nf is output at a node corresponding to a connection point between the source of the first field effect transistor and the drain of the second field effect transistor.
    Type: Grant
    Filed: September 16, 1992
    Date of Patent: August 23, 1994
    Assignee: NEC Corporation
    Inventors: Tatsuya Miya, Kazuyoshi Uemura, Sadayoshi Yoshida
  • Patent number: 5339053
    Abstract: A microwave oscillator capable of being switched into or out of the oscillating state within a fraction of the period of oscillation. The instant-on microwave oscillator permits both the generation and modulation of a microwave signal by using a single active microwave semiconductor device which is a resonant tunneling diode. The instant-on microwave oscillator circuit includes a conductive transmission line having an impedance Z.sub.O with a corresponding ground plane; and a pair of output terminals connected one on each of the transmission line and the ground plane. An impedance Z.sub.L, having an impedance value which is less than ZO, is positioned across the output terminals. A pair of input terminals is connected at the opposite end of the transmission line, one on each of the transmission line and the ground plane with a resonant tunneling diode connected across the input terminals. An impedance Z is connected to the input terminal on the biased side of the transmission line.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: August 16, 1994
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Robert A. Lux, Thomas E. Koscica, James F. Harvey
  • Patent number: 5325401
    Abstract: L-band tuner stage is combined with a quadrature downconverter stage in a single shielded enclosure as an L-band-to-baseband PSK tuner suitable for receiving L-band signals from an LNB and converting the signals directly to signals in a desired digital format. The bandwidths within the two stages are optimized for digital PSK demodulation, and certain functions are shared, such as automatic gain control and carrier tracking information. Electronically switchable attenuators and voltage-variable gain controlled amplifiers, in connection with a low-phase-noise local oscillator employing a microstrip resonator, provide for over 70 dB of dynamic range. The IF frequency and bandwidth are selected so that voltage-variable tunable bandpass filters of conventional design may be used to obtain over 40 dB of radio frequency (RF) image rejection necessary for reception of PSK signals.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: June 28, 1994
    Assignee: Comstream Corporation
    Inventors: Gregory F. Halik, Stephen A. Blake, Itzhak Gurantz
  • Patent number: 5309119
    Abstract: An improved oscillating circuit for use in microwave frequency bands has reduced power loss and is made smaller in vertical size. The local oscillating circuit includes an MMIC oscillator which comprises a FET, and a resonator connected thereto so as to stabilize the oscillating frequency of the oscillator. The resonator is ring-shaped and arranged as close as several .mu.m to several tens of .mu.m to a predetermined position of a micro strip line forming a feedback loop connected to the FET forming the oscillator. Moreover, the resonator is a thin film formed by depositing a high-temperature superconducting material. As exemplary embodiments, YBCO, niobium and the like, can be used as high-temperature superconducting materials. Furthermore, a portion of the micro strip line, closest to the resonator, is concentrically disposed therewith to form a circular arc portion whose central angle is set at 90 degrees.
    Type: Grant
    Filed: July 14, 1992
    Date of Patent: May 3, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuo Shiga
  • Patent number: 5291153
    Abstract: An oscillating circuit includes a substrate, a FET formed on the substrate, a series feedback capacitor connected to the source of the FET, a microstrip line formed on the substrate and connected to the gate of the FET, and a dielectric resonator which is electromagnetically coupled to the microstrip line. The dielectric resonator is located near the microstrip line.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: March 1, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuo Shiga
  • Patent number: 5262736
    Abstract: In a voltage controlled oscillator, a dielectric resonator is mounted on a base of a conductive housing, and a dielectric substrate is secured to sidewalls of the housing in a position spaced from the dielectric resonator. A first stripline is secured to one surface of the substrate and electromagnetically coupled to the dielectric resonator, and an oscillating element is electrically connected to the first stripline. A second stripline is secured to the opposite surface of the substrate and capacitively coupled to the first stripline through the substrate. The second stripline is adapted to receive a frequency control voltage from an external circuit. A voltage-controlled variable capacitance element is secured to the substrate and electrically connected to the second stripline.
    Type: Grant
    Filed: March 23, 1992
    Date of Patent: November 16, 1993
    Assignee: NEC Corporation
    Inventor: Hideaki Watanabe
  • Patent number: 5248947
    Abstract: An oscillating apparatus comprising: an oscillator unit for oscillating in the microwave band; an output unit electromagnetically coupled to the outputting unit of the oscillator unit for taking an oscillation output outside; and an antenna element electromagnetically coupled to a part of the outputting unit, or a part of the output unit for radiating part of the oscillation output in an electromagnetic wave.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: September 28, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuo Shiga
  • Patent number: 5235293
    Abstract: A resonator (50) is connected in circuit with a negative resistance element (Q3,Q4) for producing oscillation at a resonant frequency of the resonator (50). A digital phase shifter (58) is incorporated into the resonant frequency in accordance with an applied digital signal. The resonator (50) can be connected in series with the negative resistance element (Q3), in which case the phase shifter (58) is connected as either a short-circuit or an open-circuit transmission line. Alternatively, the resonator (50) can be connected in parallel with the negative resistance element (Q4) in a feedback loop. An analog phase shifter (84) can also be provided in the resonator (50') for continuously variably setting the resonant frequency over the tuning increments of the digital phase shifter (58).
    Type: Grant
    Filed: June 30, 1992
    Date of Patent: August 10, 1993
    Assignee: Hughes Aircraft Company
    Inventor: Gregory S. Mendolia
  • Patent number: 5214395
    Abstract: An extremely high frequency parasitic signal suppression circuit for use in a local oscillator of an extremely high frequency radio or satellite communication system to eliminate parasitic signals included in a local oscillation signal. A first direct current cut-off device consisting of a microstrip line is connected between the output terminal of a phase-locked oscillator and the input of an amplifier, and to a first low pass filter to supply a direct current source for the amplifier. A second direct current cut-off device and second low pass filter are connected to the output terminal of the amplifier in the same manner as the input terminal.
    Type: Grant
    Filed: November 22, 1991
    Date of Patent: May 25, 1993
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ki-ho Yun
  • Patent number: 5187451
    Abstract: For minimization of a microstrip line and improvement of a Q value, the line length and width of the microstrip line are minimized, and the high frequency trend of the resulting resonant frequency is lowered and corrected to the resonant frequency near the oscillation frequency of an oscillator by connecting an additional capacitance component to the microstrip line. Thereby, the minimization of the microstrip line or the minimization of an oscillation circuit and characteristics equivalent to a dielectric coaxial resonator may be readily obtained. The strip line and the additional capacitance component are made as one piece circuit elements. The microstrip line is connected with a stub such that the stub may be trimmed to adjust the oscillation frequency. A cascode connecting amplifier which lessens the oscillation frequency fluctuation due to load variations is used.
    Type: Grant
    Filed: January 28, 1991
    Date of Patent: February 16, 1993
    Assignee: Kyocera Corporation
    Inventors: Yasuhiro Nakamoto, Hiroki Uemura
  • Patent number: 5187449
    Abstract: A structure for guiding millimeter wave radiation employs a resonant coplanar transmission line on a transparent substrate. A very short, picosecond, pulse is generated on the transmission line. By having the upper half plane air, the pulse will radiate into the substrate and be guided as millimeter wave from a distributed source and formed as a point source of radiation.
    Type: Grant
    Filed: February 6, 1992
    Date of Patent: February 16, 1993
    Assignee: IBM Corporation
    Inventor: Paul G. May
  • Patent number: 5180996
    Abstract: This invention relates to a high-frequency oscillator constituted by a signal generator for generating a high-frequency signal and a signal output circuit for outputting the generated high-frequency signal. The signal output circuit comprises a capacitor having one terminal to which the high-frequency signal output from the signal generator is applied, and a microstrip line having one terminal, which is connected to the other terminal of the capacitor, and the other terminal set at a reference potential. This signal output circuit can be miniaturized compared with those constituted only by microstrip lines such as conventional signal output circuits. By properly setting the capacitance of the capacitor and the size of the microstrip line, a filter function can also be imparted to the circuit.
    Type: Grant
    Filed: November 15, 1991
    Date of Patent: January 19, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuo Shiga
  • Patent number: 5164686
    Abstract: This invention is a high-frequency oscillator including a MESFET, wherein a GaAs MESFET, in which the doping profile of an active layer has a pulse-doped structure, is used as the MESFET. Since the GaAs MESFET is formed to have the pulse-doped structure, the change in transconductance with respect to the change in gate resistance remains constant at gate voltages within a predetermined range. When the gate voltage is set to be a voltage within this predetermined range, a capacitance change with respect to a gate voltage across a gate and a source is reduced. FM noise proportional to the magnitude of this capacitance change is reduced. Accurate information transmission is not interfered with unlike in conventional arrangements.
    Type: Grant
    Filed: November 15, 1991
    Date of Patent: November 17, 1992
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuo Shiga
  • Patent number: 5150080
    Abstract: An oscillator includes an amplifier having an input and an output and a feedback circuit disposed between the input and the output of the amplifier. The feedback circuit includes a plurality of resonators and a pair of switches. Each switch includes a first port and multiple connectable ports, the multiple connectable ports of each switch connected to a corresponding one of the plurality of resonators. The feedback circuit further includes a voltage-controlled phase shifter disposed in series with the switches. The oscillator further includes a discriminator circuit, responsive to signals from the feedback circuit, for providing a control signal to the voltage-controlled phase shifter for degenerating low frequency noise within the oscillator. With such an arrangement, high Q low noise resonators can be switched in and out of the circuit thus providing improved phase noise performance at high power levels with the desirable frequency agility required for a microwave oscillator.
    Type: Grant
    Filed: December 12, 1991
    Date of Patent: September 22, 1992
    Assignee: Raytheon Company
    Inventors: Michael J. Bianchini, Christopher T. Lyons, Richard A. Michalik, Raymond C. Waterman, Jr.
  • Patent number: 5140286
    Abstract: A voltage controlled oscillator and buffer amplifier circuit (211) is disclosed. The circuit is in a stacked configuration, whereby, the current from the power supply (361) is used by the buffer amplifier circuit and reused by the VCO circuit. The VCO circuit includes two transistors (333, 325). The transistors are set-up in a mirrored configuration, so that one of the transistors (325) controls the bias current in the other transistor (333). Both of the transistors are integrated into a semiconductor circuit die (365), thus, matching the thermal characteristics of the transistors (333, 325) and improving control of the bias current. The die (365) is bonded to a ceramic substrate (601). The substrate (601) has connectivity paths for connecting components in the circuit die to components external to the circuit die. Some of the connectivity paths are made of a material and length to form passive circuit elements.
    Type: Grant
    Filed: August 2, 1991
    Date of Patent: August 18, 1992
    Assignee: Motorola, Inc.
    Inventors: Gregory R. Black, Alexander W. Hietala, Darioush Agahi-Kesheh
  • Patent number: 5130675
    Abstract: A voltage-controlled oscillator according to the present invention comprises: a transistor, where the drain electrode is grounded, the gate electrode is connected to a resonator whose resonant frequency is adjustable according to a voltage applied to a voltage-dependent capacitance diode electromagnetically coupled with the resonator, an output signal is output from the source electrode; a resistor connected in gate bias circuit or source voltage supply circuit for detecting a low-frequency noise component generated in the transistor, where the detected low-frequency noise component is amplified and fed back to the voltage-dependent capacitance diode so as to cancel a phase-noise component generated in the voltage-controlled oscillator. The above-described voltage-controlled oscillator may be further provided with a reference crystal oscillator to which the voltage-controlled oscillator is phase-locked.
    Type: Grant
    Filed: September 4, 1991
    Date of Patent: July 14, 1992
    Assignee: Fujitsu Limited
    Inventor: Hideo Sugawara
  • Patent number: 5115210
    Abstract: An ambient condition sensor is embodied in an oscillator which generates an output signal having a frequency which is proportional to the ambient condition of the environment in which it is located. The oscillator includes a ring resonator consisting of a metallic ring located in the output plane of a grounded source gallium arsenide MESFET type transistor oscillator formed on a temperature sensitive dielectric substrate. The circumference of the ring is directly related to the ring resonator's resonant frequency. More particularly, the circumference of the ring is a multiple of the wavelength of the oscillator's output signal. Such a device permits unmanned, remote and inexpensive temperature sensing in places generally unsuited for operator presence.
    Type: Grant
    Filed: April 15, 1991
    Date of Patent: May 19, 1992
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Michael Cummings, Roland Cadotte, Jr., Adam Rachlin
  • Patent number: 5087896
    Abstract: A coplanar waveguide based microwave monolithic integrated circuit (MMIC) oscillator chip (14) having an active oscillator element (16) and a resonant capacitor (18) formed thereon is flip-chip mounted on a dielectric substrate (12). A resonant inductor (22) is formed on the substrate (12) and interconnected with the resonant capacitor (18) to form a high Q-factor resonant circuit for the oscillator (10). The resonant inductor (22) includes a shorted coplanar waveguide section (24) consisting of first and second ground strips (24b,24c), and a conductor strip (24a) extending between the first and second ground strips (24b,24c) in parallel relation thereto and being separated therefrom by first and second spaces (26a,26b) respectively. A shorting strip (24d) electrically interconnects adjacent ends of the conductor strip (24a) and first and second ground strips (24b,24c) respectively.
    Type: Grant
    Filed: January 16, 1991
    Date of Patent: February 11, 1992
    Assignees: Hughes Aircraft Company, Delco Electronics Corporation
    Inventors: Cheng P. Wen, Gregory S. Mendolia, Mario Siracusa, Joseph J. Maieron, William D. Higdon
  • Patent number: 5083098
    Abstract: A voltage controlled oscillator having an active network and a tuning network that includes a transmission line impedance transformer having a first end coupled to an output circuit of the VCO, and having a selectable effective width that determines the tuning bandwidth of the oscillator. A varactor diode is coupled to the second end of the transformer line, and a bias line is coupled between a tuning port and the varactor diode. The transmission line impedance transformer more particularly includes a main transformer line, a plurality of transmission lines adjacent the main transformer line, and wire bonds for electrically connecting selected ones of the plurality of lines to the main transformer line, whereby connection of selected ones of the transmission lines to the main transformer line increases the effective width of the impedance transformer.
    Type: Grant
    Filed: June 25, 1990
    Date of Patent: January 21, 1992
    Assignee: Hughes Aircraft Company
    Inventors: Raul Alidio, Robert Allison
  • Patent number: 5079524
    Abstract: The microwave oscillation circuit provides a transistor having the collector electrode grounded, the base electrode connected to a resonator circuit determining the oscillation frequency, and the emitter electrode connected to an output open stub. An output transmission line is placed parallel to the output open stub for the output power supplied from the output open stub to be output via an end of the output transmission line to a buffer amplifier. A resistor having an impedance equal to a characteristic impedance of the output transmission line connects a stub circuit to an open end of the output transmission line. The stub circuit exhibits an infinite impedance at the oscillation frequency. At the oscillation frequency, the resistor floats due to the infinite impedance of the stub circuit so that all the oscillation power supplied from the output open stub is output to the buffer amplifier, without being consumed by the resistor.
    Type: Grant
    Filed: March 7, 1991
    Date of Patent: January 7, 1992
    Assignee: Fujitsu Limited
    Inventor: Hideo Sugawara