With Distributed Parameter Resonator Patents (Class 331/96)
  • Patent number: 11670862
    Abstract: A device for signal generation including a unit cell. The unit cell contains two oscillators that are coupled in phase. Each oscillator operates at a fundamental frequency. Each oscillator further includes a slot structure, and the slot structures serve as, at a third harmonic of the fundamental frequency, a slot antenna radiating a third harmonic power. If the device contains multiple unit cell, then each unit cell is horizontally coupled out-of-phase and vertically in-phase with adjacent cells at the fundamental frequency in the device. Therefore, coherent radiation and power combining are achieved at the third harmonic.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: June 6, 2023
    Assignee: City University of Hong Kong
    Inventors: Liang Gao, Chi Hou Chan
  • Patent number: 11606098
    Abstract: A comb enhanced oscillator in which a drive signal from a first oscillator is split into two signals. The first signal is applied to a nonlinear resonator producing a phononic frequency comb of equally spaced resonances. The second signal is passed through an amplitude detector and a phase shifter. In one embodiment, the comb is applied to the phase shifter to correct for AM-PM cross-correlation noise and then applied to a phase lock loop (PLL) for locking to a second oscillator. The output of the second oscillator is used as the output of the comb enhanced oscillator.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: March 14, 2023
    Assignee: HRL LABORATORIES, LLC
    Inventors: Randall L. Kubena, Walter S. Wall, Gabriel Virbila
  • Patent number: 11527820
    Abstract: A structure includes: a base that includes a first surface and a second surface parallel to a first plane, a third surface and a fourth surface parallel to a second plane orthogonal to the first plane, and a fifth surface and a sixth surface parallel to a third plane orthogonal to the first plane and the second plane; a first conductor that expands along the third plane and that extends along a second direction; a second conductor that expands along the fourth plane and that extends along the second direction; a third conductor that expands along the first plane and that is configured to capacitively connect the first conductor and the second conductor; and a fourth conductor that is configured to be electrically connected to the first conductor and the second conductor. The first conductor, the second conductor, and the third conductor are at least partially exposed to exterior space.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: December 13, 2022
    Assignee: KYOCERA CORPORATION
    Inventors: Nobuki Hiramatsu, Hiroshi Uchimura, Hikaru Nekozuka
  • Patent number: 10870499
    Abstract: A source assembly is provided for a transverse electromagnetic (TEM) system. The source assembly includes a first guide and a second guide. The first guide is configured to receive a signal from a supply, and includes a first shell defining a first cavity. The first guide is configured to extend proximate an upper plate of the TEM system. The second guide is configured to receive a reference signal from the supply. The second guide includes a second shell defining a second cavity. The second guide is configured to extend proximate a lower plate of the TEM system, and is spaced a distance from the first guide to define a gap having a gap width. At least one of the first guide or second guide includes an access opening configured to provide access to at least one of the first cavity or the second cavity.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: December 22, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Lydell L. Frasch, Benjamin R. Blakely, Brian M. Finn, Eugene Sorensen, Kyle Weber
  • Patent number: 10833389
    Abstract: Provided is an element that can reduce a parasitic oscillation.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: November 10, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Yasushi Koyama
  • Patent number: 10782332
    Abstract: An assembly is provided for a transverse electromagnetic (TEM) system. The assembly includes a support frame and at least one resistive sheet. The support frame includes an upper plate and a lower plate. The upper plate defines a first inner surface and an opposed first outer surface. The lower plate defines a second inner surface and an opposed second outer surface. The at least one resistive sheet is coupled to at least one of the upper plate or the lower plate, and extends parallel to the upper plate and lower plate from an exterior of the support frame. The resistive sheet has an inner end disposed proximate the at least one of the upper plate or lower plate and an outer end disposed opposite the inner end, and has a variable resistance that is greater at the outer end than at the inner end.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: September 22, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Lydell L. Frasch, Benjamin R. Blakely, Brian M. Finn, Eugene Sorensen, Kyle Weber
  • Patent number: 10662531
    Abstract: Disclosed is a plasma processing apparatus including a processing container, a plasma generation mechanism, a regulation unit, a detection unit, and a determination unit. The plasma generation mechanism includes a microwave oscillator, and generates plasma within the processing container using microwaves oscillated by the microwave oscillator. The regulation unit regulates an oscillation frequency, which corresponds to a frequency of the microwaves oscillated by the microwave oscillator, to a predetermined frequency. The detection unit detects the oscillation frequency regulated to the predetermined frequency by the regulation unit. The determination unit determines the success/failure of regulation of the oscillation frequency by the regulation unit, using the oscillation frequency detected by the detection unit, or using a parameter which is changed depending on a difference between the oscillation frequency and the predetermined frequency.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: May 26, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazushi Kaneko, Yunosuke Hashimoto, Yohei Ishida
  • Patent number: 10541472
    Abstract: A system includes a frequency modulated signal generator, a feed system, and an array of passive antenna elements. The frequency modulated signal generator can be producing a frequency modulated continuous wave signal. The feed system can be coupled to the frequency modulated signal generator for propagating the frequency modulated continuous wave signal. The array of passive antenna elements can be coupled to the feed system and can be configured to be excited by the frequency modulated continuous wave signal. The passive antenna elements can have resonant frequencies that are selected to generate a set of radiative field patterns corresponding to a set of known goal field patterns when the array of passive antenna elements are excited by the frequency modulated continuous wave signal. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: January 21, 2020
    Assignee: Evolv Technologies, Inc.
    Inventor: Alec Rose
  • Patent number: 10390387
    Abstract: An apparatus and a method for heating a load using microwaves is disclosed. The apparatus includes a transmission line, configured to transmit microwaves from a microwave generator to a cavity. A sensing device configured to measure electromagnetic field strengths for providing information about the phase and the amplitude of a reflection coefficient that represents a ratio between the amount of microwaves reflected back towards the microwave generator and the amount of microwaves transmitted in the transmission line from the microwave generator. A control unit configured to detect whether the measured electromagnetic field strengths correspond to a reflection coefficient having a phase within a certain interval of phases and an amplitude within a certain interval of amplitudes. Additionally, certain intervals of phases and amplitudes correspond to an operating region of the microwave generator. The control unit controls feeding of microwaves to the cavity based on this detection.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 20, 2019
    Assignee: Whirlpool Corporation
    Inventors: Hakan Carlsson, Ulf Nordh
  • Patent number: 9935347
    Abstract: An electronic circuit assembly comprising: i) a circuit card assembly (CCA) having circuits integrated on a circuit surface; ii) a housing having an upper surface and a lower surface disposed on the CCA circuit surface, the housing comprising a via extending from the lower surface to the upper surface; and iii) a waveguide assembly disposed in the via. The waveguide assembly comprises: a) a first waveguide having a first dielectric value, a contact end of the first waveguide configured to make contact with the CCA circuit surface; b) a second waveguide having a second dielectric value, wherein the first dielectric value is greater than the second dielectric value; and c) a carrier for holding the first waveguide in contact with the second waveguide. The electronic circuit assembly further comprises: iv) a wave washer disposed in the via on a support surface of the carrier; and v) a third waveguide having a third dielectric value that is less than the second dielectric value.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 3, 2018
    Assignee: L-3 Communications Corporation
    Inventor: Matthew J. Spitzner
  • Patent number: 9857534
    Abstract: An optical waveguide device includes: a mode splitter including a main waveguide in which lights can be propagated in at least two propagation modes with different propagation orders and a subsidiary waveguide which includes a coupling section disposed in parallel with the main waveguide at a certain distance away from the main waveguide so as to constitute a directional coupler and is capable of splitting at least one propagation mode out of the two or more propagation modes from the main waveguide. Also, ncore/ncladding which is a refractive index ratio between a core and a cladding which constitute the main waveguide and the subsidiary waveguide is in a range of 101% to 250%.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: January 2, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Hiroyuki Kusaka, Kensuke Ogawa, Kazuhiro Goi
  • Patent number: 9768787
    Abstract: Systems and methods are provided for detection and compensation of dielectric resonator oscillator frequency drift. DRO frequency drift detection and compensation may comprise, for a received input signal, detecting one or more channels in the input signal, determine frequency offset for each of the detected channels; determining determine dielectric resonator oscillator (DRO) frequency drift based on combining frequency offsets of the detected channels, and determining, based on the DRO frequency drift, one or more adjustments for compensating for the DRO frequency drift. The DRO frequency drift may be determined based on analysis of an intermediate signal generated during processing of the input signal.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: September 19, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Sridhar Ramesh, Subramanian Anantharaman, Harish Maller
  • Patent number: 9290378
    Abstract: A method for fabricating a MEMS device includes providing a substrate having a front surface and a back surface, and forming a protruding engagement member on the front surface of the substrate. The protruding engagement member has an inner periphery defining a groove and an outer periphery. The method also includes forming a first trench having a first depth along the outer periphery, forming a patterned mask layer on the protruding engagement member covering the groove and exposing a portion of the first trench. The method further includes etching the exposed portion of the first trench to form a second trench having a second depth, removing the patterned mask layer, bonding the substrate with a MEMS substrate to form the MEMS device, and thinning the back surface to within the second depth. The method prevents dust from being deposited on the MEMS substrate as in the case of cutting.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: March 22, 2016
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Lushan Jiang, Xiaojun Chen, Xuanjie Liu, Liangliang Guo, Junde Ma
  • Patent number: 9239942
    Abstract: A structure for extending the field area of a device equipped with an RF tag reader. The structure can include at least one reader coupling area for inductively coupling with an RF tag reader, and at least one tag coupling area for inductively coupling with an RF tag, wherein the tag coupling area is disposed outside the field area of the RF tag reader, and the reader coupling area is conductively coupled to the tag coupling area such that a signal induced in the reader coupling area by the RF reader creates a signal in the tag coupling area, thereby inducing a signal in the tag, and allowing the RF reader to communicate with the tag.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 19, 2016
    Assignee: Avery Dennison Corporation
    Inventor: Ian J. Forster
  • Patent number: 9219299
    Abstract: A resonator is connected to a first plane which is one of a power plane and a ground plane, wherein the power plane and the ground plane are apart from each other in an up-down direction. The resonator comprises a connecting portion and a body portion. The connecting portion is connected to the first plane. The connecting portion extends in the up-down direction beyond a second plane, which is a remaining one of the power plane and the ground plane, while not being in electrical contact with the second plane. The body portion is connected to the connecting portion while not being in contact with the second plane. The body portion is arranged so that the second plane is located between the body portion and the first plane in the up-down direction.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 22, 2015
    Assignees: NEC TOKIN CORPORATION, NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITY
    Inventors: Koichi Kondo, Naoharu Yamamoto, Yoshitaka Toyota, Kengo Iokibe, Farhan Zaheed Mahmood
  • Patent number: 9112251
    Abstract: A microwave resonant cavity includes a conductive shell with a screw hole having first threads and a screw having second threads configured to engage with the screw hole. The conductive shell defines a volume, the screw extends into the volume, the microwave resonant cavity has a resonant frequency, and the movement of the screw changes the resonant frequency. The first threads have a first pitch, and at least a portion of the second threads has a second pitch different from the first pitch.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: August 18, 2015
    Assignee: Microelectronics Technology, Inc.
    Inventor: Wen Chi Fu
  • Patent number: 9107300
    Abstract: A resonant via structure is provided with a multilayer substrate, a signal via conductor and ground vias. The multilayer substrate includes conductor layers and a dielectric. The dielectric isolates each of the conductor layers. The signal via conductor is disposed through the multilayer substrate. The ground vias are disposed through the multilayer substrate and around the signal via conductor. The dielectric comprises two sections disposed between the signal via and ground vias, in the plane of conductor layers. The first section is disposed between the first layer and other layer of the conductor layers. The second section is disposed between the other layer and the last layer of the conductor layers.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: August 11, 2015
    Assignee: NEC CORPORATION
    Inventor: Taras Kushta
  • Patent number: 9035707
    Abstract: The switching element is provided in a state of being electromagnetically coupled to the cavity resonator of the high frequency oscillator; the bias voltage applying terminal is connected to one electrode of the switching element; another electrode of the switching element is electrically connected to the cavity resonator (the anode shell in FIG. 1); the metal plate having a size enough for reflecting an electric wave to be transmitted before and after the switching element in a high-frequency manner is provided at any one end of the switching element; and by applying a bias voltage to the switching element and varying that, a reactance of the switching element is changed and a resonance frequency of the cavity resonator is varied. By this method, an oscillation frequency can be varied greatly relative to a small change in a bias voltage.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: May 19, 2015
    Assignee: NEW JAPAN RADIO LTD
    Inventor: Hideyuki Obata
  • Patent number: 9013241
    Abstract: The present disclosure relates to nanoresonator oscillators or NEMS (nanoelectromechanical system) oscillators. A circuit for measuring the oscillation frequency of a resonator is provided, comprising a first phase-locked feedback loop locking the frequency of a controlled oscillator at the resonant frequency of the resonator, this first loop comprising a first phase comparator. Furthermore, a second feedback loop is provided which searches for and stores the loop phase shift introduced by the resonator and its amplification circuit when they are locked at resonance by the first loop. The first and the second loops operate during a calibration phase. A third self-oscillation loop is set up during an operation phase. It directly links the output of the controllable phase shifter to the input of the resonator. The phase shifter receives the phase-shift control stored by the second loop.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Patrick Villard
  • Patent number: 9000853
    Abstract: Integrated circuit devices include a packaged MEMS-based oscillator circuit, which is configured to support bidirectional frequency margining of a periodic output signal. This bidirectional frequency margining is achieved using a first signal to synchronize changes in a frequency of the periodic output signal and a second signal to control whether the changes in the frequency of the periodic output signal are incremental or decremental. In particular, the oscillator circuit may be configured so that each change in the frequency of the periodic output signal is synchronized to a corresponding first voltage transition of the first signal and a voltage level of the second signal may be used to control whether the changes in the frequency of the periodic output signal are incremental or decremental.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 7, 2015
    Assignee: Integrated Device Technology, Inc.
    Inventors: Nelson Arata, Harmeet Bhugra
  • Patent number: 9000851
    Abstract: A cavity resonator integrated on a monolithic microwave integrated circuit (MMIC) is provided. The cavity resonator includes a cavity defined by an upper metal surface and a lower metal surface embedded in a low conductivity semiconductor, and a plurality of discrete metal connections coupled between the upper and lower metal surfaces, and at least one port for coupling to the cavity electromagnetically.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: April 7, 2015
    Assignee: Hittite Microwave Corporation
    Inventors: Ekrem Oran, Ahmed Ibrahim, Michael Koechlin
  • Patent number: 8994463
    Abstract: A push-push oscillator circuit with a first oscillation branch with a first active device and a first tank adapted to provide a signal having a fundamental frequency f0, a second oscillation branch with a second active device and a second tank symmetrical to the first oscillation branch and adapted to provide a signal having the fundamental frequency f0. Output branches are coupled to the first oscillation branch and the second oscillation branch to provide signals having the second harmonic frequency 2f0 of the fundamental signal based on the signals having the fundamental frequency f0 and/or to provide signals having the fundamental frequency f0; The push-push oscillator circuit further comprises at least one terminal branch with a terminal adapted to provide a component of a differential signal having the second harmonic frequency 2f0 or the fundamental frequency f0. The at least one terminal branch comprises a RF stub.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: March 31, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Yin Yi, Hao Li, Saverio Trotta
  • Publication number: 20150048893
    Abstract: A method for exciting a resonator having a resonance frequency, the resonator is excited in a first period with a first frequency that differs from the resonance frequency by a first frequency difference is provided. During a second period, the resonator is excited with a second frequency that differs from the resonance frequency by a second frequency difference. The first frequency difference and the second frequency difference have different signs. Additionally, the amounts of the first frequency difference and of the second frequency difference differ from one another by less than 10% of the greater amount.
    Type: Application
    Filed: March 21, 2012
    Publication date: February 19, 2015
    Inventors: Oliver Heid, Timothy Hughes, Jennifer Sirtl
  • Patent number: 8922285
    Abstract: The invention relates to a radiofrequency oscillator which incorporates: a spin-polarized electric current magnetoresistive device (6), a terminal (18) for controlling the frequency or amplitude of the oscillating signal, a servo loop (34) connected between the output terminal and the control terminal for applying a control signal to the control terminal in order to slave a characteristic of the oscillating signal to a reference value, the servo loop (34) comprising: a sensor (36) of the amplitude of the oscillating signal oscillations, and a comparator (38) capable of generating the control signal according to the measured amplitude and the reference value.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 30, 2014
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique
    Inventors: Dimitri Houssameddine, Bertrand Delaet, Marie-Claire Cyrille, Ursula Ebels, Michael Quinsat
  • Patent number: 8907731
    Abstract: A digitally-controlled oscillator circuit receives a digital value and generates a driving signal for driving an oscillator at a frequency according to the received digital value. A time-to-digital converter circuit receives a detection signal of oscillation of the oscillator, receives the driving signal, and detects a phase difference between the detection signal and the driving signal. A control circuit receives the detected phase difference and controls the frequency of the driving signal generated by the digitally-controlled oscillator circuit, such that the detected phase difference coincides with a predetermined resonant phase difference to resonate the oscillator.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: December 9, 2014
    Assignee: Denso Corporation
    Inventors: Shigenori Yamauchi, Takamoto Watanabe, Tomohito Terazawa
  • Patent number: 8896389
    Abstract: The present disclosure relates to an oscillation circuit including a differential negative resistance element, a resonance circuit connected to the differential negative resistance element, and a stabilization circuit connected in parallel with the negative resistance element to suppress parasitic oscillation. The stabilization circuit includes a variable shunt resistor and an adjusting device for adjusting the shunt resistor.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Koyama, Ryota Sekiguchi
  • Patent number: 8884710
    Abstract: A system and method in accordance with the present invention provides a gyroscope incorporating an improved PLL technique. The improved PLL auto-corrects its own reference low-frequency noise, thereby eliminating this source of noise, improving the noise performance of the gyroscope and allowing a compact implementation. The net result is a gyroscope with improved bias stability that can meet noise requirements with a smaller footprint.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Invensense, Inc.
    Inventors: Derek Shaeffer, Ahingsa Soukhaphanith
  • Patent number: 8847693
    Abstract: A system and method is disclosed that provides a technique for generating an accurate time base for MEMS sensors and actuators which has a vibrating MEMS structure. The accurate clock is generated from the MEMS oscillations and converted to the usable range by means of a frequency translation circuit.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Invensense, Inc.
    Inventors: Joseph Seeger, Goksen G. Yaralioglu, Baris Cagdaser
  • Publication number: 20140266477
    Abstract: An oscillation device comprises a substrate and a plurality of resonance structures arranged on the substrate to resonate electromagnetic waves. Each of the plurality of resonance structures has a negative differential resistance device for generating electromagnetic waves, a first conductor arranged electrically in contact with the negative differential resistance device and a second conductor arranged electrically in contact with the negative differential resistance device and disposed on the opposite side to the first conductor with respect to the negative differential resistance device. Adjacently located resonance structures of the plurality of resonance structures are interconnected by means of a metal part adapted for capacitive coupling with the first conductors thereof. The plurality of resonance structures are arranged so as to be separated from each other at least by a distance not greater than a wavelength of electromagnetic waves to be oscillated by them.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryota Sekiguchi, Yasushi Koyama
  • Patent number: 8836438
    Abstract: An oscillator element according to one embodiment of the present invention includes a magnetoresistive element having a magnetization free layer, magnetization fixed layer, and a tunnel barrier layer. Provided on the magnetization free layer are a protection layer and an electrode having a point contact section where the electrode is partially in electrical contact with the protection layers. An interlayer insulating film is provided between the electrode and the protection layer. The area of the interface between the magnetization free layer and the tunnel barrier layer is larger than the surface area of the point contact section. Moreover, a portion of the protection layer in contact with the interlayer insulating film has a smaller thickness in a surface normal direction than the portion of the protection layer in contact with the electrode.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: September 16, 2014
    Assignee: Canon Anelva Corporation
    Inventor: Hiroki Maehara
  • Patent number: 8823460
    Abstract: The invention relates to a radiofrequency oscillator which incorporates: a spin-polarized electric current magnetoresistive device (6) for generating an oscillating signal at an oscillation frequency on an output terminal (10), and a terminal (18) for controlling the frequency or amplitude of the oscillating signal, and a feedback loop (44) comprising an amplifier (46) provided with: an input connected to the output terminal (10) of the magnetoresistive device (6) so as to amplify the portion of an oscillating signal detected at the output terminal, and an output connected to the control terminal (18) so as to inject onto said control terminal the amplified portion of the oscillating signal which is phase-related to the oscillating signal generated at the output terminal.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: September 2, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Dimitri Houssameddine, Bertrand Delaet, Marie-Claire Cyrille, Ursula Ebels, Michael Quinsat
  • Patent number: 8816785
    Abstract: An oscillator which oscillates electromagnetic waves includes a negative differential resistance element, a resonator configured to prescribe oscillation frequencies of the electromagnetic waves, a voltage modulation unit configured to modulate the negative differential resistance element, a stabilizing circuit configured to suppress parasitic oscillation, and a bias circuit, including a power supply and a line, used to control an operating point voltage of the negative differential resistance element. The voltage modulation unit is connected to the bias circuit through the stabilizing circuit.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 26, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ryota Sekiguchi
  • Patent number: 8797107
    Abstract: A voltage controlled oscillator includes a split ring resonator (SRR) configured to have meta-material characteristics fabricated on a board, and an energy compensation circuit configured to cause resonant oscillation of the SRR. The energy compensation circuit is fabricated in the form of an integrated circuit.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 5, 2014
    Assignees: Electronics and Telecommunications Research Institute, Soongsil University-Industry Cooperation Foundation
    Inventors: Dong-Uk Sim, Young Jun Chong, Yong Moon, Hyeon Seok Jang
  • Patent number: 8791765
    Abstract: A Force-Mode Distributed Wave Oscillator (FMDWO) that provides accurate multiple phases of an oscillation, a Force Mode Distributed Wave Antenna as a radiating element, a Force-Mode Distributed Oscillator Amplifier (FMDOA) and an array of amplifiers capable of operating as a beam forming phased-array antenna driver. Two distinct force mode mechanisms, one delay-based and the other geometry-based, utilizing inverter amplifiers, inject an oscillation on independent conductor loops or rings via transmission lines forming a differential transmission medium for the oscillation wave. Once the oscillation wave is initiated through the forcing mechanisms, the oscillations continue uninterrupted independent of any external triggering.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: July 29, 2014
    Assignee: Waveworks, Inc.
    Inventors: Ahmed Emira, Ahmet Tekin, Damir Ismailov, Suat Utku Ay
  • Patent number: 8779864
    Abstract: An oscillator has a negative resistance element and a resonator along with a capacitor electrically connected in parallel with the negative resistance element relative to a power bias circuit, a capacitance of the capacitor being so selected as to suppress any parasitic oscillation due to the power bias circuit and allow oscillation at a resonance frequency due to the negative resistance element and the resonator.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: July 15, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshihiko Ouchi, Ryota Sekiguchi
  • Patent number: 8766733
    Abstract: A radiofrequency oscillator comprises: a free layer (4), a current injector (6) for injecting spin-polarized current into the free layer, this injector having a spin-polarized current injection face (16) directly in contact with the free layer, a magnetoresistive contact (8) having a measurement face (26) directly in contact with the free layer, in order to form, in combination with the free layer, a tunnel junction for measuring the precession of the magnetization of the free layer, a conducting pad (30) directly in contact with the free layer in order to make an electrical current flow through the injector without passing through the magnetoresistive contact. At least part of the measurement face (26) and part of the injection face (16) are placed facing each other on each side of the free layer (4).
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 1, 2014
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Centre National de la Recherche Scientifique
    Inventors: Marie Claire Cyrille, Bertrand Delaet, Ursula Ebels, Dimitri Houssameddine
  • Patent number: 8754717
    Abstract: An oscillator and a method of operating the same are provided, the oscillator may include a free layer, a pinned layer on a first surface of the free layer, and a reference layer on a second surface of the free layer. The free layer may have a variable magnetization direction. The pinned layer may have a pinned magnetization direction. The reference layer may have a magnetization direction non-parallel to the magnetization direction of the pinned layer.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-chul Lee, Sun-ae Seo, Un-hwan Pi, Kee-won Kim, Kwang-seok Kim
  • Patent number: 8742857
    Abstract: A plurality of inductance enhanced interweaved rotary traveling wave oscillators (RTWO) is disclosed. Portions of the transmission line conductors are increased in length and run in parallel. Because the currents in these portions travel in the same direction, the inductance of these inductors is increased. By controlling the length of the transmission line conductors in these areas compared to the lengths where the currents in the oscillators travel in opposite directions, the overall impedance of the oscillators can be increased. Increased impedance leads to lower power and lower phase noise for the oscillators. Additionally, the interweaved oscillators are phase-locked to each other.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: June 3, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Andrey Martchovsky, Stephen Beccue, Anh Pham
  • Patent number: 8723611
    Abstract: The object of the invention is to provide an improved structure for a microelectromechanical (MEMS) resonator. According to a first aspect of the invention, the resonator structure in accordance with the invention has a characteristic frequency of oscillation in combination with a given mechanical amplitude, whereby to set said mechanical amplitude, in the resonator structure, by way anchoring at an anchor point located at a given point of the resonator structure substrate, a first element is adapted oscillatory and a second element is adapted oscillatory in such a manner that at least one of said first element and of said second element are arranged to oscillate synchronously with regard to said anchor point, whereby the location of said anchor point is selected to be substantially within the joint projection defined by the dimensions of said first and said second element.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 13, 2014
    Assignee: Murata Electronics Oy
    Inventor: Ville Kaajakari
  • Patent number: 8698570
    Abstract: A passive frequency divider in a CMOS process. More specifically, an electrical distributed parametric oscillator to realize a passive CMOS frequency divider with low phase noise. Instead of using active devices, which are the main sources of noise and power consumption, an oscillation at half of the input frequency is sustained by the parametric process based on nonlinear interaction with the input signal. For example, one embodiment is a 20 GHz frequency divider utilizing a CMOS varactor and made in a 0.13 ?m CMOS process. In this embodiment: (i) without any dc power consumption, 600 mV differential output amplitude can be achieved for an input amplitude of 600 mV; and (ii) the input frequency ranged from 18.5 GHz to 23.5 GHz with varactor tuning. In this embodiment, the output phase noise is almost 6 dB lower than that of the input signal for all offset frequencies up to 1 MHz. Also, a resonant parametric amplifier with a low noise figure (NF) by exploiting the noise squeezing effect.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Cornell University
    Inventors: Ehsan Afshari, Wooram Lee
  • Patent number: 8692624
    Abstract: A method is provided for tuning a microelectromechanical systems (MEMS) oscillator comprising an acoustic resonator and a tuning and amplification circuit arranged in a loop. The method comprises determining an initial oscillation frequency of the oscillator, modifying a capacitance of the tuning and amplification circuit according to the initial oscillation frequency, and adjusting a power level of the oscillator according to the modified capacitance.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 8, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Michael Frank
  • Publication number: 20140077889
    Abstract: A wideband small-scale cavity oscillator includes a single resonating chamber, a negative resistance diode, at least one capacitive waveguide obstacle, and a tap. The single resonating chamber includes a length, width, and height. The length is greater than the width and height. The negative resistance diode is centrally disposed in the single resonating chamber, and the at least one capacitive waveguide obstacle is disposed in the single resonating chamber. The tap is disposed along the length of the single resonating chamber. A method of manufacturing a wideband small-scale cavity oscillator is provided, which includes providing a single resonating chamber including a length, width, and height, disposing a negative resistance diode centrally in the single resonating chamber, disposing at least one capacitive waveguide obstacle in the single resonating chamber, and disposing a tap along the length of the single resonating chamber.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 20, 2014
    Applicant: ELECTROMAGNETIC TECHNOLOGIES INDUSTRIES, INC.
    Inventors: John Howard, Jennifer Howard
  • Patent number: 8638178
    Abstract: Methods of testing packaged thin-film piezoelectric-on-semiconductor (TPoS) microelectromechanical resonators having hermetic seals include measuring a quality factor (Q) of resonance of the packaged resonator at at least two unequal temperatures to determine whether a ?Q/?T is significantly different (e.g, by at least 50%) over a temperature range (?T) spanning a smallest and largest of the at least two temperatures. These measurements are performed for a packaged resonator having a QAIR<QTED, where QAIR is the quality factor of resonance of the packaged resonator due to air damping and QTED is the quality factor of resonance of the packaged resonator due to thermoelastic damping.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: January 28, 2014
    Assignee: Integrated Device Technology inc.
    Inventor: Ye Wang
  • Patent number: 8633774
    Abstract: Improvements in and relating to electronic pulse generation or oscillation circuitry based on a signal path exhibiting endless electromagnetic continuity and affording signal phase inversion in setting pulse duration or half-cycles of oscillation within time of signal traverse of said signal path, and having active switching means associated with said signal path to set rise and fall times of each said pulse or said half-cycle of oscillation, including for frequency adjustment by selective inductance and power saving without stopping pulse generation or oscillation.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: January 21, 2014
    Assignee: Analog Devices, Inc.
    Inventor: John Wood
  • Patent number: 8610512
    Abstract: A synthesizer includes a second frequency-synthesizing stage comprising a radiofrequency oscillator configured to oscillate at a frequency ?fo when it is synchronized with a signal s0(t), where ? is a rational number different from one such that ?f0=ft. The radiofrequency oscillator has a magnetoresistive device within which there flows a spin-polarized electrical current to generate a signal st(t) oscillating at the frequency ft on an output electrode connected to the rendering terminal. This device is formed by a stack of magnetic and non-magnetic layers, a synchronization terminal for synchronizing the frequency of the oscillating signal st(t) with the frequency of the signal received at the synchronization terminal. The synchronization terminal being connected to the output terminal of the first stage to receive the signal s0(t).
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: December 17, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Jean-Philippe Michel, Michaël Quinsat
  • Patent number: 8606376
    Abstract: A method of actuating a system comprising a movable component and an actuator configured to move the movable component comprises providing a control signal representative of a desired motion of the movable component. The control signal is supplied to one or more resonators. Each of the one or more resonators has a mode of oscillation representative of at least one elastic mode of oscillation of the system. The control signal is modified by subtracting from the control signal a signal representative of a response of the one or more resonators to the control signal. The actuator is operated in accordance with the modified control signal. Thus, undesirable elastic oscillations of the system which might occur if the system were operated with the original control system can be reduced.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 10, 2013
    Assignees: Mitutoyo Corporation, Bundesrepublik Deutschland, Endvertreten Durch den Präsidenten der Physikalisch-Technischen Bundesanstalt
    Inventors: Hartmut Illers, Kazuhiko Hidaka, Akinori Saito, Hans-Ulrich Danzebrink
  • Patent number: 8598813
    Abstract: Circuitry is presented for use in the pulse-forming lines of compact linear accelerators of charged particles. This presents devices that can provide high-voltage radio-frequency pulses in the range of from a few volts to megavolts for charged particle accelerators. The devices can use as input an external charge voltage and an optical pulse to create output RF pulses with a peak voltage that is increased over the input voltage. The exemplary embodiment presents a circuit of pulse forming lines for compact linear accelerator that includes an opto-switch and RF transmission lines that form a pulse shaper and a ladder-like pulse multiplier unit, with or without an output shaper.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: December 3, 2013
    Assignee: Compact Particle Acceleration Corporation
    Inventors: Vladimir Andreevich Joshkin, Antonios Zografos
  • Patent number: 8598957
    Abstract: Oscillators and methods of manufacturing and operating an oscillator are provided, the oscillators include a base free layer having a variable magnetization direction, and at least one oscillation unit on the base free layer. The oscillation unit may include a free layer element contacting the base free layer and having a width less than a width of the base free layer, a pinned layer element separated from the free layer element, and a separation layer element between the free layer element and the pinned layer element. A plurality of oscillation units may be arranged on the base free layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-chul Lee, Ung-hwan Pi, Kee-won Kim, Kwang-seok Kim
  • Patent number: 8581668
    Abstract: A negative resistance device for a multiphase oscillator is disclosed. The negative resistance device is coupled to taps of the multiphase oscillator so that it injects no energy into the oscillator when the oscillator is most sensitive to noise, thereby decreasing the phase noise of the oscillator. The negative resistance device also guarantees the direction of movement of a traveling wave past the taps of the multiphase oscillator.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 12, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Andrey Martchovsky
  • Patent number: 8570112
    Abstract: A MEMS oscillator having a feedback-type oscillation circuit including a MEMS resonator and an amplifier, a voltage control unit operable to control a bias voltage applied to an oscillating member of the MEMS resonator, and an auto gain control unit which receives an output from the amplifier and, based on a level of the output, to output an amplitude control signal for controlling a gain of the amplifier to the amplifier such that the level of the output from the amplifier comes to be a predetermined level, wherein the voltage control unit controls the bias voltage applied to the oscillating member based on an operating temperature of the MEMS resonator such that a peak gain of the MEMS resonator comes to have a predetermined value regardless of the operating temperature, and the voltage control unit derives the operating temperature of the MEMS resonator by monitoring the amplitude control signal.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 29, 2013
    Assignee: Panasonic Corporation
    Inventors: Takehiko Yamakawa, Tomohiro Iwasaki, Kunihiko Nakamura, Keiji Onishi