Phase Modulator Patents (Class 332/144)
  • Patent number: 7009447
    Abstract: Briefly, an apparatus having an outphasing modulator that may provide at least first and second outphased signals to a power amplifier. The outphasing modulator may control amplitude of the first and second outphased signals by an amplitude modulation controller which may vary an amplitude level of first and second control signals base on a desired output power level of said power amplifier.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: March 7, 2006
    Assignee: Intel Corporation
    Inventor: Victor Korol
  • Patent number: 6891445
    Abstract: In response to changes in an input binary digital signal, a 3rd order cosine pulse waveform, which, when it is changed in the increasing direction, has “0” level in a first period of T/12 (T corresponding to one-half cycle of the binary digital signal), is changed as a waveform of (h/2)(1+cos(3?t/T)+?/4) in the next period of 4T/12 (?5T/12?t??T/12) and has an h (constant) level in the remaining period of T/12, and when it is changed in the reducing direction, has the h level in the first period of T/12, is changed as a waveform of (h/2)(1+cos(3?t/T)??/4) in the next period of 4T/12 (T/12?t?5T/12) and also has “0” level in the remaining period of T/12. By using this pulse wave, a flat part is generated in a time width of T/12 with respect to a judgment point. It is thus possible to improve the immunity to the effects of digital signal jitter, obtain change judgment with a sole single pulse and reduce the circuit scale and the power consumption.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: May 10, 2005
    Assignee: NEC Engineering Ltd.
    Inventors: Noboru Kusama, Katsuya Kitada, Masahiro Akiyama, Takashi Nakagawa, Noriko Sato
  • Publication number: 20040174222
    Abstract: Phase modulating systems and methods for modulating the phase of a signal are based on a digital control signal used to select one of a plurality of carriers having different phase angles. In order to reduce the number of short delays that have to be applied to the original signal for obtaining the plurality of carriers, it is proposed that delay elements are arranged in a matrix form. Alternatively, phase shifts are realized by digital frequency dividers instead of by delay elements. Further alternatively or in addition, part of the required delay is approximated or realized by an analog phase shifter. In case the phase modulating system is to be employed for modulating signals of different frequencies, the digital control signal is scaled with a factor associated to the respective frequency in order to change the addressing range for selecting a carrier from among the plurality of carriers.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 9, 2004
    Applicant: Nokia Corporation
    Inventor: Seppo Rosnell
  • Publication number: 20040085148
    Abstract: In response to changes in an input binary digital signal, a 3rd order cosine pulse waveform, which, when it is changed in the increasing direction, has “0” level in a first period of T/12 (T corresponding to one-half cycle of the binary digital signal), is changed as a waveform of (h/2)(1+cos (3&pgr;t/T)+&pgr;/4) in the next period of 4T/12 (−5T/12≦t≦−T/12) and has an h (constant) level in the remaining period of T/12, and when it is changed in the reducing direction, has the h level in the first period of T/12, is changed as a waveform of (h/2)(1+cos(3&pgr;t/T)−&pgr;/4) in the next period of 4T/12 (T/12≦t≦5T/12) and also has “0” level in the remaining period of T/12. By using this pulse wave, a flat part is generated in a time width of T/12 with respect to a judgment point.
    Type: Application
    Filed: June 11, 2003
    Publication date: May 6, 2004
    Applicant: NEC Engineering, Ltd.
    Inventors: Noboru Kusama, Katsuya Kitada, Masahiro Akiyama, Takashi Nakagawa, Noriko Sato
  • Patent number: 6707408
    Abstract: A circuit for generating a pulse-width-modulated signal comprises a phase-locked loop (PLL) having a duty-cycle-insensitive phase comparator and a Sigma-Delta pulse width modulation circuit suitable for providing the voltage-controlled oscillator function of the PLL. Thereby, frequency of the signal generated is synchronized by the PLL to the specified frequency of a synchronization signal, and is thus independent of the duty cycle.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: March 16, 2004
    Assignee: STMicroelectronics S.A.
    Inventors: Yannick Guedon, Philippe Maige
  • Publication number: 20040047434
    Abstract: An apparatus and method for WGIO phase modulation are described. In one embodiment, the method includes the receipt of a high-speed data stream, encoded according to an 8b/10b code. Once received, a symbol rate of the data stream is reduced by a predetermined amount. Finally, once the symbol rate is reduced, a square wave carrier is phase modulated, using the reduced data rate data stream to generate a WGIO signal having double side band spectrum distributed either side of the square wave carrier. Accordingly, in one embodiment, a 3GIO signal may be phase modulated in order to fall within a spectrum that is not currently occupied by a wireless protocol, including, for example, Wireless Local Area Network (WLAN), Wireless Wide Area Networks (WWAN), global positioning systems (GPS), or the like in order to prevent interference therebetween.
    Type: Application
    Filed: September 10, 2002
    Publication date: March 11, 2004
    Inventor: Alan E. Waltho
  • Patent number: 6700449
    Abstract: An oscillation circuit uses a SAW oscillator and is able to control the oscillation frequency easily and correct the temperature characteristic of the oscillator so that an oscillation signal with high temperature stability can be generated. A clock signal CLK having a prescribed frequency difference from the ideal oscillation frequency is generated by the SAW oscillator 10. Register 30 is driven by a frequency-divided clock signal obtained by dividing the frequency of the clock signal at a predetermined frequency division rate. In-phase signal SI and quadrature signal SQ generated corresponding to the data Da that is incremented by a prescribed addition value F every period of the frequency-divided clock signal are output, and the clock signal is IQ-modulated on the basis of these signals. The frequency error of clock signal CLK can be corrected, and an output signal Sout having near ideal oscillation frequency can be obtained.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: March 2, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Kouzou Ichimaru
  • Patent number: 6683918
    Abstract: An apparatus for generating a modulated signal which includes a modulator operative for receiving a first signal and input data signals, and modulating the first signal in accordance with the input data signals so as to produce a modulated reference signal; a first frequency divider coupled to the modulator output, operative to reduce the frequency of the modulated reference signal by a predetermined factor; a signal generator operative to produce a second signal; a first mixer having a first input coupled to an output of the first frequency divider and a second input coupled to the output of the signal generator. The first mixer operates to frequency translate the modulated reference signal by an amount equal to the frequency of the second signal. In addition, the signal generator of the present invention contains a direct digital synthesizer coupled to a second phase lock loop which operates to up-convert the output signal of the DDS to the microwave region.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: January 27, 2004
    Assignee: Hughes Electronics Corporation
    Inventors: Thomas Jackson, David Bourner, Hai Tang
  • Patent number: 6665353
    Abstract: An apparatus comprising a quadrature network, an RF combining circuit and a weighting network. The quadrature network may be configured to generate a first and a second signal in response to an input signal. The RF combining circuit may be configured to generate an output signal comprising the input signal variably phase shifted from a selectable fixed phase starting point in response to the first signal, the second signal and one or more weighting signals. The weighting network may be configured to generate the weighting signals in response to a voltage control signal and one of four possible output selections. The voltage control signal may be configured to control the variable phase shift.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: December 16, 2003
    Assignee: Sirenza Microdevices, Inc.
    Inventor: John J. Nisbet
  • Patent number: 6621876
    Abstract: A signal source generates a phase-modulated output signal responsive to a phase-modulation signal. A phase splitter splits the phase-modulated output signal into two or more phase-offset output signals. A switch provides a selected one of the phase-offset output signals from the phase splitter to a transmit amplifier circuit. Large phase transitions in the phase-modulation signal are detected and reduced to decrease modulation bandwidth requirements at the signal source. When a phase transition in the phase-modulation signal is reduced, the switch is coherently switched from one phase-offset output signal to another to substantially restore the full phase transition in the output signal presented to the transmit amplifier circuit. In this manner, the transmit amplifier receives substantially the same phase transitions as are in the original phase-modulation signal.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: September 16, 2003
    Assignee: Ericsson Inc.
    Inventors: William O. Camp, Jr., Martin Isberg
  • Patent number: 6600382
    Abstract: A phase modulator for direct wideband linear phase modulation of a microwave continuous wave carrier signal which is suitable for many analog and digital phase or frequency modulation techniques. Linear phase modulation range in excess of 360 degrees is provided as a result of linear variation in the modulating signal. A conditioned baseband modulating signal is injected into a highly linear fractional range phase shifter, operating at a subharmonic of the desired output frequency. A nonlinear circuit is used to perform frequency and instantaneous phase multiplication, thus expanding the linear phase modulation range to greater than 360 degrees at the desired output frequency. With special conditioning of the baseband modulating signal, the phase modulator can be made frequency agile in ultra-small frequency steps, without requiring a stable, frequency agile reference signal or frequency synthesizer.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: July 29, 2003
    Assignee: Telecommunications Research Laboratories
    Inventor: David M. Klymyshyn
  • Publication number: 20030102938
    Abstract: A power balanced photonic RF phase shifter includes: a microwave drive; a phase controller operably connected to the microwave drive; and a linearizing arm connected in parallel with the microwave drive, the linearizing arm operating under a bias voltage, Vlin, that is controlled such that power variations of the photonic RF phase shifter are mitigated. In a preferred embodiment, the bias voltage, Vlin, is controlled to keep an optical phase of the photonic RF phase shifter at a constant value. In a preferred embodiment, the microwave drive, the phase controller and the linearizing arm comprise (three) Mach-Zehnder modulators.
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Hernan Erlig, Harold R. Fetterman, Joseph Michael
  • Patent number: 6518850
    Abstract: A method of modulating a microwave carrier and a modulating device are disclosed make it possible directly, onto a microwave carrier right at the operating frequency, to modulate an information signal from a digital bit-stream without the use of a conventional up-conversion chain or frequency multiplication after the modulation. A fast ferroelectric element is provided and operated with a variable voltage source controlled directly by the digital bit-stream representing the information to be modulated. The element can either be positioned between a microwave power amplifier and a radiating antenna device or even close in front of the antenna such that a collimated beam must pass through the modulation device. The element will then be able to introduce phase modulation of a passing microwave carrier.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: February 11, 2003
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: Kent Olof Falk, Ragnar Arvidsson
  • Patent number: 6512474
    Abstract: A method and system to create an ultra wideband (UWB) signal are disclosed. The UWB signal comprises a carrier frequency with each cycle reversing in phase. The UWB signal is generated from a limited number of high power narrow band amplifiers. Each amplifier's output signal is combined to produce the desired UWB signal. The combination may occur in a combiner network or in free space.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: January 28, 2003
    Assignee: Lockhead Martin Corporation
    Inventor: Albert Pergande
  • Publication number: 20030016762
    Abstract: Phase shift key modulators (100, 500, 1000, 1400, 1700) are provided in which a multiphase signal source (108, 1402, 1406-1412,1702) is used to generate a plurality of phases of a carrier signal. A selector (110) is used to select one phase or a sequence of phases of the carrier signal to represent each bit pattern that is received from a binary data source (102, 1422). The multiphase signal source preferably comprises a multiphase oscillator that includes a phase locked ring of variable propagation delay inverters (202). Preferably, a phase sequencer (502) is used to select a monotonic sequence of phases to represent each bit pattern. Preferably two phase selectors (110, 1004) are used to simultaneously select two phases of carrier signal, and a phase interpolator (1106) is used to generate a sequence of phases from the two phases selected by the two phase selectors (110, 1004).
    Type: Application
    Filed: June 14, 2002
    Publication date: January 23, 2003
    Inventors: Frederick L. Martin, Robert E. Stengel, Edwin E. Bautista
  • Patent number: 6459742
    Abstract: The successive symbols of a digital stream are converted into phase increments which are accumulated. A modulating phase is obtained by filtering the accumulated phase. A complex signal is produced whose argument represents the modulating phase. Two quadrature radio waveforms are respectively modulated on the basis of that complex signal, and a radio signal resulting from a combination of the two modulated waveforms is transmitted. The complex signal may be filtered digitally. Its real and imaginary components are converted into analog form, and are subjected to anti-aliasing analog filtering and then mixed with the two radio waveforms. Appropriate sizing of the digital filters provides efficient modulation with small envelope variations, causing little adjacent channel interference and a low error rate.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: October 1, 2002
    Assignee: EADS Defence and Security Networks
    Inventors: Gérard Marque-Pucheu, Albert Roseiro
  • Patent number: 6441694
    Abstract: A method and apparatus for generating digitally modulated signals in which a serial data stream of digital signals to be modulated (70) is provided, the serial data stream being converted into real and imaginary components (74) which are then converted into a complex polar signal (80) representing the serial data stream. A carrier of appropriate frequency is generated by an infinite impulse response filter (84,86) and the polar signal is mixed with the output of the infinite impulse response filter to provide a representation of the complex polar signal modulated at the frequency generated by the infinite impulse response filter (88). Subsequently the imaginary component of the resulting representation is stripped from the signal (90) and the real component of the resulting representation is applied to a digital to analog converter (92) to produce an analog version of the serial data stream.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: August 27, 2002
    Assignee: Motorola, Inc.
    Inventors: Randy L. Turcotte, Stephen Chihhung Ma, Matthew A. Ronning, Keith V. Warble, Peter O. Okrah
  • Patent number: 6420940
    Abstract: A transmitter has a phase modulator and a phase locked loop that has a relatively high powered voltage controlled oscillator. The phase locked loop has a phase sensitive detector for comparing a phase comparison frequency derived from the voltage controlled oscillator output with a phase modulated intermediate frequency carrier derived from the phase modulator. The phase modulator has a reference frequency source, means for deriving four quadrature phase components of the reference frequency produced by the source and phase selection means controlled by complex modulation means for deriving the phase modulated intermediate frequency carrier by random interpolation between the four quadrature components.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: July 16, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Brian J Minnis, Pascal Philippe
  • Patent number: 6385256
    Abstract: The invention relates to a method and arrangement for modulating a signal to be transmitted, the arrangement comprising an encoder and a frequency modulator. In order to enable high rate transmission in a flexible manner in a narrow frequency band, the encoder (104) is a differential encoder and before the frequency modulator, the arrangement comprises means for multiplying the signal to be transmitted by a factor of the form &pgr;/(2m), where m is a positive integer greater than one.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: May 7, 2002
    Assignee: Nokia Telecommunications Oy
    Inventors: Olli Piirainen, Kari Niemelä
  • Patent number: 6385233
    Abstract: A method 1100 and apparatus 1200 utilizing unbalanced modulation for providing users in a communication system with different amounts of effective communication energy according to their individual communication environments. A user's communication energy needs are determined based on conditions such as weather, signal-to-noise ratio, and cell location. Signals destined for a user are modulated according to the determined needs of the user. A signal destined for a user operating in a relatively friendly communication environment is modulated with less effective energy than a signal destined for a user operating in a relatively hostile communication environment.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: May 7, 2002
    Assignee: TRW Inc.
    Inventor: Harvey L. Berger
  • Patent number: 6298093
    Abstract: Apparatus for phase/frequency digital modulation includes a digital circuit receiving and processing a digital modulation input signal to generate a digital modulation control signal, a digital-to-analog converter coupled to the digital circuit converts the digital modulation control signal into an analog modulation control signal, and an RF/analog circuit is coupled to the digital-to-analog converter. The RF/analog circuit includes a voltage controlled oscillator to generate a modulated output signal in response to the analog modulation control signal, and a quadrature tuner coupled to the voltage controlled oscillator generates an in-phase tuner output and a quadrature tuner output in response to the modulated output signal. An analog-to-digital converter is coupled to the quadrature tuner and converts the in-phase tuner output and the quadrature tuner output to digital in-phase and quadrature tuner outputs.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: October 2, 2001
    Assignee: Raytheon Company
    Inventor: Thad J. Genrich
  • Patent number: 6255912
    Abstract: A modulated signal is translated to a broadcast frequency by a translation phase lock loop. In the translation phase lock loop the output frequency, which is the broadcast frequency, is mixed with a translation frequency, and the resulting translated frequency is compared to the modulated signal. If an amplitude modulator is inserted into the translation loop, the phase comparison/feedback nature of the phase lock loop will tend to cancel the phase noise introduced in the amplitude modulation process. Any other circuits placed within the loop will tend to have any phase noise they introduce, which is in the phase lock loop bandwidth, canceled by the loop.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: July 3, 2001
    Assignee: Conexant Systems, Inc.
    Inventors: Dana Vincent Laub, MohyEldeen Fouad Abdelgany, Aravind Loke
  • Patent number: 6246297
    Abstract: This device includes a frequency synthesizer (12) comprising two phase-locked loops (L1 and L2). The one comprises a low-pass filter (68) and the other a high-pass filter (49). The loop with the low-pass filter fixes the basic frequency of the synthesizer and the other corrects the phase noise. With this arrangement it is easy to apply a modulation frequency to the terminal (11) that is not disturbed by said loops if this modulation frequency is found to be higher than the cut-off frequency of the low-pass filter.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: June 12, 2001
    Assignee: U.S. Philips Corporation
    Inventor: Jean A. Chabas
  • Patent number: 6225864
    Abstract: An RF amplifier system and method are presented herein for varying the phase of an RF signal made up of a first train of pulses exhibiting a fixed frequency and fixed duty pulse cycle and wherein each pulse is of a fixed amplitude and duration. An integrator converts each pulse cycle of the RF signal into a dual slope symmetrical ramp signal. A first level signal and a second level signal are provided and are equally spaced from a reference level. The dual slope ramp signal is compared with the first and second level signals. A first pulse signal is provided for a time duration corresponding with the time duration that the ramp signal exceeds the first level signal and a second pulse signal is provided for a time duration corresponding with the time duration that the second level signal exceeds the ramp signal. First and second pulse generators respectively receive the first and second pulse signals and provide first and second trigger pulses.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: May 1, 2001
    Assignee: Harris Corporation
    Inventor: Ky Thoai Luu
  • Patent number: 6163232
    Abstract: A circuit for generating a modulated signal contains a reference oscillator for generating a reference signal, a digital synthesis circuit having a clock input and an addition value input for generating a synthesis signal, and a phase comparator for generating a tuning signal depending on the result of a comparison of the phase of the reference signal with the phase of the synthesis signal. An oscillator is provided, which is controlled in a manner dependent on the tuning signal and serves for generating the modulated signal and a further oscillator signal, from which a clock signal present at the clock input of the digital synthesis circuit can be derived. The circuit has a drive device, which generates a digital drive signal from carrier frequency and modulation signals. The drive signal being present at the addition value input of the digital synthesis circuit.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: December 19, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventor: Ludwig Hofmann
  • Patent number: 6122326
    Abstract: An apparatus for generating a modulated signal which includes a modulator operative for receiving a first signal and input data signals, and modulating the first signal in accordance with the input data signals so as to produce a modulated reference signal; a first frequency divider coupled to the modulator output, operative to reduce the frequency of the modulated reference signal by a predetermined factor; a signal generator operative to produce a second signal; a first mixer having a first input coupled to an output of the first frequency divider and a second input coupled to the output of the signal generator. The first mixer operates to frequency translate the modulated reference signal by an amount equal to the frequency of the second signal. In addition, the signal generator of the present invention contains a direct digital synthesizer coupled to a second phase lock loop which operates to up-convert the output signal of the DDS to the microwave region.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: September 19, 2000
    Assignee: Hughes Electronics Corporation
    Inventors: Thomas Jackson, David Bourner, Hai Tang
  • Patent number: 6032028
    Abstract: An FM transmitter includes I and Q channels, each deriving a baseband sinusoidal wave having a frequency determined by speech and/or music broadcast information amplitude and nominally having the same maximum amplitude. Each wave drives a different balanced mixer, each responsive to orthogonally phased carrier waves. Outputs of the mixers are added to derive a frequency modulated output wave. The channels, mixers, and circuitry associated with them tend to introduce unwanted components in the output wave. Offset, peak amplitude, phase and relative delay of the added mixed outputs are such that the unwanted components are substantially eliminated from the output wave. The sinusoidal waves are derived by DACs responsive to signals derived by a digital processor having a memory storing amplitude vs. phase position values and slope vs. phase position values that are combined in response to samples of the broadcast information.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: February 29, 2000
    Assignee: Continentral Electronics Corporation
    Inventors: Daniel L. Dickey, David L. Hershberger
  • Patent number: 6018275
    Abstract: A transmitter and a phase locked loop (30) for a transmitter are disclosed. The phase locked loop (30) upconverts the frequency of a baseband signal to a frequency for radio transmission. As well as the usual components, the phase locked loop (30) comprises a modulator (39) for modulating a baseband signal (f.sub.bb) onto a carrier (f.sub.ref /R) and forwarding the resultant modulated signal (f.sub.c) to one of the inputs of the phase detector (33). It also comprises a low pass filter (38) in its forward path between the phase detector (33) and the voltage controlled oscillator (34) for passing signals having baseband signal frequencies. A mixer (35) and main frequency divider (36) are provided in the feedback path to downconvert the transmit signal (f.sub.tx). This low division eliminates large amounts of multiplicative noise within the loop bandwidth, and therefore enables a large loop bandwidth to be used. Consequently, the settling time of the phase locked loop is improved.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: January 25, 2000
    Assignee: Nokia Mobile Phones Limited
    Inventors: Alan Christopher Perrett, Kenneth Peter Mason
  • Patent number: 5987072
    Abstract: In phase modulation of the quadrature signals of a multi-valued digital signal, when the signal state transition is .pi. [rad], the spectrum of a nonlinear amplifier extends beyond the transmission bandwidth, and the conversion distortion becomes conspicuous. A phase modulation apparatus includes a phase shifter (11) which receives a multi-valued digital signal, converts the digital signal into two quadrature signals such that a period for which the self phase shift amount of the digital signal on an orthogonal coordinate system becomes .pi./2 [rad] at the time of state transition of the digital signal is always obtained, and outputs the quadrature signals, a bandwidth limiting filter (12) which band-limits the outputs from the phase shifter (11), and a phase modulator (13) for phase-modulating the output from the bandwidth limiting filter (12). Since the state transition is .pi.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: November 16, 1999
    Assignee: NEC Corporation
    Inventor: Hisashi Kawabata
  • Patent number: 5939918
    Abstract: An electronic phase shifter splits an input signal into two signals whose amplitudes are set by a weighting circuit controlled by a phase shift control signal. Each of the two outputs of the weighting circuit is loaded with an RLC resonator, one tuned to a frequency lower than that of the input signal and one tuned to a frequency higher than that of the input signal. The loaded outputs are recombined in a vector summing network to synthesize the required phase shifted output signal. This technique permits implementation on a monolithic integrated circuit (MIC) with high gain at high frequencies (e.g. 10 GHz). It also allows a large dynamic range of operation and a large (i.e., greater than 90 degrees) controllable phase shift. This is accomplished without the use of variable reactance elements or any other components external to the MIC.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: August 17, 1999
    Assignee: Northern Telecom Limited
    Inventors: Steven Paul McGarry, Bruce C. Beggs, Rivaz Jamal
  • Patent number: 5905413
    Abstract: A digital modulator capable of obtaining a high FM modulation index and reducing the quantization noise without increasing the sampling frequency of an A/D converter of input voice. A phase variation .phi.(Ts) of the digital data (Ts is the sampling period) produced on the basis of the output from the A/D converter is divided by a predetermined integer N (N>1) by a divider, and is fed to an integrator. The integrator integrates the divided phase variation .phi.(Ts)/N for every time interval Ts/N, thereby producing a phase component .phi.(t) of the complex envelope of the modulation signal. The phase component .phi.(t) is resolved into cosine and sine components at the time interval Ts/N. The cosine and sine signals are D/A converted into analog signals which are quadrature modulated by a quadrature modulator.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: May 18, 1999
    Assignee: OKI Electric Industry Co., Ltd.
    Inventors: Tatsumasa Yoshida, Ryoichi Miyamoto
  • Patent number: 5894592
    Abstract: A wideband phase-lock loop frequency synthesizer (200) used in a radio transceiver capable of being reconfigured to operate in either a transmit, receive, or battery save mode. The wideband phase-lock loop frequency synthesizer (200) includes, a divide-by-two divider (205), quadrature detector (204), offset VCO (209) and offset mixer (207) for generating a quadrature phase modulated signal. Moreover, a programmable filter (211) is used for removing predetermined harmonic components of the offset mixed signal enabling the synthesizer to operate over a wide frequency range.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: April 13, 1999
    Assignee: Motorala, Inc.
    Inventors: Daniel E. Brueske, Gary A. Kurtzman, Richard B. Meador
  • Patent number: 5834985
    Abstract: A system and method are provided in which a phase modulation generator is used to modulate the output signal of a DDS with a modulation index, h/N. The phase-modulated. DDS output drives a PLL, which is an upconversion stage for a radio transmitter, with the modulated DDS signal as the PLL's reference. The output of the PLL will have a modulation index of h. Consequently, the frequency band of the DDS output is significantly narrower than the frequency band of upconversion stages used in conventional transmitters, and there are significantly less spurious emissions in the transmitted signal. However, a transmitter employing the present phase-modulated DDS-driven PLL topology can still transmit over a relatively wide frequency band.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: November 10, 1998
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Bo Sundeg.ang.rd
  • Patent number: 5831488
    Abstract: Data from an A/D converter is supplied to a fixed-point DSP. The fixed-point DSP adjusts the level of the data x so that computed results do not exceed .+-.1. In succession, for the i-th data x.sub.i, the fixed-point DSP computes cos .pi..multidot.x.sub.i when i=1, 5, . . . , -sin .pi..multidot.x.sub.i when i=2, 6, . . . , -cos .pi..multidot.x.sub.i when i=3, 7, . . . and sin .pi..multidot.x.sub.i when i=4, 8, . . . and outputs a digital phase modulated signal y(t) by outputting the computed results in order. Trigonometrical functions are computed by expanding them to a series so that the intermediate computed results do not exceed .+-.1.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: November 3, 1998
    Assignee: Icom Incorporated
    Inventors: Michio Nakajima, Weimin Sun
  • Patent number: 5751198
    Abstract: A digital modulator capable of obtaining a high FM modulation index and reducing the quantization noise without increasing the sampling frequency of an A/D converter of input voice. A phase variation .phi.(Ts) of the digital data (Ts is the sampling period) produced on the basis of the output from the A/D converter is divided by a predetermined integer N (N>1) by a divider, and is fed to an integrator. The integrator integrates the divided phase variation .phi.(Ts)/N for every time interval Ts/N, thereby producing a phase component .phi.(t) of the complex envelope of the modulation signal. The phase component .phi.(t) is resolved into cosine and sine components at the time interval Ts/N. The cosine and sine signals are D/A converted into analog signals which are quadrature modulated by a quadrature modulator.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: May 12, 1998
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Tatsumasa Yoshida, Ryoichi Miyamoto
  • Patent number: 5714917
    Abstract: A method for amplitude modulating signals, and a circuit that operates in accordance with the method. The method includes a first step of applying a modulating low frequency signal having a time-varying voltage to a tunable resonator. The tunable resonator exhibits parallel and series resonances at frequencies which shift as a function of the time-varying voltage. A second step includes applying an RF carrier signal having a frequency that is between the parallel resonant frequency and the series resonant frequency to the tunable resonator. In response thereto, the tunable resonator causes the RF carrier signal to be attenuated as a function of the time-varying voltage of the modulating low frequency signal. Also provided is a method for phase modulating signals, and a circuit that operates in accordance therewith. A first step includes applying a modulating low frequency signal having a time-varying voltage to a tunable resonator.
    Type: Grant
    Filed: October 2, 1996
    Date of Patent: February 3, 1998
    Assignee: Nokia Mobile Phones Limited
    Inventor: Juha Ella
  • Patent number: 5694094
    Abstract: A high frequency arbitrarily modulated signal and noise generator utilizes digital numerically controlled oscillators providing interbusiness directly to an adder and which are phase modulated. The digital adder feeds a digital analog converter, eliminating the need for a digital multiplier while providing amplitude or phase modulation with high resolution and at high processing speeds.
    Type: Grant
    Filed: June 12, 1996
    Date of Patent: December 2, 1997
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Hermann Meuth, Gunter Heinrichs, Alexander Schnase, Hans Stockhorst
  • Patent number: 5673287
    Abstract: The dual mode amplifier network of the present invention enables a radiotelephone to operate efficiently in both the U.S. Digital Cellular mode and the FM analog cellular mode. Multiple, switched branches (110 and 120) permit one branch (110) with an isolator (103) to be used in the in the U.S. Digital Cellular mode while the other branch (120) is switched out. In the analog mode, the transmit filter branch (120) is used while the isolator branch (110) is switched out.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: September 30, 1997
    Assignee: Motorola, Inc.
    Inventors: Christopher O. Colvis, Dale G. Schwent, Donald M. Yochem
  • Patent number: 5642384
    Abstract: A digital radio communication system employs an encoder for creating a set of encoded bits for each set of input bits. A mapper in the transmitter employs a modulation scheme which is constrained in the maximum phase angle difference between subsequently transmitted symbols. A constellation having a number of redundant symbols within the constrained maximum phase angle is chosen. An iterative search is performed to assign each of these symbols to a set of encoded bits such that the resultant coded scheme provides optimal bit error rate (BER) performance for the channel type. Configuring the encoder and mapper in this manner reduces the transmitted power envelope variation of the transmitted signal, thereby reducing the linearity requirements on a transmitter amplifier. Since transmitted power envelope variation is reduced, battery life of a mobile unit is extended.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: June 24, 1997
    Assignee: Ericsson Inc.
    Inventor: Rajaram Ramesh
  • Patent number: 5627500
    Abstract: A phase modulator circuit and method for generating an output signal having individually positionable edges is described. The phase modulator includes a programmable pulse generator, such as an interval counter, a delay, or a ring oscillator for producing the output signal, and a control value source, such as a memory, for delivering a sequence of control values to the generator. The control values determine the time between successive output pulses. A programmable interval counter includes a free running counter, the output of which is compared to a control value, preferably stored as a modulo data value, to generate an output pulse. A first programmable delay circuit includes a ring oscillator having plural delay lines for fine control of edge positioning. To fully synchronize the delay circuit to a coarse control interval counter, the clock input to the interval counter can be provided by the ring oscillator.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: May 6, 1997
    Assignee: Tektronix, Inc.
    Inventors: Dan H. Wolaver, Daniel G. Knierim
  • Patent number: 5600676
    Abstract: A digital radio communication system achieves low envelope variations in a transmitted signal by encoding digital information as phase angle differences in a transmitted radio signal and by constraining the maximum possible phase angle difference. This reduction in envelope variation relaxes the linearity requirements for a desired level of distortion suppression of a radio frequency (RF) amplifier means employed for transmitting the radio signal. In addition, lower envelope variations imply a higher average transmit power for a given maximum transmitted power, thereby extending range and battery life.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: February 4, 1997
    Assignee: Ericsson GE Mobile Communications Inc.
    Inventor: Rajaram Ramesh
  • Patent number: 5598130
    Abstract: An FM signal generator generates an FM signal obtained by frequency-modulating a reference frequency signal with a modulating frequency signal. A first mixer mixes the FM signal and an input signal having a predetermined carrier frequency and outputs a pair of frequency signals having sum and difference frequencies thereof. A first signal extracting unit extracts one of the pair of frequency signals as an intermediate frequency signal. A delay circuit delays the extracted intermediate frequency signal by a predetermined time. A second mixer mixes the delayed intermediate frequency signal and the FM signal and outputs a pair of frequency signals having sum and difference frequencies. A second signal extracting unit extracts the frequency signal of the pair of frequency signals which corresponds to the carrier frequency component as a phase-modulated signal. The modulation degree and modulation frequency in phase modulation for the phase-modulated signal can be set in wide ranges.
    Type: Grant
    Filed: October 5, 1995
    Date of Patent: January 28, 1997
    Assignee: Anritsu Corporation
    Inventors: Etsuji Mesuda, Osamu Tagiri
  • Patent number: 5534828
    Abstract: A digitized quadrature modulator receives an I-channel input digital signal and Q-channel input digital signal, and quadrature modulater the I-channel and Q-channel input digital signals by digital signal processing. The modulator has a digital filter (504) for shaping the spectrum of the I-channel and Q-channel input digital signals to provide I-channel and Q-channel output signals. The output signals have a predetermined phase shift between the I-channel and the Q-channel so as to compensate a phase difference based upon the quadrature modulation by the digital signal processing. Complementers (505a, 505b) for taking the complement of the I-channel and Q-channel output signals to provide I-channel and Q-channel complement signals. A multiplexer (505c) multiplexer the I-channel and Q-channel output signals from the digital filter and the I-channel and Q-channel complement signals from the complementers to provide a quadrature modulated output signal.
    Type: Grant
    Filed: July 18, 1995
    Date of Patent: July 9, 1996
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Okada, Tadashi Shirato
  • Patent number: 5521534
    Abstract: A numerically controlled oscillator (10) includes a difference engine (12) that receives a numerator signal (14) and a numerator minus denominator signal (16). The numerator signal (14) and the numerator minus denominator signal (16) represent constant input values for a desired fractional relationship between a sine wave output signal (34) and a sample clock input signal (20) of numerically controlled oscillator (10). The difference engine (12) generates a difference output signal (18) that is received by a phase adder (22) for adding either a one or a zero to a combination of the delta phase input signal (24) and a phase accumulator output signal (26). The difference engine (12) optimally distributes ones and zeros so as to minimize phase jitter in the output signal (34).
    Type: Grant
    Filed: June 21, 1995
    Date of Patent: May 28, 1996
    Assignee: DSC Communications Corporation
    Inventor: Paul M. Elliott
  • Patent number: 5517156
    Abstract: A digital phase shifter is provided which uses a direct digital synthesizer. The digital phase shifter is provided with a digital phase-shifted waveform signal generator in which a plurality of digital phase-shifted waveform signals having different phase shifts are stored. The generator outputs a digital phase-shifted waveform signal corresponding to a specified phase shift from a phase shift specifying section in synchronism with an oscillation signal from a PLL circuit. The output is converted to an analog form by a D/A convertor to generate a phase-shifted waveform.
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: May 14, 1996
    Assignee: Leader Electronics Corp.
    Inventor: Kenzo Ikuzawa
  • Patent number: 5491458
    Abstract: An oscillator generates a signal that is applied to one input of a phase shifter circuit. The other input of the phase shifter is connected to a source of a phase modulation signal. In response to the phase modulationsignal, the phase shifter provides a clock signal with a spread spectrum.
    Type: Grant
    Filed: November 8, 1994
    Date of Patent: February 13, 1996
    Inventors: Earl W. McCune, Jr., Narendar Venugopal
  • Patent number: 5481230
    Abstract: A phase modulator circuit and method for generating an output signal having individually positionable edges is described. The phase modulator includes a programmable pulse generator, such as an interval counter, or a delay for producing the output signal, and a control value source, such as a memory, for delivering a sequence of control values to the generator. The control values determine the time between successive output pulses.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: January 2, 1996
    Assignee: Tektronix, Inc.
    Inventors: Paul Chang, Dan H. Wolaver, J. Howell Mitchell, Jr.
  • Patent number: 5446760
    Abstract: A digital pulse shaping and phase modulation network is used for reducing out-of-band spectral energy. This network is used in conjunction with a NCO (numerically controlled oscillator) which includes a linear phase input port. This circuit converts rectangular data pulses into a user programmed shape. The shape pulses are then modulated onto the carrier via the linear phase port. Depending on the preprogrammed pulse shape, the out-of-band spectral energy is significantly reduced.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: August 29, 1995
    Assignee: Motorola, Inc.
    Inventors: Richard A. Bienz, Daniel J. Morelli
  • Patent number: 5446466
    Abstract: A phase modulator for a position indicating radio beacon which includes a digital memory circuit having a plurality of sets of stored numerical amplitude values with each set corresponding to a sine wave of a given phase and with at least three values in each set. A selection circuit selects phase values from the memory circuit in steps between a predetermined angular range in response to input data and, for each phase value, transfers the set of amplitude values in series at spaced apart time intervals to a digital to analog converter. A high frequency filter has an input coupled to an output of the digital to analog converter such that a sine wave is produced at an output of the high frequency filter.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: August 29, 1995
    Assignee: MPR Teltech Ltd.
    Inventor: Steven J. Bennett
  • Patent number: 5442327
    Abstract: An apparatus for providing electronically tunable biphase modulation including an input and a first switch having a first output, a second output and a first input coupled to the input. The first switch couples the first input to either the first output or to the second output in response to a modulating signal. The apparatus also includes a first signal path having a first phase shift and a second signal path having a second phase shift different than the first phase shift. The first signal path is coupled to the first output and the second signal path is coupled to the second output. The apparatus also includes a second switch having a first input coupled to the first signal path, a second input coupled to the second signal path and a terminal output.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: August 15, 1995
    Assignee: Motorola, Inc.
    Inventors: Beth A. Longbrake, Hugh R. Malone, Michael Dydyk