Impedance Matching Patents (Class 333/17.3)
-
Patent number: 12237821Abstract: A flexible multi-path RF adaptive tuning network switch architecture that counteracts impedance mismatch conditions arising from various combinations of coupled RF band filters, particularly in a Carrier Aggregation-based (CA) radio system. In one version, a digitally-controlled tunable matching network is coupled to a multi-path RF switch in order to provide adaptive impedance matching for various combinations of RF band filters. Optionally, some or all RF band filters include an associated digitally-controlled filter pre-match network to further improve impedance matching. In a second version, some or all RF band filters coupled to a multi-path RF switch include a digitally-controlled phase matching network to provide necessary per-band impedance matching. Optionally, a digitally-controlled tunable matching network may be included on the common port of the multi-path RF switch to provide additional impedance matching capability.Type: GrantFiled: October 23, 2023Date of Patent: February 25, 2025Assignee: pSemi CorporationInventors: Emre Ayranci, Miles Sanner, Ke Li, James Francis McElwee, Tero Tapio Ranta, Kevin Roberts, Chih-Chieh Cheng
-
Patent number: 12183548Abstract: Embodiments disclosed herein include a processing tool. In an embodiment, the processing tool comprises a power supply, an impedance matching network coupled to the power supply, a cathode, wherein the power supply is configured to supply power through the impedance matching network to the cathode, and a processing module, wherein the processing module is communicatively coupled to the power supply and the impedance matching network.Type: GrantFiled: May 5, 2022Date of Patent: December 31, 2024Assignee: Applied Materials, Inc.Inventor: David Coumou
-
Patent number: 12120610Abstract: A system can comprise a radio unit. The system can further comprise a power detector that is configured to determine characteristics of incident signal data traffic of the radio unit. The system can further comprise an actuator that is configured to modify an operational parameter of the radio unit, wherein modifying the operational parameter of the radio unit alters performance of the radio unit. The system can further comprise a hardware component that is configured to cause the actuator to modify the operational parameter of the radio unit based on analyzing the incident signal data traffic.Type: GrantFiled: April 22, 2022Date of Patent: October 15, 2024Assignee: DELL PRODUCTS L.P.Inventors: Tommy Ivarsson, Sewvanda Don, John Bradley Deforge
-
Patent number: 12041711Abstract: A communication device includes a communication connector, a communication control circuit, and a common mode filter. The communication control circuit controls communication that is established by way of the communication connector. The common mode filter is connected to each of the communication control circuit and the communication connector to relay the communication. Letting a wavelength corresponding to a clock frequency of an electric signal sent out from the communication control circuit be denoted as ?, an electrical length of a signal path at which resonance is produced by a reflected wave resulting from reflection of the electric signal by the common mode filter is closer to an even multiple of ?/2 than to an odd multiple thereof.Type: GrantFiled: March 9, 2021Date of Patent: July 16, 2024Assignee: Sony Interactive Entertainment Inc.Inventors: Tetsufumi Nozawa, Takatoshi Tsujikawa
-
Patent number: 11784027Abstract: An isolation system includes an input junction coupled to one or more RF power supplies via a match network for receiving radio frequency (RF) power. The isolation system further includes a plurality of channel paths connected to the input junction for distributing the RF power among the channel paths. The isolation system includes an output junction connected between each of the channel paths and to an electrode of a plasma chamber for receiving portions of the distributed RF power to output combined power and providing the combined RF power to the electrode. Each of the channel paths includes bottom and top capacitors for blocking a signal of the different type than that of the RF power. The isolation system avoids a risk of electrical arcing created by a voltage difference between an RF terminal and a non-RF terminal when the terminals are placed proximate to each other.Type: GrantFiled: January 11, 2022Date of Patent: October 10, 2023Assignee: Lam Research CorporationInventors: Hyungjoon Kim, Sunil Kapoor, Karl Leeser, Vince Burkhart
-
Patent number: 11777223Abstract: A waveguide 200 for a leaky wave antenna 20 is described. The waveguide 200 comprises a male member 210 (210A-210T) and a corresponding female member 220 (220A-220T) arranged to receive the male member 210 (210A-210T) therein. The waveguide is arrangeable in a first configuration and a second configuration. The male member 210 (210A-210T) is received in the female member 220 (220A-220T) spaced apart therefrom in the first configuration and the second configuration. The first configuration defines a first effective delay line. The second configuration defines a second effective delay line. The first effective delay line is different from the second effective delay line. The leaky wave antenna 20 is also described.Type: GrantFiled: April 8, 2019Date of Patent: October 3, 2023Assignee: HERIOT-WATT UNIVERSITYInventors: George Goussetis, Carolina Mateo-Segura, Samuel Rotenberg, Symon Podilchak, Constantin Constantinides
-
Patent number: 11720133Abstract: The disclosure features wireless power transfer systems that include a power transmitting apparatus configured to wirelessly transmit power, a power receiving apparatus connected to an electrical load and configured to receive power from the power transmitting apparatus, and a controller connected to the power transmitting apparatus and configured to receive information about a phase difference between output voltage and current waveforms in a power source of the power transmitting apparatus, and to adjust a frequency of the transmitted power based on the measured phase difference.Type: GrantFiled: August 24, 2021Date of Patent: August 8, 2023Assignee: WiTricity CorporationInventors: Andre B. Kurs, Morris P. Kesler, Noam Katz, Matthew Dillon, Herbert Toby Lou
-
Patent number: 11722017Abstract: An adaptive system for efficient and long-range wireless power delivery using magnetically coupled resonators responds to changes in a dynamic environment, and maintains high efficiency over a narrow or fixed frequency range. The system uses adaptive impedance matching to maintain high efficiency. The wireless power transfer system includes a drive inductor coupled to a high-Q transmitter coil, and a load inductor coupled to a high-Q receiver coil. The transmitter coil and receiver coil for a magnetically coupled resonator. A first matching network is (i) operably coupled to the drive inductor and configured to selectively adjust the impedance between the drive inductor and the transmitter coil, or (ii) is operably coupled to the load inductor and configured to selectively adjust the impedance between the load inductor and the receiver coil.Type: GrantFiled: July 15, 2021Date of Patent: August 8, 2023Assignee: University of Washington through its Center for CommercializationInventors: Joshua R. Smith, Benjamin H. Waters, Scott Wisdom, Alanson P. Sample
-
Patent number: 11716400Abstract: Disclosed is a content distribution system including a content server communicatively coupled to a data packet network and running one or more server-side components. A mobile computing device also communicatively coupled to the data packet network and running a client-side component may be configured to: (a) receive from said one or more server-side components a mobile device operational scenario definition; (b) activate or configure one or more monitoring routines in accordance with the device operational scenario definition; and (c) monitor said mobile computing device for an occurrence of the defined operating scenario using the activated or configured monitoring routines.Type: GrantFiled: August 11, 2016Date of Patent: August 1, 2023Assignee: IRONSOURCE LTD.Inventors: Arnon Harish, Sagi Ben Basat
-
Patent number: 11672192Abstract: An EMF detecting safety shovel has electromagnetic field (EMF) detection circuitry operably coupled to a blade thereof for measuring changes in EMF over time (AC fields) which may be used by spotters during excavation work for detection of subsurface power supply cables. The safety shovel may be further configured for classifying different types of subsurface power cables wherein the EMF detector circuit may be configured for discriminating between low and high voltage subsurface power cables when the edge of the blade is within a certain distance thereof, and the EMF detector circuit may be adjusted to adjust the distance for use with differing conduit diameters. The EMF detector circuit may also employ bandpass filtering to discriminate between single and three phase power supplies. In this way, the present safety shovel may provide indication of the presence of subsurface power supply cables and also the type thereof.Type: GrantFiled: November 6, 2018Date of Patent: June 13, 2023Assignee: BRP GROUP PTY LTDInventor: Brenton Davey
-
Patent number: 11533640Abstract: Certain aspects of the present disclosure provide techniques for adaptively tuning a wireless data transmission system in an electronic device, including: generating a plurality of measurements of an element of the wireless data transmission system in the electronic device; generating a determined use case for the electronic device based on a use case determination model and the plurality of measurements; determining one or more antenna settings associated with the determined use case; tuning the wireless data transmission system based on the one or more antenna settings; and transmitting data via the wireless data transmission system using the one or more antenna settings.Type: GrantFiled: November 1, 2019Date of Patent: December 20, 2022Assignee: QUALCOMM IncorporatedInventors: David Loweth Winslow, Diego Calzolari, Peyman Hesami
-
Patent number: 11447868Abstract: Embodiments of the disclosure relate to apparatus and method for a tunable plasma process within a plasma processing chamber. In one embodiment of the disclosure, a heater assembly for a plasma processing chamber is disclosed. The heater assembly includes a resistive heating element, a first lead coupling the resistive heating element to an RF filter and a tunable circuit element operable to adjust an impedance between the resistive heating element and the RF filter. Another embodiment provides a method for controlling a plasma process in a plasma processing chamber by forming a plasma from a process gas present inside the plasma processing chamber and adjusting an impedance between a resistive heating element and an RF filter coupled between the resistive heating element and a power source for the resistive heating element, while the plasma is present in the plasma processing chamber.Type: GrantFiled: May 26, 2017Date of Patent: September 20, 2022Assignee: Applied Materials, Inc.Inventors: Andrew Nguyen, Kartik Ramaswamy, Michael G. Chafin, Yang Yang, Anilkumar Rayaroth, Lu Liu
-
Patent number: 11398370Abstract: In one embodiment, a method, a method of manufacturing a semiconductor is disclosed. A monitored semiconductor manufacturing system (monitored system) is operated over a period of time, the monitored system comprising an impedance matching network coupled between a radio frequency (RF) source and a plasma chamber. First values for a parameter of the monitored system are received, the first values comprising different values for the parameter over the time period of operation of the monitored system, and a learning model is trained using the first values for the parameter. A substrate is then placed in a plasma chamber of a controlled semiconductor manufacturing system (controlled system). A characteristic of the controlled system is determined using a current value of the parameter and the trained learning model. An action is then taken upon the controlled system to address the determined characteristic.Type: GrantFiled: December 4, 2020Date of Patent: July 26, 2022Inventor: Imran Ahmed Bhutta
-
Patent number: 11283298Abstract: The present invention discloses a resonant wireless power transmitter circuit, which has an input impedance. The resonant wireless power transmitter circuit includes: a driver circuit coupled with a power supply, which includes at least a power switch; a switching resonant control circuit coupled with the driver circuit, such that the driver operates at a pre-determined or a variable resonant frequency; an adjustable impedance matching circuit coupled with the driver circuit, which includes at least a varactor; a transmitter circuit coupled with the impedance matching circuit and the driver circuit, which includes at least a transmitter coil; and an impedance control circuit coupled with the adjustable impedance matching circuit and the driver circuit, which provides an impedance control signal to control the reactance of the varactor, such that the input impedance of the resonant wireless power transmitter circuit is matched at the pre-determined or the variable resonant frequency.Type: GrantFiled: April 28, 2020Date of Patent: March 22, 2022Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Kuo-Chi Liu, Wei-Hsin Wei, Chih-Hsien Wang
-
Patent number: 11271306Abstract: A wiring board includes couplers and external connection terminals including a first terminal group including a first antenna terminal and a first monitor terminal respectively connected to an output terminal and a coupler terminal of a coupler, and a first spacer terminal between the first antenna terminal and the first monitor terminal, and a second terminal group including a second antenna terminal and a second monitor terminal respectively connected to an output terminal and a coupler terminal of a coupler, and a second spacer terminal between the second antenna terminal and the second monitor terminal.Type: GrantFiled: May 26, 2020Date of Patent: March 8, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Yukiteru Sugaya
-
Patent number: 11264207Abstract: An isolation system includes an input junction coupled to one or more RF power supplies via a match network for receiving radio frequency (RF) power. The isolation system further includes a plurality of channel paths connected to the input junction for distributing the RF power among the channel paths. The isolation system includes an output junction connected between each of the channel paths and to an electrode of a plasma chamber for receiving portions of the distributed RF power to output combined power and providing the combined RF power to the electrode. Each of the channel paths includes bottom and top capacitors for blocking a signal of the different type than that of the RF power. The isolation system avoids a risk of electrical arcing created by a voltage difference between an RF terminal and a non-RF terminal when the terminals are placed proximate to each other.Type: GrantFiled: April 22, 2020Date of Patent: March 1, 2022Assignee: Lam Research CorporationInventors: Hyungjoon Kim, Sunil Kapoor, Karl Leeser, Vince Burkhart
-
Patent number: 11257660Abstract: An apparatus for treating a substrate includes a process chamber having a treatment space therein, a support unit that supports the substrate in the treatment space, a gas supply unit that supplies a process gas into the treatment space, an RF power supply that supplies an RF signal to excite the process gas into plasma, and a matching circuit connected between the RF power supply and the process chamber. The matching circuit includes an impedance matching device that performs impedance matching and a harmonic removal device that removes harmonics caused by the RF power supply. The matching circuit operates in a first mode when the harmonics caused by the RF power supply are sensed and in a second mode when the harmonics caused by the RF power supply are not sensed.Type: GrantFiled: July 15, 2020Date of Patent: February 22, 2022Assignee: Semes Co., Ltd.Inventors: Daehyun Kim, Saewon Na, Sun Joo Park
-
Patent number: 11209488Abstract: An energy delivery system that combines multiple energy storage sources/systems of different chemical compositions or physical construction with a common control system that is configured to output energy from the system as a function of the different performance characteristics of each system, and is therefore capable of optimizing various operational characteristics of the combined system. The control system is configured to utilize a separate variable impedance network for each energy storage system to adjust the relative output current or discharge rate of each energy storage system, such as to optimize cycle life, depth of discharge, temperature, delivered power, and/or perceived safety of each energy storage system.Type: GrantFiled: August 4, 2020Date of Patent: December 28, 2021Assignee: Litech Laboratories, Inc.Inventors: Robert L. Myers, Alexei Tikhonski, James P. Novak
-
Patent number: 11183886Abstract: A method for wireless power delivery, preferably including: determining transmitter-receiver proximity, assessing transmission parameters, and/or transmitting power based on a transmission plan. A system for wireless power delivery, preferably including a plurality of receivers and one or more transmitters.Type: GrantFiled: August 13, 2019Date of Patent: November 23, 2021Assignee: Supply, Inc.Inventors: Gustavo Navarro, Varun Ramaswamy, Christopher Joseph Davlantes
-
Patent number: 11184047Abstract: Example embodiments relate to methods for adjusting an impedance of a tunable matching network, One embodiment includes a method for adjusting an impedance of a tunable matching network (TMN) connected between an antenna and a transceiver front-end. The TMN includes a receive path to provide signals from the antenna to a receiver during a receive (Rx) mode and a transmit path to provide signals from a transmitter to the antenna during a transmit (Tx) mode. The method includes tuning the TMN. The method also includes measuring values of an output DC-offset at the receiver while tuning the TMN. The output DC-offset is caused by a coupling between the transmitter and the receiver. Further, the method includes determining a maximum value of the output DC-offset from the measured output DC-offset values. Additionally, the method includes adjusting the impedance of the TMN by tuning the TMN to the output DC-offset maximum value.Type: GrantFiled: June 25, 2020Date of Patent: November 23, 2021Assignee: Stichting IMEC NederlandInventors: Minyoung Song, Yao-Hong Liu
-
Patent number: 11184040Abstract: Various embodiments of an electronic device for matching an antenna impedance may include an antenna, a wireless communication module, an impedance matching module, and at least one processor, wherein the at least one processor is configured to: select a first index corresponding to an impedance of the antenna among a plurality of sampled indexes through a first measurement in which a tuning code of the impedance matching module is configured as a reference code; identify a use environment corresponding to the first index; select a second index corresponding to the impedance of the antenna among the plurality of sampled indexes through a second measurement in which the tuning code of the impedance matching module is configured as the reference code and as a ground code corresponding to the use environment; and adjust the impedance of the antenna based on a tuning code corresponding to the second index.Type: GrantFiled: September 23, 2020Date of Patent: November 23, 2021Assignee: Samsung Electronics Co., Ltd.Inventors: Jongho Park, Yongbin Yoon, Hyunsoo Kim, Youngjun Park, Hyangbok Lee, Hyungjoon Yu, Youngkwon Lee
-
Patent number: 11119136Abstract: A multi-octave hybrid harmonic load pull tuner comprises a slabline with an adjustable signal coupler (wave-probe) and two multi-carriage slide screw tuners, one in the feedback signal injection loop and one as a pre-matching transformer. The wave-probe controls the static amplitude and phase of the feedback signal and the harmonic tuner in the loop controls the actual amplitude and phase of the re-injected signal at each harmonic frequency separately. De-embedding fast calibration and search routines allow identifying tuner states satisfying instantaneously impedance targets over the entire harmonic spectrum.Type: GrantFiled: June 19, 2019Date of Patent: September 14, 2021Inventor: Christos Tsironis
-
Patent number: 11039512Abstract: A defrosting system includes an RF signal source, an electrode proximate to a cavity within which a load to be defrosted is positioned, a transmission path between the RF signal source and the electrode, and an impedance matching network electrically coupled along the transmission path between the output of the RF signal source and the electrode. The system also includes power detection circuitry coupled to the transmission path and configured to detect reflected signal power along the transmission path. A system controller is configured to modify, based on the reflected signal power, an inductance value of the impedance matching network to reduce a ratio of the reflected signal power to the forward signal power. The impedance matching network includes a plurality of fixed-value, lumped inductors positioned within a fixed inductor area.Type: GrantFiled: March 10, 2017Date of Patent: June 15, 2021Assignee: NXP USA, Inc.Inventors: Xiaofei Qiu, James Eric Scott, Lionel Mongin, Jérémie Simon, Pierre Marie Jean Piel
-
Patent number: 10984985Abstract: In one embodiment, an impedance matching network includes an electronically variable reactance element (EVRE) comprising discrete reactance elements and corresponding switches. The switches are configured to switch in and out the discrete reactance elements to alter a total reactance provided by the EVRE. A monitoring circuit is operably coupled to the EVRE. For each discrete reactance element, the monitoring circuit monitors a value related to the discrete reactance element or its corresponding switch. Upon determining the monitored value exceeds a predetermined amount, the monitoring circuit the discrete reactance element of the EVRE from switching in or out.Type: GrantFiled: September 16, 2020Date of Patent: April 20, 2021Inventor: Anton Mavretic
-
Patent number: 10985735Abstract: An impedance matching device includes: a variable capacitor in which a plurality of series circuits of capacitors and semiconductor switches are connected in parallel; a calculation unit that calculates an impedance or a reflection coefficient on the load side using information regarding impedance acquired from the outside; and a control unit that determines ON/OFF states to be taken by the semiconductor switches included in the variable capacitor using the impedance or the reflection coefficient calculated by the calculation unit and turns on or off the semiconductor switches based on the determined states. The control unit changes an ON/OFF control timing between one and another of the semiconductor switches.Type: GrantFiled: December 20, 2019Date of Patent: April 20, 2021Assignee: DAIHEN CorporationInventor: Tatsuya Morii
-
Patent number: 10979095Abstract: A matching system of a communication device that incorporates teachings of the present disclosure may include, for example, a controller that executes instructions facilitating selection of a subset of usage scenarios according to a usage condition of a communication device. An impedance circuit is adjusted based on a subset of different tuning scenarios corresponding to the subset of usage scenarios to facilitate an impedance match to an antenna of the communication device. A group of operational parameters is obtained for each tuning scenario change between the subset of different tuning scenarios. Multiple operational parameters obtained at each of the subset of different tuning scenarios at different times are processed for each tuning scenario and a tuning scenario is selected based on a determination as to which of the processed operational parameters correlates with a predetermined performance goal. Additional embodiments are disclosed.Type: GrantFiled: August 30, 2019Date of Patent: April 13, 2021Assignee: NXP USA, Inc.Inventors: Carsten Hoirup, Keith Manssen, Matthew Russell Greene
-
Patent number: 10916409Abstract: Systems and methods for active control of radial etch uniformity are described. One of the methods includes generating a radio frequency (RF) signal having a fundamental frequency and generating another RF signal having a harmonic frequency. The harmonic frequency, or a phase, or a parameter level, or a combination thereof of the other RF signal are controlled to control harmonics of RF plasma sheath within a plasma chamber to achieve radial etch uniformity.Type: GrantFiled: June 18, 2018Date of Patent: February 9, 2021Assignee: Lam Research CorporationInventors: Alexei Marakhtanov, Felix Leib Kozakevich, John Holland, Bing Ji, Kenneth Lucchesi
-
Patent number: 10903570Abstract: Provided is a method for matching antenna impedance in a wireless communication system. The method includes determining an approximate reflection coefficient based on an input signal and an output signal of a bidirectional coupler connected to a signal path of an antenna; determining an antenna impedance matching parameter corresponding to the determined approximate reflection coefficient by using a lookup table; and performing antenna impedance matching based on the antenna impedance matching parameter.Type: GrantFiled: February 21, 2017Date of Patent: January 26, 2021Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Dae-Young Kim, Dong-Hyun Kang, In-Tae Kang, Jong-Han Lim
-
Patent number: 10811872Abstract: The present invention provides for an electronic functional device such as an isolator and arranged to offer configurable functionality for alteration of the function of the device, the device including wireless reception means for receiving wireless configuration data for the selective configuration of the device, and can also include wireless transmission means for the wireless transmission of data identifying its configured state.Type: GrantFiled: January 25, 2017Date of Patent: October 20, 2020Assignee: Eaton Intelligent Power LimitedInventor: Stewart John Parfitt
-
Patent number: 10804873Abstract: Automatic impedance matching measures the RF source frequency and RF load voltage, current and phase to determine a single match solution for a capacitive value of the variable capacitor and an inductive value for the variable inductor, and whether a shunt reactance is coupled to the RF source or RF load. Once the capacitance and inductance values for a match solution are determined they are contemporaneously selected without any iterative searching necessary for the match solution.Type: GrantFiled: April 9, 2020Date of Patent: October 13, 2020Assignee: PALSTAR, INC.Inventors: Paul Hrivnak, John L. Keith, Paul N. Katz
-
Patent number: 10804872Abstract: High power impedance tuners suffer from intense heating of the center conductor of the tuner airline (slabline), due to dissipated RF and DC power and, in addition of high electric field between the metallic tuning probe (slug) and the center conductor, also from associated thermal expansion causing bending of the center conductor and electrical short. If the thermal expansion cannot be accommodated by structural means, the center conductor is cooled using re-circulating low loss dielectric liquid (Mineral Oil), which fills the slabline and dissipates the heat. The cooling dielectric liquid is guided through an external refrigerator and recycled back into the slabline.Type: GrantFiled: February 4, 2019Date of Patent: October 13, 2020Inventor: Christos Tsironis
-
Patent number: 10769976Abstract: A pixel correction circuit includes a signal input circuit, a follower and a reading circuit. The signal input circuit is used to apply a first signal and a second signal to the follower in a correction mode. An input terminal of the follower is coupled to the signal input circuit. The follower is used to receive the first signal and the second signal sequentially, output a first follow-up signal dependent on the first signal, and output a second follow-up signal dependent on the second signal. The reading circuit is coupled to an output terminal of the follower, and reads the first follow-up signal and then generates a first read signal, and reads the second follow-up signal and then generates a second read signal. The reading circuit uses the first signal, the second signal, the first read signal and the second read signal to calculate a compensation gain.Type: GrantFiled: July 12, 2018Date of Patent: September 8, 2020Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Chihjen Cheng, Wei Liu, Pengpeng Wang
-
Patent number: 10756694Abstract: An electro-mechanical MHz range harmonic load pull tuner is made as a cascade of filter sections and independent tuning sections; the filter section includes three parallel series resonant circuits, each set including one inductor and one adjustable capacitor. The tuning section includes three parallel tuning modules; each module comprising three adjustable shunt air capacitors inter-connected using coaxial cables of appropriate length. Each capacitor is remotely adjustable to 10 or 20 values (settings); the tuner creates independently controllable impedances at three (harmonic) frequencies in octave size frequency bands between 5 and 150 MHz. An Error Function-based optimization algorithm allows impedance tuning at three frequencies independently, by optimized searching among the more than 209=512*109 possible combined tuner states. Stepper motors, drivers and control software are used to automate, calibrate and use the harmonic tuner for automated harmonic load pull measurement.Type: GrantFiled: July 19, 2018Date of Patent: August 25, 2020Inventor: Christos Tsironis
-
Patent number: 10749495Abstract: An apparatus for acquiring a desired response to an electromagnetic signal includes an adaptive network that receives a feedback signal and dynamically adjusts an electrical characteristic of the adaptive network in response to the feedback signal, the adaptive network electrically cooperating with an electrical component. A measurement device measures a parameter indicative of a combined response by the electrical component and the adaptive network to an impinging electromagnetic signal. A processor identifies, in accordance with the measured parameter, the feedback signal that reduces the difference between a predetermined response and the combined response to the electromagnetic signal. A feedback generator generates the identified feedback signal and conveys the generated feedback signal to the adaptive network.Type: GrantFiled: August 17, 2015Date of Patent: August 18, 2020Assignee: Keysight Technologies, Inc.Inventor: Douglas Baney
-
Patent number: 10720309Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching. The RF source provides at least two repeating, non-zero pulse levels, including a high-priority pulse level and a low-priority pulse level. The matching network comprises at least one EVC, which comprises discrete capacitors configured to switch in and out to provide a plurality of match configurations. Each EVC has a switching limit comprising a predetermined number of switches in or out of the EVC's discrete capacitors in a prior time interval. Upon determining that switching to a new match configuration would cause an EVC to reach the switching limit, the method determines whether the new match configuration is for the low- or high-priority pulse level. If for the low-priority pulse level, the method prevents the switching of the EVC. If for the high-priority pulse level, the method switches the EVC to the new match configuration.Type: GrantFiled: April 8, 2020Date of Patent: July 21, 2020Assignee: RENO TECHNOLOGIES, INC.Inventors: Tomislav Lozic, Bala Kandampalayam, Michael Ulrich, Imran Bhutta, Ronald Decker
-
Patent number: 10714314Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching including a) positioning a matching network between a radio frequency (RF) source and a plasma chamber; b) determining, from among the plurality of match configurations, a new match configuration to be used when there is an expected pulse level change from a first of the pulse levels to a second of the pulse levels; and c) sending a control signal to alter the at least one EVC to provide the new match configuration. The control signal is sent a predetermined time period before a time for the expected pulse level change, the predetermined time period being substantially similar to a time period for the EVC to switch between two match configurations of the plurality of match configurations.Type: GrantFiled: February 28, 2020Date of Patent: July 14, 2020Assignee: RENO TECHNOLOGIES, INC.Inventors: Imran Bhutta, Tomislav Lozic, Ronald Decker, Bala Kandampalayam
-
Patent number: 10715095Abstract: A radiofrequency (RF) filter includes an inductive element having multiple coil sections collectively forming an undivided coil of a cable of twisted magnetic wires. At least two adjacent coil sections have different turn pitches. The cable of twisted magnetic wires includes two wires per channel and is configured for at least one channel. The cable of twisted magnetic wires at a first end of the inductive element is configured for connection to an electrical component that is to receive power from a power supply. The cable of twisted magnetic wires at a second end of the inductive element is configured for connection to the power supply. Terminating capacitive elements are electrically connected between a reference ground potential and a respective wire of the cable of twisted magnetic wires at respective locations between the second end of the inductive element and the power supply.Type: GrantFiled: October 6, 2017Date of Patent: July 14, 2020Assignee: Lam Research CorporationInventors: Maolin Long, Alex Paterson
-
Patent number: 10696169Abstract: A charging station for an electrically powered vehicle has a connection for an electrical energy source, an inverter and an electronic coil connected to the inverter for wireless energy-transferring coupling of the electrically powered vehicle. The inverter is configured to apply an alternating electric voltage to the electronic coil in resonant operation. The electronic coil is connected to the inverter by way of a compensating circuit with a settable passive electronic energy storage device. The compensating circuit is configured to set a frequency of the alternating voltage by means of the settable passive electronic energy storage device.Type: GrantFiled: September 29, 2014Date of Patent: June 30, 2020Assignee: Siemens AktiengesellschaftInventors: Manuel Blum, Thomas Komma, Mirjam Mantel, Monika Poebl
-
Patent number: 10700719Abstract: A system that incorporates teachings of the present disclosure may include, for example, determining an operational criteria associated with a modulation type of a signal modulation. A single write command is generated for applying a group of tuning steps to a matching network of a mobile communication device. The group of tuning steps are determined according to the operational criteria associated with the modulation type of the signal modulation. The single write command is transmitted to a switch controller coupled to the matching network for adjusting settings of the group of switches according to the group of tuning steps to generate a desired tuning value without multiple write commands. Additional embodiments are disclosed.Type: GrantFiled: July 16, 2019Date of Patent: June 30, 2020Assignee: NXP USA, Inc.Inventors: Matthew Greene, Carsten Hoirup, Keith Manssen
-
Patent number: 10699880Abstract: In one embodiment, the invention can be an impedance matching network including an input configured to operably couple to a radio frequency (RF) source; an output configured to operably couple to a load; a first variable capacitor; a second variable capacitor; and a third capacitor in series with the second variable capacitor and reducing a voltage on the second variable capacitor.Type: GrantFiled: June 29, 2016Date of Patent: June 30, 2020Assignee: RENO TECHNOLOGIES, INC.Inventor: Michael Gilliam Ulrich
-
Patent number: 10693208Abstract: High GAMMA disc-shaped tuning probes for high frequency electro-mechanical slide screw impedance tuners use a notch slug concept, whereby the head of the tuning probes is split in two distinct lobes in a static pre-matching configuration. The disc-probes rotate around an axis perpendicular to the axis of the slotted airline of the tuner and do not require a cumbersome vertical axis. The rotation moves the tuning lobes gradually into the slot of the airline and controls the amplitude of the reflection factor through increasing coupling. The disc-probes comprise two diametrical opposite tuning lob assemblies designed to create high reflection (GAMMA) at two distinct frequency bands, one for high end frequencies and one for low end frequencies.Type: GrantFiled: January 23, 2019Date of Patent: June 23, 2020Inventor: Christos Tsironis
-
Patent number: 10686239Abstract: A passive slide screw load pull tuner structure can be used on-wafer, in millimeter-wave frequencies from 25 to 110 GHz and above. It uses special tuning probe brackets and a short slabline mounted below the tuner housing, which holds the control gear. The tuner is mounted under an angle matching the angle of the wafer-probe, is connected directly of the wafer-probe and ensures optimum tuning range.Type: GrantFiled: September 13, 2019Date of Patent: June 16, 2020Inventor: Christos Tsironis
-
Patent number: 10686475Abstract: A method is provided for controlling the matching of an antenna to a transmission path. The transmission path includes an amplifier stage coupled at an input or at an output to the antenna and to a resistive load. The method includes performing a checking phase by measuring a first current temperature at or in proximity of the antenna and a second current temperature at or in proximity of the resistive load, triggering a matching of the impedance seen at the input or at the output of the amplifier stage in the presence of a first condition involving the first and second current temperatures, and then stopping the matching of the impedance in the presence of a second condition involving the second current temperature.Type: GrantFiled: May 5, 2017Date of Patent: June 16, 2020Assignee: STMicroelectronics SAInventors: Vincent Knopik, Boris Moret, Eric Kerherve
-
Patent number: 10679824Abstract: In one embodiment, the invention can be a variable capacitor that includes a plurality of capacitors operably coupled in parallel, and a plurality of switches coupled in series with corresponding capacitors. The plurality of capacitors can include first capacitors increasing in capacitance, and second capacitors having a substantially similar capacitance. Further, for each first capacitor increasing in capacitance, the change to the total capacitance that is provided by the first capacitor when its corresponding switch is closed can increase by a factor of about two.Type: GrantFiled: March 6, 2017Date of Patent: June 9, 2020Assignee: RENO TECHNOLOGIES, INC.Inventor: Michael Gilliam Ulrich
-
Patent number: 10680574Abstract: Automatic impedance matching measures the RF source frequency and RF load voltage, current and phase to determine a single match solution for a capacitive value of the variable capacitor and an inductive value for the variable inductor, and whether a shunt reactance is coupled to the RF source or RF load. Once the capacitance and inductance values for a match solution are determined they are contemporaneously selected without any iterative searching necessary for the match solution.Type: GrantFiled: July 25, 2019Date of Patent: June 9, 2020Assignee: PALSTAR, INC.Inventors: Paul Hrivnak, John L. Keith, Paul N. Katz
-
Patent number: 10679823Abstract: In one embodiment, an impedance matching network includes at least one electronically variable capacitor (EVC), each EVC comprising discrete capacitors having corresponding switches, the switches configured to switch in and out the discrete capacitors to alter a total capacitance of the EVC. Each switch includes a first terminal operably coupled to the corresponding discrete capacitor, a second terminal, and a switching circuit coupled between the first terminal and the second terminal, the switching circuit comprising a switching transistor. A tuning inductor is coupled parallel to the switching circuit. A value for the tuning inductor enables the tuning inductor to cancel a cumulative parasitic capacitance of the switching circuit.Type: GrantFiled: January 23, 2019Date of Patent: June 9, 2020Assignee: RENO TECHNOLOGIES, INC.Inventors: Anton Mavretic, Ian M. Costanzo
-
Patent number: 10680463Abstract: The present invention discloses a resonant wireless power transmitter circuit, which has an input impedance. The resonant wireless power transmitter circuit includes: a driver circuit coupled with a power supply, which includes at least a power switch; a switching resonant control circuit coupled with the driver circuit, such that the driver operates at a pre-determined or a variable resonant frequency; an adjustable impedance matching circuit coupled with the driver circuit, which includes at least a varactor; a transmitter circuit coupled with the impedance matching circuit and the driver circuit, which includes at least a transmitter coil; and an impedance control circuit coupled with the adjustable impedance matching circuit and the driver circuit, which provides an impedance control signal to control the reactance of the varactor, such that the input impedance of the resonant wireless power transmitter circuit is matched at the pre-determined or the variable resonant frequency.Type: GrantFiled: April 10, 2016Date of Patent: June 9, 2020Assignee: RICHTEK TECHNOLOGY CORPORATIONInventors: Kuo-Chi Liu, Wei-Hsin Wei, Chih-Hsien Wang
-
Patent number: 10652051Abstract: A load pull system and method for calibrating the system and conducting measurements on a Device Under Test (DUT). The system includes at least one passive tuner; and a modulated signal connected to the DUT input. The passive tuner is calibrated at multiple frequencies within the modulation bandwidth of the modulated signal. The impedance and measured quantities such as power at the DUT reference plane are determined using tuner s-parameters at multiple frequencies within the modulation bandwidth.Type: GrantFiled: August 28, 2018Date of Patent: May 12, 2020Assignee: Maury Microwave, Inc.Inventors: Gary R. Simpson, Sathya Padmanabhan, Steven M. Dudkiewicz, M. Tekamül Büber, Giampiero Esposito
-
Patent number: 10643822Abstract: An impedance matching method and device for a pulsed RF power supply are provided. The impedance matching method includes: a coarse adjustment step: performing adjustment based on a current load impedance to make a current reflection coefficient |?| no greater than an ignition reflection coefficient |?t|, and setting a current position as an ignition position; a fine adjusting step: keeping the ignition position unchanged, performing real-time adjustment based on the current load impedance to realize impedance matching, and setting a current position as a matching position; and a switching step: after impedance matching is realized for the first time, switching between the ignition position and the matching position in different pulse time durations of each subsequent pulse period to realize impedance matching in different pulse periods. The impedance matching method and device may improve matching efficiency, process stability and utilization of the pulsed RF power supply.Type: GrantFiled: April 29, 2015Date of Patent: May 5, 2020Assignee: BEIJING NAURA MICROELECTRONICS EQUIPMENT CO., LTD.Inventor: Xiaoyang Cheng
-
Patent number: 10580623Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.Type: GrantFiled: November 12, 2014Date of Patent: March 3, 2020Assignee: Applied Materials, Inc.Inventors: Zheng John Ye, Ganesh Balasubramanian, Thuy Britcher, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez, Kwangduk Douglas Lee, Martin Jay Seamons, Bok Hoen Kim, Sungwon Ha