Abstract: Embodiments of a tri-stable flexure mechanism are described where a resilient component is present that serves as both a structural component in the kinematic chain of the mechanism and as energy storing component of the mechanism. The resilient component maintains a movable arm and an input link in either a first stable state or a second stable state when the ends of the resilient component are held in place so that the resilient component has a state of high elastic strain energy. In a third stable state, where the resilient component is in a relaxed state of lower elastic strain energy, the mechanism may be in a tripped state distinct from the closed and open states.
Type:
Grant
Filed:
February 18, 2014
Date of Patent:
August 2, 2016
Assignee:
General Electric Company
Inventors:
Stefan Rakuff, Donald S. Farquhar, Ganesh Krishnamoorthy
Abstract: A switch module applied for a power supply system is disclosed. The switch module comprises a power switch, an insulating member, a surge absorber and a pyrocondensation belt. The power switch is connected with the power supply system, the insulating member is set on the power switch, the surge absorber is electrically connected with the power switch and adjacent to the power switch, the pyrocondensation belt is connected with the surge absorber and the insulating member. The pyrocondensation belt shrinks with a temperature of the surge absorber. When the insulating member is in the initial state, the insulating member does not affect the power switch. The insulating member makes the power switch off when the shrinkage degree of the pyrocondensation belt develops enough to block the power switch from being on.
Abstract: A thermal overload relay has a case, a main bimetal bending upon detection of an overload current, a release lever rotatably supported by an adjusting link and rotating according to a shifter displaced in response to the bending of the main bimetals, and a contact reversing mechanism for change-over contacts responsive to a rotation of the release lever. The main bimetal, release lever and contact reversing mechanism are disposed in the case. The contact reversing mechanism has a movable plate, and a reversing spring stretched between the other side of the movable plate and a spring support. The other end of the movable plate and the spring support is positioned opposite a support point. The release lever has a release lever supporting part, a reversing spring pushing part, a cam contact part, and a displacement input part, in which the release lever supporting part is pivoted on the adjusting link.
Type:
Grant
Filed:
March 3, 2010
Date of Patent:
May 8, 2012
Assignee:
Fuji Electric FA Components & Systems Co., Ltd.
Abstract: A thermal overload relay has a case, a main bimetal bending upon detection of an overload current, a release lever rotatably supported by an adjusting link and rotating according to a shifter displaced in response to the bending of the main bimetals, and a contact reversing mechanism for change-over contacts responsive to a rotation of the release lever. The main bimetal, release lever and contact reversing mechanism are disposed in the case. The contact reversing mechanism has a movable plate, and a reversing spring stretched between the other side of the movable plate and a spring support. The other end of the movable plate and the spring support is positioned opposite a support point. The release lever has a release lever supporting part, a reversing spring pushing part, a cam contact part, and a displacement input part, in which the release lever supporting part is pivoted on the adjusting link.
Type:
Application
Filed:
March 3, 2010
Publication date:
September 30, 2010
Applicant:
FUJI ELECTRIC FA COMPONENTS & SYSTEMS CO., LTD.
Abstract: A switch includes a body and a switch member pivotably engaged with the top opening of the body. A link has one end pivotably connected to a first end of the switch member and the other end of the link is movably received in a guide path is defined in the body. The second end of the link is located at an inner periphery of the guide path when the switch member is in “ON” position to let two contact points be in contact with each other, and a space is defined between the second end of the link and the outer periphery of the guide path so that the second end of the link is allowed to move toward the outer periphery when a contact portion is deformed upward when overloaded.
Abstract: A safety switch is constructed to include two metal contact plates, a bimetal contact plate suspended from one metal contact plate, a switching handle, a push and pull bar pivoted to the switching handle and driven by the switching handle to move the bimetal contact plate between the “On” position and the “Off” position, and a S-shaped metal spring plate adapted for supporting and guiding movement of the push and pull bar for enabling the bimetal contact plate to trip off automatically upon an overload despite of the positioning of the push and pull bar or the switching handle.
Abstract: A thermal overload relay includes an inversion operation mechanism that is driven by a releasing lever to open or close a contact. The inversion operation mechanism includes a movable plate supported at one end so as to be inverted, and a tension spring for driving the movable plate for inversion. The releasing lever presses a middle of a wire of the tension spring to drive the movable plate for inversion. A projection is formed in the middle of the wire of the tension spring to contact with the releasing lever. Thus, a stable inversion operation can be made regardless of the positioning of an adjustment dial.
Abstract: An overload-protection push-button switch with automatic resetting mechanism of pull-push type is disclosed. The switch is characterized in that a pull-push rod and a floating rocker are used to transmit a force on a pressing stem to a conducting leaf. Moreover, a guiding mechanism including a guider and a guided-member on the floating rocker is used to guide the moving direction of the floating rocker under the action of the pull-push rod. Thus, the direction force on the pressing stem can be different from the moving direction of the nose of the floating rocker by which the conducting leaf is actuated. Moreover, in case of overload, a positioning unit for positioning the pressing stem will be unlocked and thus the pressing stem can automatically return to its reset position. In view of the above, a push-button switch that has simple and easily-assembled structure as well as an operation of exactly tripping is available.
Abstract: An overload protective circuit breaker switch including: a first fixed contact and a second fixed contact adapted to connect an electric appliance to power supply; a movable contact adapted to form with the first fixed contact and the second fixed contact a normal open contact; an actuator controlled by the user to turn about an axis; a lever coupled to and turned with the actuator, the lever being turned about a first bearing point, when the overload protective circuit breaker switch is not at an overload status, to move the movable contact between a normal open contact position in which the movable contact form with the first fixed contact and the second fixed contact a normal open contact, and a normal close contact position in which the movable contact form with the first fixed contact and the second fixed contact a normal close contact; and a release mechanism adapted to move the lever, the release mechanism releasing the lever from the first bearing point to a second bearing point upon an overload, caus
Abstract: A thermally-responsive current-sensitive switch having a molded plastic body containing first and second terminals in the form of metal stampings and having an internal chamber wherein a leaf spring and a snap-acting bimetallic blade of the same shape are together spot-welded to one of the terminals with the leaf spring underlying the bimetal in registry therewith and at its other end carrying a sliver contact which cooperates in switching operations with the other switch terminal. In one embodiment, the spring bias of the leaf spring tends to open the switch and the force generated by the bimetal in its contacts-closing movement is sufficient to overcome the spring bias of the leaf spring, whereas in another embodiment the leaf spring develops either a neutral force or a contacts-opening force. The leaf spring electrically shunts the bimetal, whereby the current-carrying capability of the switch is increased and different switch specifications can use the same bimetal with different leaf springs.
Abstract: An overcurrent breaker switch includes an upper housing including a lever block with a push rod and a lower housing engaged with the upper housing. First and second blades are mounted to the lower housing, the second blade having a dual metal plate mounted thereon. A lever plate base is mounted in the lower housing and has a first end for releasable electrical connection with the dual metal plate and a second end. A conductive lever plate is pivotally mounted to the second end of the lever plate base and actuatable by the push rod under operation of the lever block. The conductive lever plate has a first end for releasable electrical connection with the first blade and a second end on which a pressing piece is formed. An insulating plate is mounted between the lever plate base and the dual metal plate and has an insulating piece below the pressing piece of the conductive lever plate. A spring is mounted under the insulating piece to provide an upward force.
Abstract: The present invention is an electric switch for switching individual phases of multi-phase AC electric power. The switch has at least one pair of fixed terminals with each terminal of the pair having an ear extending upward in a vertical plane. The switch also has a conducting device with contacts that extend downward in the vertical plane corresponding to the fixed terminals. Moving contacts are mounted to an axially translatable contact carrier and engage contemporaneously in the vertical plane with the contacts from the conducting device and the fixed terminals when the contact carrier slides into an "on" position. Electrical power is then able to flow from the line-side fixed terminal, through the conducting device, to the load-side terminal. The contact carrier is translated axially by the drive mechanism. The drive mechanism employs over-center shifting and lost-motion switching technology to prevent the switch from being in a partially "on" position.
Type:
Grant
Filed:
December 12, 1991
Date of Patent:
August 11, 1992
Assignee:
Allen-Bradley Company, Inc.
Inventors:
Robert E. Borchardt, Eberhardt H. Schreiber, Grant W. Nelson