Acting Sequentially Patents (Class 341/161)
  • Patent number: 12261619
    Abstract: An apparatus includes multiple analog to digital converters. Individual analog to digital converters are configured to produce a digital output from an analog input and configured to compute a least significant bit of the digital output by comparing an internal residual voltage for determination of the least significant bit and a residual voltage from another analog to digital converter.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: March 25, 2025
    Assignee: International Business Machines Corporation
    Inventors: Chia-Yu Chen, Ankur Agrawal, Andrea Fasoli, Kyu-hyoun Kim
  • Patent number: 12261620
    Abstract: An example apparatus includes: controller circuitry configured to: provide switch signals to capacitive digital to analog converter (C-DAC) circuitry, the C-DAC circuitry including switches; configuring the switches into a third configuration begin an Auto Zero (AZ) phase with a third switch in a closed state; configuring the switches into a fourth configuration to repeat the transition of the third switch to the open state corresponding to a first configuration; configuring the switches into a fifth configuration to repeat the transition of a first switch and a second switch to the open state corresponding to a second configuration; configuring the switches into a sixth configuration to repeat the transition of the third switch to the closed state corresponding to a second configuration; and performing an AZ decision with the switches in the sixth configuration.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: March 25, 2025
    Assignee: Texas Instruments Incorporated
    Inventors: Rajashekar Goroju, Prasanth K, Dileepkumar Ramesh Bhat, Rakul Viswanath, Sravana Kumar Goli, Rahul Sharma
  • Patent number: 12250002
    Abstract: A SAR ADC includes: a sample-hold (S/H) circuit sampling an input voltage to generate a S/H output signal; a DAC generating a DAC output signal; a comparator comparing the DAC output signal with the S/H output signal to generate a comparison output signal; a SAR combinational digital circuit group; a multiplexer circuit; and a plurality of registers for registering the comparison output signal as register output signals and outputting as an output signal of the SAR ADC. The SAR combinational digital circuit group generates a plurality of first and second SAR output signals based on the register output signals. The multiplexer circuit is controlled by on the register output signals to select among the first and the second SAR output signals as a plurality of multiplexer output signals for sending to the DAC. A capacitor coupling relationship of the DAC is controlled by the multiplexer output signals.
    Type: Grant
    Filed: March 28, 2023
    Date of Patent: March 11, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Hua Chen, Yu-Yee Liow, Chih-Wei Wu, Wen-Hong Hsu, Hsuan-Chih Yeh, Pei-Wen Sun
  • Patent number: 12212329
    Abstract: A device (e.g., SAR ADC device) include a DAC circuit and generates a digital output based on logic circuitry that includes SAR logic. Additional logic circuitry includes delta modulation circuitry and dynamic element matching circuitry. The delta modulation circuitry provides several digital outputs of the SAR DAC, while the dynamic element matching circuitry selects a different set of capacitors from the DAC circuit. Each cycle is added together and averaged, and then added to the digital output from the SAR logic.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: January 28, 2025
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Kareem Abdelghani Ibraheem Mohamed Ragab, Xiaofeng Lin, Darwin Cheung, Chi Mo, Vinay Chandrasekhar, Jungwoo Song, Xicheng Jiang
  • Patent number: 12206424
    Abstract: An example analog-to-digital converter (ADC) comprising: sample and hold circuitry coupled to an analog input; a first sub-ADC coupled to the sample and hold circuitry; a multiplying digital-to-analog converter (M-DAC) coupled to the first sub-ADC; summation circuitry coupled to the sample and hold circuitry and the M-DAC; an amplifier coupled to the summation circuitry; a second sub-ADC coupled to the amplifier; and reference generation circuitry coupled to the first sub-ADC, the M-DAC, and the second sub-ADC, the reference generation circuitry including: reference voltage circuitry coupled to the M-DAC; a first resistor coupled to the reference voltage circuitry; a second resistor coupled to the first resistor; and a capacitor coupled in parallel to the second resistor by a switch.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: January 21, 2025
    Assignee: Texas Instruments Incorporated
    Inventors: Prasanth K, Rahul Sharma
  • Patent number: 12181610
    Abstract: A direct TOF optic sensor is based on CMOS pixels, wherein a pixel structure comprises a photodetector PhD, a non linear resistance R and a transfer MOS transistor in series, and delivers an output signal at a sensing node SN between the resistor and the transfer transistors. The photogenerated current is continuously drained into the nonlinear resistance and converted to a voltage signal by the RC circuit formed by the nonlinear resistance and a capacitance at the sense node SN. The voltage signal is continuously transmitted to a readout circuitry 300 having a fast analog to digital converter. The RC circuit within the pixel structure has a low pass filtering function and a high frequency integrating function, so that noise, in particular thermal noise due to the nonlinear resistance is mainly shifted in a low frequency range, separate from a high frequency range of the main signal component corresponding to a pulse light signal received at the photodetector.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: December 31, 2024
    Assignee: TELEDYNE INNOVACIONES MICROELECTRONICAS SLU
    Inventors: Rafael Dominguez Castro, José Ángel Segovia De La Torre, Ana Gonzalez Marquez, Rafael Romay, Amanda Jiménez Marrufo
  • Patent number: 12176915
    Abstract: A time signal processor based on multiplying phase interpolation circuit is provided. The time signal processor includes a time signal processing circuit, a calibration circuit and a digital logic circuit, and realizes a time input signal-digital output signal conversion process. The time signal processing circuit quantizes an input time signal to obtain a series of digital code output; feedback compensation is carried out on the time signal processing circuit through the calibration circuit; and finally, the digital logic circuit completes final digital output.
    Type: Grant
    Filed: June 13, 2024
    Date of Patent: December 24, 2024
    Assignee: BEIJING UNIVERSITY OF TECHNOLOGY
    Inventors: Zhijie Chen, Xiaoyu Zhang, Peiyuan Wan
  • Patent number: 12166499
    Abstract: An analog-to-digital converter (“ADC”) includes an input terminal configured to receive an analog input voltage signal. A first ADC stage is coupled to the input terminal and is configured to output a first digital value corresponding to the analog input voltage signal and a first analog residue signal corresponding to a difference between the first digital value and the analog input signal. An inverter based residue amplifier is configured to receive the first analog residue signal, amplify the first analog residue signal, and output an amplified residue signal. The amplified residue signal is converted to a second digital value, and the first and second digital values are combined to create a digital output signal corresponding to the analog input voltage signal.
    Type: Grant
    Filed: August 21, 2023
    Date of Patent: December 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Martin Kinyua
  • Patent number: 12107594
    Abstract: A pipeline analog to digital converter includes a “k” number of stages and an output data register. A first stage of the “k” number of stages is configured to receive an analog differential input signal and produce a first digital output and a first single ended analog output. A second stage of the “k” number of stages is configured to receive the first single ended analog output and produce a second digital output. The output data register is configured to generate an output digital value based on the first and second digital outputs.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: October 1, 2024
    Assignee: Dunmore Circuits, LLC
    Inventor: Larry L. Harris
  • Patent number: 12052028
    Abstract: A SAR ADC and an electronic device are disclosed. The SAR ADC includes a read clock generation circuit, configured to connect to a first output terminal and a second output terminal of a dynamic comparator, and generate a read clock signal for reading a first or a second comparison result based on the first and the second comparison result received from the dynamic comparator. The invention reads the comparison result using the read clock signal generated by grabbing the output of the comparator, and can improve the overall analog-to-digital conversion speed of the SAR ADC. Further, the present invention can detect the occurrence of metastable state of the comparator by judging that the output of the comparator has no pulse, and read the comparison result based on the backup clock generated by the operating clock of the comparator.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: July 30, 2024
    Assignee: SILEAD Inc.
    Inventor: Jinling Zhou
  • Patent number: 12047085
    Abstract: An apparatus and method for processing signals in the analog domain. A signal is derived from analog circuit properties that is shift and scale invariant. Although the circuit properties are not quantized as in traditional digital signal processing, the signal is immune from effects of the properties, such as common mode noise, absolute voltage or current level, finite settling time, etc., as a digital signal would be. The shift and scale invariance allows for mathematical operations of addition, subtraction, multiplication and division of signals. By combining these operations, various circuits may be constructed, including a voltage controlled amplifier, a time gain amplifier, and an analog-to-digital converter. The circuits are constructed using almost no non-linear, active devices, and will thus use less power for a given speed than comparable digital devices, and will often be faster as there are no delay elements and no need to wait for the circuit properties to settle.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: July 23, 2024
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 12040814
    Abstract: An analog-to-digital converter includes: a sample/hold circuit, which samples an analog signal, and outputs a first voltage; a digital-to-analog conversion circuit, which converts a digital signal to output a second voltage; an amplifier, which amplifies the first voltage and the second voltage; a noise shaping filter, which integrates a residual voltage corresponding to a difference between the amplified first voltage and the amplified second voltage, and generates a first integration voltage and a second integration voltage; a comparator, which compares a sum of the amplified first voltage, the first integration voltage, and the second integration voltage with the amplified second voltage; and a SAR logic, which outputs the digital signal according to a comparison result of the comparator, and controls the digital-to-analog conversion circuit.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: July 16, 2024
    Assignees: SAMSUNG DISPLAY CO., LTD., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyungtea Park, Kun-Woo Park, Jae-Hyun Chung, Ohjo Kwon, Seung-Tak Ryu, Keumdong Jung
  • Patent number: 12040803
    Abstract: A frequency determination device for determining a frequency relationship between a reference signal and a clock signal. Each constituent TDC is configured to provide a digitally represented constituent output signal in response to receiving a constituent reference signal and a constituent clock signal, and the frequency determination device is configured to successively provide respectively delayed versions of the constituent clock signal of a first constituent TDC as respective constituent clock signals to the other constituent TDC:s. The reference signal provider is configured to provide the respective constituent reference. The switching circuitry is configured to provide the reference signal as the constituent clock signal to the first constituent TDC. The determination circuitry is configured to determine a number of consecutively same-valued symbols in a concatenation of the digitally represented constituent output signals of the constituent TDC:s, and to determine the frequency relationship.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: July 16, 2024
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Mohammed Abdulaziz, Henrik Sjöland, Tony Påhlsson
  • Patent number: 12025646
    Abstract: A method includes providing, by a signal source circuit of a sensing circuit, a signal to a sensor via a conductor. When the sensor is exposed to a condition and is receiving the signal, an electrical characteristic of the sensor affects the signal. The signal includes at least one of: a direct current (DC) component and an oscillating component. When the sensing circuit is in a noisy environment, transient noise couples with the signal to produce a noisy signal. The method further includes comparing, by a transient circuit of the sensing circuit, the noisy signal with a representation of the noisy signal. When the noisy signal compares unfavorably with the representation of the noisy signal, supplying, by the transient circuit, a compensation signal to the conductor. A level of the compensation signal corresponds to a level at which the noisy signal compares unfavorably with the representation of the noisy signal.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: July 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Phuong Huynh, Patrick Troy Gray
  • Patent number: 12028087
    Abstract: Methods, systems, and devices for wireless communication are described for one or more aspects of dynamically configuring an analog-to-digital converter (ADC). A user equipment (UE) may determine a set of supported ADC resolution sizes including one or more dynamically configurable bit quantities. The UE may transmit a capability message including an indication of the set of ADC resolution sizes to a base station. The UE may indicate, to the base station, a power consumption factor or a table of signal-to-quantization noise ratios (SQNR) per bit quantity supported by the UE's ADC. In some cases, the base station may enable, based on the set of ADC resolution sizes, clipping of a power amplifier and one or more associated precoding parameters, and may indicate the precoding parameters to the UE. The UE may select an ADC resolution size for processing received messages.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 2, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Idan Michael Horn, Shay Landis, Assaf Touboul, Amit Bar-Or Tillinger
  • Patent number: 12015420
    Abstract: Herein disclosed are multiple embodiments of a signal-processing circuit that may be utilized in various circuits, including conversion circuitry. The signal-processing circuit may receive an input and produce charges on multiple different capacitors during different phases of operation based on the input. The charges stored on two or more of the multiple different capacitors may be utilized for producing an output of the signal-processing circuit, such as by combing the charges stored on two or more of the multiple different capacitors. Utilizing the charges on the multiple different capacitors may provide for a high level of accuracy and robustness to variations of environmental factors, and/or a low noise level and power consumption when producing the output.
    Type: Grant
    Filed: August 1, 2023
    Date of Patent: June 18, 2024
    Assignee: Analog Devices, Inc.
    Inventor: Jesper Steensgaard-Madsen
  • Patent number: 11906564
    Abstract: A method includes providing, by a signal source circuit of a sensing circuit, a signal to a sensor via a conductor. When the sensor is exposed to a condition and is receiving the signal, an electrical characteristic of the sensor affects the signal. The signal includes at least one of: a direct current (DC) component and an oscillating component. When the sensing circuit is in a noisy environment, transient noise couples with the signal to produce a noisy signal. The method further includes comparing, by a transient circuit of the sensing circuit, the noisy signal with a representation of the noisy signal. When the noisy signal compares unfavorably with the representation of the noisy signal, supplying, by the transient circuit, a compensation signal to the conductor. A level of the compensation signal corresponds to a level at which the noisy signal compares unfavorably with the representation of the noisy signal.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: February 20, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Patrick Troy Gray, Richard Stuart Seger, Jr.
  • Patent number: 11909406
    Abstract: An electronic device may include wireless circuitry having mixer circuitry configured to receive an oscillator signal from phase-locked loop circuitry. The phase-locked loop circuitry may include a digital or analog phase-locked loop having a first frequency divider, a ring oscillator, and an auxiliary phase noise cancellation loop coupled to the ring oscillator. The auxiliary phase noise cancellation loop may include at least a time-to-digital converter, a second frequency divider, an amplifier, and a bandpass filter configured to reject thermal and quantization noise associated with the time-to-digital converter. The first frequency divider may have a first division ratio, whereas the second frequency divider may have a second division ratio that is less than the first division ratio to provide faster phase noise correction.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Ahmed I Hussein, Mahdi Forghani, David M Signoff
  • Patent number: 11901910
    Abstract: A successive approximation analog-to-digital with an input for receiving an input analog voltage, and an amplifier with a first set of electrical attributes in a sample phase and a second set of electrical attributes, differing from the first set of electrical attributes, in a conversion phase.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: February 13, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Krishnaswamy Nagaraj, Joonsung Park
  • Patent number: 11888498
    Abstract: Systems and methods related to successive approximation register (SAR) analog-to-digital converters (ADCs) are provided. A method for performing successive approximation registers (SAR) analog-to-digital conversion includes comparing, using a comparator, a first digital-to-analog (DAC) output voltage to a sampled analog input voltage to generate a comparison result including a first positive output and a first negative output; and gating, using gating logic circuitry, at least one of the first positive output or the first negative output of the comparator to next logic circuitry, the gating based at least in part on a digital feedback comprising information associated with at least one of an opposite polarity of the first positive output or an opposite polarity of the first negative output.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: January 30, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: Daniel H. Saari, Lewis F. Lahr
  • Patent number: 11863198
    Abstract: Systems and methods are related to a successive approximation analog to digital converter (SAR ADC). The SAR ADC includes a sample and digital to analog conversion (DAC) circuit configured to sample an input voltage, a comparator circuit coupled to the sample and DAC circuit and having an output, a first set of storage circuits, and a comparator driver. The comparator driver is disposed between the output and the first set of storage circuits (e.g., ratioed latched. The first set of storage circuits are coupled to the comparator circuit and the sample and DAC circuit. The comparator driver can include a first driver and second driver. The first driver is coupled to a first input of a first storage circuit of the first set of storage circuits, and the second driver is coupled to first inputs of a second set of storage circuits within the first set of storage circuits.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Ullas Singh, Namik Kocaman, Mohammadamin Torabi, Meisam Honarvar Nazari, Mehmet Batuhan Dayanik, Delong Cui, Jun Cao
  • Patent number: 11852663
    Abstract: One example relates to a monitoring circuit that includes a capacitive digital-to-analog converter that receives a binary code, a reference voltage, a monitored voltage, and a ground reference, the capacitive digital-to-analog converter outputting an analog signal based on the binary code, the reference voltage, the monitored voltage, and the ground reference. The monitoring circuit further includes a comparator including a first input coupled to receive the analog signal and a second input coupled to the reference voltage, the comparator comparing the analog signal to the reference voltage and outputting a comparator signal based on the comparison. The monitoring circuit yet further includes a binary code generator that generates the binary code based on the comparator signal, the binary code approximating a magnitude of the monitored voltage.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: December 26, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajat Chauhan, Danielle Griffith, Per Torstein Roine, James Murdock, Bernhard Ruck
  • Patent number: 11855654
    Abstract: A successive approximation analog-to-digital converter includes a digital-to-analog converter DAC configured to receive a digital signal. First conversion units of the DAC are configured to sample an analog signal via a first switch and provide a first level voltage. Each first conversion unit includes a first capacitor array and a first switch array controlled from the digital signal. A single second conversion unit of the DAC is configured to provide a second level voltage. The second conversion unit includes a second capacitor array and a second switch array. A comparator operates to compare each of the first level voltages to the second level voltage and to provide a comparison signal based on each comparison and actuation of a set of third switches. A control circuit closes the first switches simultaneously and closes the third switches successively for the conversion of each sampled analog signal.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: December 26, 2023
    Assignees: STMicroelectronics (Grenoble 2) SAS, STMicroelectronics International N.V.
    Inventors: Nicolas Moeneclaey, Sri Ram Gupta
  • Patent number: 11848681
    Abstract: Disclosed successive approximation register analog-to-digital converters (SAR ADCs) and conversion methods detect a statistical effect of meta-stability induced errors and limit the level of such errors. One illustrative integrated circuit chip includes: a SAR ADC that employs asynchronous bit cycles to convert a sequence of analog signal samples into a sequence of digital signal samples; and a detector that accelerates the asynchronous bit cycles when a meta-stability error bias exceeds a predetermined threshold. An illustrative analog-to-digital conversion method includes: converting a sequence of analog signal samples to a sequence of digital signal samples using a successive approximation register analog to digital converter (SAR ADC) with asynchronous bit cycles; deriving a meta-stability error bias from the sequence of digital signal samples; and accelerating the asynchronous bit cycles when the meta-stability error bias exceeds a predetermined threshold.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: December 19, 2023
    Assignee: Credo Technology Group Limited
    Inventor: Yida Duan
  • Patent number: 11831325
    Abstract: A method of operating a pipelined analog-to-digital converter (ADC) having a plurality of output stages includes: performing a first calibration process for the pipelined ADC to update a parameter vector of the pipelined ADC, where components of the parameter vector are used for correcting nonlinearity of the pipelined ADC, where performing the first calibration process includes: providing an input signal to the pipelined ADC; converting, by the pipelined ADC, the input signal into a first digital output; providing a scaled version of the input signal to the pipelined ADC, where the scaled version of the input signal is generated by scaling the input signal by a scale factor; converting, by the pipelined ADC, the scaled version of the input signal into a second digital output; and calibrating the pipelined ADC using the first digital output and the second digital output.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: November 28, 2023
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Matthias Wagner, Thomas Bauernfeind, Oliver Lang
  • Patent number: 11804806
    Abstract: A charge-steering amplifier circuit and a control method thereof are provided. The charge-steering amplifier circuit is used for amplifying a differential input signal and includes a sample-and-hold circuit, a charge-steering amplifier, a reference voltage generation circuit, and a switch circuit. The sample-and-hold circuit is configured to sample the differential input signal to generate first and second sampled signals. The charge-steering amplifier has a first input terminal, a second input terminal, a first output terminal, and a second output terminal. The first and second input terminals receive the first and second sampled signals, respectively. The reference voltage generation circuit is configured to generate a reference voltage according to the differential input signal. The switch circuit is configured to couple the reference voltage to the first output terminal and the second output terminal.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: October 31, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventor: Shih-Hsiung Huang
  • Patent number: 11799490
    Abstract: A dynamic element method includes the following operations: summing up most significant bits of a digital code in a previous period and a pointer signal in the previous period, in order to generate a first signal; outputting the first signal to be an adjusted pointer signal according to a clock signal; and decoding the adjusted pointer signal to be control signals, in which the control signals are configured to set corresponding relations of components of a first digital to analog converter circuits and the most significant bits, in order to utilize the components to convert the most significant bits.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: October 24, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventor: Sheng-Hsiung Lin
  • Patent number: 11799493
    Abstract: An analog-to-digital converter (ADC) and an operation method thereof are provided. The ADC includes: a comparator which compares a signal input through a first input terminal and a signal input through a second input terminal, and outputs an output value according to the comparison result. A successive approximation register receives the output value of the comparator, sets digital signal values from a most significant bit to a least significant bit, and outputs the digital signal values. A digital-to-analog converter receives the digital signal values, and converts it into an analog signal based on a reference voltage Vref, and outputs it to the second input terminal. A noise component is added to the input signal and to the analog signal Vdac?.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: October 24, 2023
    Assignee: KEY FOUNDRY CO., LTD.
    Inventor: Hun-Bae Choi
  • Patent number: 11791812
    Abstract: A comparison control circuit is adapted to analog-to-digital converters and low-dropout regulators. The comparison control circuit includes a comparator, a Schmitt trigger, a capacitor set and a logic circuit. The comparator is configured to output a comparison signal according to a first input signal and a second input signal, wherein the comparison signal is a first high voltage potential or a first low voltage potential. The Schmitt trigger is configured to output a trigger signal according to the comparison signal and a voltage potential range, wherein the voltage potential range is in a range from the first low voltage potential to the first high voltage potential. The capacitor set is configured to adjust the second input signal when being controlled. The logic circuit is configured to control the capacitor set according to the trigger signal to correspondingly adjust the second input signal.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: October 17, 2023
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Liang-Huan Lei, Shih-Hsiung Huang
  • Patent number: 11757461
    Abstract: The exemplified disclosure presents a successive approximation register analog-to-digital converter circuit that comprises a two-step (e.g., two-stage) analog-to-digital converter (ADC) that operates a 1st-stage successive approximation register (SAR) in the continuous time (CT) domain (also referred to as a “1-st stage CTSAR”) that then feeds a sampling operation location in the second stage. Without a front-end sampling circuit in the 1st-stage, the exemplary successive approximation analog-to-digital converter circuit can avoid high sampling noise associated with such sampling operation and thus can be configured with a substantially smaller input capacitor size (e.g., at least 20 times smaller) as compared to conventional Nyquist ADC with a front-end sample-and-hold circuit.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: September 12, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Linxiao Shen, Nan Sun
  • Patent number: 11757460
    Abstract: An analog-to-digital converter according to one or more embodiments is disclosed that converts an analog input to a digital converted value by repeating a conversion data generation operation by a conversion data generator, a potential generation operation by a capacitance DAC, and a comparison operation by a comparator for a resolution bit, the analog-to-digital converter. a comparator operation signal generation circuit predicts the time when a potential generated by the capacitance DAC becomes settled based on a charging or discharging time to a capacitance element whose characteristics are equal to those of the capacitance used in the capacitance DAC, and generates a comparator operation signal to allow the comparator to start the comparison operation.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: September 12, 2023
    Assignee: SANKEN ELECTRIC CO., LTD.
    Inventor: Hideki Hayashi
  • Patent number: 11736114
    Abstract: An analog-to-digital converter (“ADC”) includes an input terminal configured to receive an analog input voltage signal. A first ADC stage is coupled to the input terminal and is configured to output a first digital value corresponding to the analog input voltage signal and a first analog residue signal corresponding to a difference between the first digital value and the analog input signal. An inverter based residue amplifier is configured to receive the first analog residue signal, amplify the first analog residue signal, and output an amplified residue signal. The amplified residue signal is converted to a second digital value, and the first and second digital values are combined to create a digital output signal corresponding to the analog input voltage signal.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: August 22, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Martin Kinyua
  • Patent number: 11728820
    Abstract: The present disclosure belongs to the technical field of analog or digital-analog hybrid integrated circuits, and relates to a high-speed SAR_ADC digital logic circuit, in particular to a high-speed digital logic circuit for SAR_ADC and a sampling adjustment method. The digital logic circuit includes a comparator, a logic control unit parallel to the comparator, and a capacitor array DAC. The comparator and the logic control unit are simultaneously triggered by a clock signal. The comparator outputs a valid comparison result Dp/Dn, the logic control unit outputs a corresponding rising edge signal, the rising edge signal is slightly later than Dp/Dn output by the comparator through setting a delay match, Dp/Dn is captured by the corresponding rising edge signal, thereby settling a capacitor array. The present disclosure eliminates the disadvantage of the improper settling of the capacitor array of the traditional parallel digital logic.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: August 15, 2023
    Assignees: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Daiguo Xu, Hequan Jiang, Xueliang Xu, Jian'an Wang, Guangbing Chen, Dongbing Fu, Yuxin Wang, Xiaoquan Yu, Shiliu Xu, Tao Liu
  • Patent number: 11689210
    Abstract: An example apparatus includes: an analog input; a resistor circuit including a first reference output and a second reference output; a first amplifier including a first analog input, a first reference input, and a first amplifier output, the first analog input coupled to the analog input, the first reference input coupled to the first reference output; a second amplifier including a second analog input, a second reference input, and a second amplifier output, the second analog input coupled to the analog input, the second reference input coupled to the second reference output; a first comparator including a first comparator input, the first comparator input coupled to the first amplifier output; and a second comparator including a second comparator input, the second comparator input coupled to the second amplifier output; a first multiplexer including a first multiplexer input and a first residue output, the first multiplexer input coupled to the first amplifier output; and a second multiplexer including a se
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: June 27, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Prasanth K, Srinivas Kumar Reddy Naru, Visvesvaraya Appala Pentakota
  • Patent number: 11652458
    Abstract: A thermally-isolated-metal-oxide-semiconducting (TMOS) sensor has inputs coupled to first and second nodes to receive first and second bias currents, and an output coupled to a third node. A tail has a first conduction terminal coupled to the third node and a second conduction terminal coupled to a reference voltage. A control circuit applies a control signal to a control terminal of the tail transistor based upon voltages at the first and second nodes so that a common mode voltage at the first and second nodes is equal to a reference common mode voltage. A differential current integrator has a first input terminal coupled to the second node and a second input terminal coupled to the first node, and provides an output voltage indicative of an integral of a difference between a first output current at the first input terminal and a second output current at the second input terminal.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: May 16, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Calogero Marco Ippolito, Michele Vaiana, Angelo Recchia
  • Patent number: 11621718
    Abstract: An analog-to-digital converter (ADC) system includes a main ADC, a reference ADC, a sampling control circuit, and a calibration circuit. The main ADC obtains a first sampled input voltage by sampling an analog input according to a first sampling clock, and performs analog-to-digital conversion upon the first sampled voltage to generate a first sample value. The reference ADC obtains a second sampled voltage by sampling the analog input according to a second sampling clock, and performs analog-to-digital conversion upon the second sampled voltage to generate a second sample value. The sampling control circuit controls the second sampling clock to ensure that the second sampling clock and the first sampling clock have a same frequency but different phases, and adjusts the second sample value to generate a reference sample value. The calibration circuit applies calibration to the main ADC according to the first sample value and the reference sample value.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: April 4, 2023
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventor: Sheng-Jui Huang
  • Patent number: 11611350
    Abstract: An analog-to-digital converter (1) includes an S/H circuit (10) configured to sample and hold an analog input signal (IN) in synchronization with a sampling clock signal (CLK), a delay circuit (20) configured to delay the sampling clock signal (CLK), an ADC circuit (30) configured to sample an output signal (S/H_out) of the S/H circuit (10) in synchronization with the sampling clock signal (CLK_delay) that is delayed, and output a digital signal (OUT) corresponding to an amplitude of the output signal that is sampled, and a delay adjustment circuit (40) configured to adjust a delay time of the sampling clock signal (CLK) in the delay circuit (20) in accordance with a change in frequency of the sampling clock signal (CLK).
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: March 21, 2023
    Assignee: KYOCERA Corporation
    Inventor: Nobuyuki Tetsuka
  • Patent number: 11595052
    Abstract: A pipelined analog-to-digital converter and an output calibration method for the same. The pipelined analog-to-digital converter introduces an error calibration mechanism on the basis of traditional pipelined analog-to-digital converters through a control module, an equivalent gain error extraction module, an error storage module and a coding reconstruction module to compensate for gain errors and setup errors caused by operational amplifiers in a pipelined conversion module, so that the analog-to-digital conversion accuracy is improved, and requirements for the gain and bandwidth of the operational amplifier are relaxed, which can effectively reduce the power consumption of the analog-to-digital converter and the complexity of the corresponding analog circuit; a curve fitting method is adopted to obtain an ideal output sequence and then calculate errors; meanwhile, extraction and calibration of equivalent gain errors are all done in digital ways, and therefore accuracy thereof is high.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: February 28, 2023
    Assignee: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Ting Li, Gangyi Hu, Ruzhang Li, Yong Zhang, Dongbing Fu, Zhengbo Huang, Yabo Ni, Jian'an Wang, Guangbing Chen
  • Patent number: 11581858
    Abstract: The present disclosure discloses a sample and hold amplifier circuit that includes a positive and a negative terminal capacitor arrays, a positive and a negative terminal switch arrays and a differential output circuit. A second terminal of each of bit capacitors in the positive and the negative terminal capacitor arrays are respectively coupled to a positive and a negative output terminal. In a sampling time period, according to a first connection relation, each of the connected bit capacitors is controlled to receive a polarity input voltage to perform a gain modification. In a holding time period, according to a second connection relation, each of the connected bit capacitors is controlled to receive an offset modification voltage to perform an offset modification. A positive and a negative output voltages are generated at the positive and the negative output terminal to be outputted as a pair of differential output signals by the differential output circuit.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: February 14, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Chun-Ta Ho, Shawn Min
  • Patent number: 11569837
    Abstract: Techniques and apparatus for output common-mode control of dynamic amplifiers, as well as analog-to-digital converters (ADCs) and other circuits implemented with such dynamic amplifiers. One example amplifier circuit includes a dynamic amplifier and a current source. The dynamic amplifier generally includes differential inputs, differential outputs, transconductance elements coupled to the differential inputs, a first set of capacitive elements coupled to the differential outputs, and a control input for controlling a time length of amplification for the dynamic amplifier. The current source is configured to generate an output current such that portions of the output current are selectively applied to the differential outputs of the dynamic amplifier during at least a portion of the time length of amplification.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 31, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Aram Akhavan, Kentaro Yamamoto, Lei Sun, Ganesh Kiran
  • Patent number: 11569832
    Abstract: An apparatus is disclosed for analog-to-digital conversion. In an example aspect, the apparatus includes an analog-to-digital converter (ADC). The ADC includes a reference-crossing detector having an input and an output. The ADC also includes a ramp generator coupled between the output of the reference-crossing detector and the input of the reference-crossing detector. The ADC further includes a voltage shifter coupled between the output of the reference-crossing detector and the input of the reference-crossing detector.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 31, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Aram Akhavan, Seyed Arash Mirhaj, Lei Sun, Elias Dagher
  • Patent number: 11558061
    Abstract: An Analog-to-Digital Converter (ADC) includes a plurality of ADC channels connected to an in-service signal input via an isolated power combiner; an on-chip circuit including a calibration source connected to the isolated power combiner; and one or more switches configured to switch the ADC between an in-service mode and a calibration mode. The one or more switches are set such that, in the calibration mode, the in-service signal input is disconnected and the on-chip circuit is connected to the isolated power combiner, and, in the in-service mode, the in-service signal input is connected and the on-chip circuit is disconnected to the isolated power combiner. In the calibration mode, the on-chip circuit is configured to provide a test signal to the plurality of ADC channels for a determination of interleave errors in the plurality of ADC channels.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: January 17, 2023
    Assignee: Ciena Corporation
    Inventors: Aravinthan Vigneswaran, Daniel Pollex
  • Patent number: 11558063
    Abstract: Herein disclosed is an example analog-to-digital converter (ADC) and methods that may be performed by the ADC. The ADC may derive a first code that approximates a combination of an analog input value of the ADC and a dither value for the ADC sampled on a capacitor array. The ADC may further derive a second code to represent a residue of the combination with respect to the first code applied to the capacitor array. The ADC may combine the numerical value of the first code and the numerical value of the second code to produce a combined code applied to the capacitor array for deriving a digital output code. Combining the numerical value of the first code and the numerical value of the second code in the digital domain can provide for greater analog-to-digital (A/D) conversion linearity.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: January 17, 2023
    Assignee: ANALOG DEVICES INC.
    Inventor: Jesper Steensgaard-Madsen
  • Patent number: 11489540
    Abstract: A receiver having analog-to-digital converters (ADC) is disclosed. The ADCs may be reconfigured based on the insertion loss mode of the receiver. For example, different portions of a plurality of time-interleaved successive approximation (SAR) ADC slices included in at least one sub-ADC of each time-interleaved ADC may be enabled depending on which of a plurality of insertion loss modes is selected for operation of the receiver.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: November 1, 2022
    Assignee: eTopus Technology Inc.
    Inventor: Danfeng Xu
  • Patent number: 11476864
    Abstract: A control circuit of a pipeline analog-to-digital converter (ADC) is provided. The pipeline ADC includes a multiplying digital-to-analog converter (MDAC) which includes a capacitor. The control circuit includes six switches and two buffer circuits. The first and second switches are respectively coupled between one end of the capacitor and the first and second reference voltages. The output terminals of the first and second buffer circuits are respectively coupled to the first and second switches. The input terminal of the first buffer circuit is coupled to the third reference voltage through the third switch, or receives a control signal through the fifth switch. The input terminal of the second buffer circuit is coupled to the fourth reference voltage through the fourth switch, or receives the control signal through the sixth switch. The first and second reference voltages are different, and the first and second switches are not turned on simultaneously.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 18, 2022
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Pan Zhang, Kai-Yin Liu, Shih-Hsiung Huang, Wei-Jyun Wang
  • Patent number: 11456752
    Abstract: A pipeline analog to digital converter includes converter circuitries. The converter circuitries are configured to sequentially convert an input signal to be digital codes. The converter circuitries includes a first converter circuitry and a second converter circuitry. The first converter circuitry is configured to a convert a first signal to be a first digital code in the digital codes, and generate a first residue signal according to the first signal and the first digital code. The second converter circuitry is configured to receive the first signal and the first digital code to quantize the first signal according to the first digital code, in order to generate a second digital code in the digital codes, and generate a second residue signal according to the first residue signal and the second digital code.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: September 27, 2022
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventor: Shih-Hsiung Huang
  • Patent number: 11438005
    Abstract: A data converter circuit comprises timing circuitry configured to time stages of a conversion performed by the data converter circuit; a level shifter circuit configured to receive a control signal associated with the conversion and provide a level shifted version of the control signal to one or more switch circuits of the data converter circuit; and a time delay circuit element including a replica circuit of the level shifter circuit that adds a circuit delay to a transition of the control signal at the timing circuitry.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: September 6, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventors: Maitrey Kamble, Sandeep Monangi
  • Patent number: 11431347
    Abstract: A pipelined ADC system comprising: a first ADC stage comprising a trainable neural network layer and configured to receive an analog input signal, and convert it into a first n-bit digital output representing said analog input signal; a DAC circuit comprising a trainable neural network layer and configured to receive said first n-bit digital output, and convert it into an analog output signal representing said first n-bit digital output; and a second ADC stage comprising a trainable neural network layer and configured to receive a residue analog input signal of said analog input signal, and convert it into a second n-bit digital output representing said residue analog input signal; wherein said first and second n-bit digital outputs are combined to generate a combined digital output representing said analog input signal.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 30, 2022
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Loai Danial, Shahar Kvatinsky
  • Patent number: 11424753
    Abstract: An analog-to-digital converter (ADC) is described. This ADC includes a conversion circuit with multiple bit-conversion circuits. During operation, the ADC may receive an input signal. Then, the conversion circuit may asynchronously perform successive-approximation-register (SAR) analog-to-digital conversion of the input signal using the bit-conversion circuits, where the bit-conversion circuits to provide a quantized representation of the input signal. For example, the bit-conversion circuits may asynchronously and sequentially perform the SAR analog-to-digital conversion to determine different bits in the quantized representation of the input signal. Moreover, the ADC may selectively perform self-calibration of a global delay of the bit-conversions circuits. Note that the timing self-calibration may be iterative and subject to a constraint that a maximum conversion time is less than a target conversion time.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: August 23, 2022
    Assignee: Ay Dee Kay LLC
    Inventors: Robert W. Kim, Christopher A. Menkus
  • Patent number: 11387839
    Abstract: A control circuit for a successive approximation register analog-to-digital converter (SAR ADC). The SAR ADC includes a comparator and a switched-capacitor digital-to-analog converter (DAC). The switched-capacitor DAC includes a target capacitor. A first terminal of the target capacitor is coupled to an input terminal of the comparator. A second terminal of the target capacitor is coupled to a first reference voltage through a first switch and coupled to a second reference voltage through a second switch. The control circuit includes a third switch and a buffer circuit. The third switch is coupled between the first reference voltage and the second terminal of the target capacitor. The buffer circuit is coupled to the first switch and the third switch for controlling the first switch and the third switch based on a control signal.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 12, 2022
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Sheng-Yen Shih, Shih-Hsiung Huang, Yu-Chang Chen