Combined With Determining Distance And Direction Patents (Class 342/107)
  • Patent number: 11946771
    Abstract: An aerial vehicle including a body, a first ranging device, a second ranging device and a controller is provided. The first ranging device is disposed on the body and is configured to detect a first distance between the first ranging device and the reflector. The second ranging device is disposed on the body and is configured to detect a second distance between the second ranging device and the reflector. The controller is configured to obtain an included angle between a direction of the body and the reflector according to the first distance and the second distance.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: April 2, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yuan-Chu Tai, Chung-Hsien Wu, Yu-Kai Wang
  • Patent number: 11921212
    Abstract: A LIDAR-based method of determining an absolute speed of an object at a relatively longer distance from an ego vehicle, including: estimating a self speed of the ego vehicle using a first frame t?1 and a second frame t obtained from a LIDAR sensor by estimating an intervening rotation ? about a z axis and translation in orthogonal x and y directions using a deep learning algorithm over a relatively closer distance range; dividing each of the first frame t?1 and the second frame t into multiple adjacent input ranges and estimating a relative speed of the object at the relatively longer distance by subsequently processing each frame using a network, with each input range processed using a corresponding convolutional neural network; and combining the estimation of the estimating the self speed with the estimation of the estimating the relative speed to obtain an estimation of the absolute speed.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: March 5, 2024
    Assignee: Volvo Car Corporation
    Inventors: Sihao Ding, Sohini Roy Chowdhury, Minming Zhao, Ying Li
  • Patent number: 11914046
    Abstract: Methods, systems, computer-readable media, and apparatuses for radar or LIDAR measurement are presented. Some configurations include transmitting, via a transceiver, a first beam having a first frequency characteristic; calculating a distance between the transceiver and a moving object based on information from at least one reflection of the first beam; transmitting, via the transceiver, a second beam having a second frequency characteristic that is different than the first frequency characteristic, wherein the second beam is directed such that an axis of the second beam intersects a ground plane; and calculating an ego-velocity of the transceiver based on information from at least one reflection of the second beam. Applications relating to road vehicular (e.g., automobile) use are described.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 27, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Michael John Hamilton, Jayakrishnan Unnikrishnan, Urs Niesen
  • Patent number: 11906616
    Abstract: The present disclosures discloses a method of target feature extraction based on millimeter-wave radar echo, which mainly solves the problems that techniques in the prior art cannot fully utilize raw radar echo information to obtain more separable features and cannot accurately distinguish targets with similar physical shapes and motion states. The method is implemented as follows: acquiring measured data of targets, generating an original RD map, and removing ground clutter of the map; sequentially performing target detection, clustering and centroid condensation on the RD map after the ground clutter removal; acquiring a continuous multi-frame RD maps and carrying out the target tracking; according to the tracking trajectory, selecting candidate areas and extracting features based on a single piece of RD map and features based on two successive RD maps, respectively.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: February 20, 2024
    Assignee: Xidian University
    Inventors: Lan Du, Zengyu Yu, Xiaoyang Chen, Zenghui Li, Chunxin Wang
  • Patent number: 11904859
    Abstract: The present invention obtains a controller and a control method capable of achieving appropriate cornering during cruise control of a straddle-type vehicle. In the controller and the control method according to the present invention, during the cruise control, in which acceleration/deceleration of the straddle-type vehicle is automatically controlled without relying on an accelerating/decelerating operation by a driver, a vehicle speed of the straddle-type vehicle is restricted to be equal to or lower than an upper limit speed at the time of turning, an exit of a curved road is detected on the basis of a predicted route of the straddle-type vehicle, and a magnitude of the deceleration of the decelerated straddle-type vehicle is reduced at a time point before the straddle-type vehicle reaches the exit.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 20, 2024
    Assignee: Robert Bosch GmbH
    Inventor: Kazuhiko Hirakuri
  • Patent number: 11906650
    Abstract: An object detection apparatus 1000 is provided with: a transmission unit 1101 that emits a radio wave as a transmission signal toward a target 1003 object; a reception unit 1102 that receives, through receiving antennas, radio waves reflected by the object as reception signals, and that generates, for each reception signal received by the respective receiving antennas, using the reception signals, an intermediate frequency signal; and an arithmetic device 1211 that decides sampling times so as to suppress generation of a virtual image by a beam pattern obtained by synthesizing the respective intermediate frequency signals, and generates an intermediate frequency signal for target position detection by performing sampling on the intermediate frequency signals at the decided sampling times, and detects the target using the intermediate frequency signals for position detection.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: February 20, 2024
    Assignee: NEC CORPORATION
    Inventor: Shingo Yamanouchi
  • Patent number: 11840143
    Abstract: The present invention obtains a controller and a control method capable of achieving appropriate cornering during cruise control of a straddle-type vehicle. In the controller and the control method according to the present invention, during the cruise control, in which acceleration/deceleration of the straddle-type vehicle is automatically controlled without relying on an accelerating/decelerating operation by a driver, an entry of a curved road is detected on the basis of a predicted route of the straddle-type vehicle, and the straddle-type vehicle is decelerated at a time point before the straddle-type vehicle reaches the entry.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: December 12, 2023
    Assignee: Robert Bosch GmbH
    Inventor: Kazuhiko Hirakuri
  • Patent number: 11835649
    Abstract: Two-dimensional data obtained by performing a Fourier transform on a digitally converted FMCW radar signal at every pulse repetition interval over N pulse repetition intervals is input to a convolutional neural network (CNN) to find the probabilities of the existence of a target in range indices. The range indices, i.e., bit frequencies are selected based on the probabilities of the existence of the target. In order to reduce the size of the CNN, windowing is applied to the two-dimensional data. A speed-index-specific coefficient value may be calculated by re-performing a Fourier transform on range data for the selected bit frequencies. Thus, the range and speed of the target may be calculated.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 5, 2023
    Assignee: SMART RADAR SYSTEM, INC.
    Inventor: Jong Il Kim
  • Patent number: 11828838
    Abstract: An object detection radar apparatus is installed in a vehicle and is configured to detect an object. The object detection radar apparatus includes a transceiver configured to transmit a radar signal to the outside of the vehicle and receive a radar signal reflected from the object; a driving environment detector configured to detect a driving environment of the vehicle based on an operation status of the vehicle; an object detector configured to detect the object based on the received radar signal; and a controller configured to determine whether or not a predetermined event occurs based on the driving environment of the vehicle or a result of the detection of the object, and control signal characteristics of the transmitted radar signal or the received radar signal when the predetermined event occurs.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: November 28, 2023
    Assignee: BITSENSING INC.
    Inventors: Jae Eun Lee, Hae Seung Lim
  • Patent number: 11808884
    Abstract: The present invention relates to a device (20) for determining a radar target list, comprising: an input interface (22) for receiving preprocessed sensor data from a radar sensor (18) with information on detected strengths at high points (H1, H2) in a distance and/or velocity dimension and in predefined neighborhood ranges of the high points in the distance and/or velocity dimension; an analysis unit (24) for determining mutually adjacent high points with overlapping neighborhood ranges based on the preprocessed sensor data; an adjustment unit (26) for adjusting the neighborhood ranges of the mutually adjacent high points; and an evaluation unit (28) for determining a radar target list with information on targets (17) in a field of view of the radar sensor based on the high points and the neighborhood ranges thereof. The present invention also relates to a method for determining a radar target list and a sensor system (10) for detecting targets (17) in an environment (12) of a vehicle (14).
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: November 7, 2023
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Benjamin Sick, Stefan Zechner, Florian Engels
  • Patent number: 11802965
    Abstract: Techniques for Doppler correction of chirped optical range detection include obtaining a first set of ranges based on corresponding frequency differences between a return optical signal and a first chirped transmitted optical signal with an up chirp that increases frequency with time. A second set of ranges is obtained based on corresponding frequency differences between a return optical signal and a second chirped transmitted optical signal with a down chirp. A matrix of values for a cost function is determined, one value for each pair of ranges that includes one in the first set and one in the second set. A matched pair of one range in the first set and a corresponding one range in the second set is determined based on the matrix. A Doppler effect on range is determined based on combining the matched pair of ranges. A device is operated based on the Doppler effect.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: October 31, 2023
    Assignee: BLACKMORE SENSORS & ANALYTICS LLC
    Inventors: Stephen C. Crouch, Randy R. Reibel, James Curry, Trenton Berg
  • Patent number: 11802952
    Abstract: The position detecting apparatus repeatedly acquires, from a radar apparatus, object information including at least an object distance as a distance between the radar apparatus and a reflecting object and a relative speed between the radar apparatus and a reflecting object. The position detecting apparatus calculates a speed ratio as a ratio between the relative speed and the travelling speed. The position detecting apparatus calculates, based on the speed ratio, a projection distance between a projected position of the reflecting object projected onto a projection plane and a position of the radar apparatus on the projection plane, the projection plane having a predetermined angle with respect to a center axis indicating a direction along which the radar waves are transmitted by the radar apparatus and including the radar apparatus. The position detection apparatus calculates the position of the reflecting object based on the calculated projection distance.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: October 31, 2023
    Assignees: SOKEN, INC., DENSO CORPORATION
    Inventors: Katsuhiko Kondo, Takuya Takayama
  • Patent number: 11794536
    Abstract: Provided is a vehicle control system, a vehicle control method, and an image sensor, the vehicle control system including: an image sensor disposed on the vehicle to have a field of view of an outside of the vehicle to capture image data; at least one non-image sensor disposed on the vehicle to have a field of sensing of the outside of the vehicle to capture sensing data; at least one processor configured to process the image data captured by the image sensor and the sensing data captured by the non-image sensor; and a controller configured to determine a chance of a collision with an obstacle with respect to a rear side warning determination reference area that is changed depending on whether a trailer is mounted on the vehicle, on the basis of at least part of processing at least one of the image data and the sensing data.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: October 24, 2023
    Assignee: HL KLEMOVE CORP.
    Inventors: Jae Suk Kim, Tak Gen Kim
  • Patent number: 11794782
    Abstract: The subject disclosure relates to features for improving the modularity and interoperability of sensors and in particular, sensors deployed for use in vehicle related sensing applications. In some aspects, the disclosed technology encompasses a sensor aggregation module (e.g., sensor pod) that includes a sensor enclosure having an interior volume configured for housing one or more sensors, a data port integrated into an exterior surface of the sensor enclosure, wherein the data port is configured to be electrically coupled to a vehicle data port, and a plurality of sensor ports disposed within an interior volume of the sensor enclosure, wherein the sensor ports are configured for modular connectivity to the one or more sensors.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 24, 2023
    Assignee: GM Cruise Holdings LLC
    Inventors: Brendan Hermalyn, Radu Raduta, Devin Cass
  • Patent number: 11789139
    Abstract: A method for detecting critical transverse movements. The method includes the following steps: emitting a CW radar signal and generating radar data based on the received reflected CW radar signal with the aid of a radar device; ascertaining collision-relevant spectral ranges of the radar data as a function of an ego velocity of the radar device; ascertaining a time dependency of a relative velocity and of an object angle of an object by evaluating the radar data in the ascertained spectral ranges; and detecting a critical transverse movement of the object using the time dependency of the relative velocity and of the object angle of the object.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: October 17, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Hermann Buddendick, Stephan Morgen
  • Patent number: 11771954
    Abstract: The present invention provides a method for calculating a swing trajectory of a golf club using radar sensing data capable of calculating a swing trajectory of a golf club therefrom, a radar sensing device using the same, and a recording medium readable by a computing device recording the calculation method, which calculates the position coordinate information of the golf club through the analysis of the radar signal separately from calculating the motion parameters for the ball through the analysis of the radar signal when the golfer hits the ball with the golf club, and effectively calculate the swing trajectory of the golf club from the calculated position coordinate information of the golf club.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 3, 2023
    Assignee: GOLFZON CO., LTD.
    Inventors: Tae Yang Lee, Da Bin Han
  • Patent number: 11762060
    Abstract: Techniques and apparatuses are described that implement height-estimation of objects using radar. In particular, a radar system, which is mounted to a moving platform, receives reflection signals that represent versions of a radar signal that are reflected off of objects. The radar system generates a range-elevation map based on raw data from the reflection signals, identifies an elevation bin and a range bin in the range-elevation map that corresponds to a selected object, and calculates a height for the selected object based on the range and elevation bins. The radar system then calculates a de-noised height for the selected object based on one or more previously calculated heights for the selected object. In this way, the radar system can determine accurate heights of objects at sufficiently long ranges for evasive action.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: September 19, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Yihang Zhang, Narbik Manukian
  • Patent number: 11762057
    Abstract: For example, an apparatus may include a radar antenna including at least one Transmit (Tx) antenna to transmit a Tx radar signal; and a plurality of Receive (Rx) antennas to receive Rx radar signals based on the Tx radar signal, wherein a distance between a first Rx antenna of the planarity of Rx antennas and a second Rx antenna of the plurality of Rx antennas, which is adjacent to the first Rx antenna, is at least ten times a wavelength of a central frequency of the Tx radar signal.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: September 19, 2023
    Assignee: INTEL CORPORATION
    Inventors: Nir Dvorecki, Yuval Amizur, Leor Banin
  • Patent number: 11747461
    Abstract: A method including detecting an object within a field of view of a radar using a radar signal; tracking movement of the object through the field of view of the radar; triggering a camera to capture a plurality of images of the object based on the movement of the object; detecting the object in the plurality of images; combining data of the radar signal with data of the camera to estimate a position of the object; identifying a radar signal track generated by the motion of the object based on the combined data; and estimating a trajectory of the object based on identifying the radar signal track.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: September 5, 2023
    Assignee: RAPSODO PTE. LTD.
    Inventors: Sayed Zeeshan Asghar, Batuhan Okur
  • Patent number: 11742968
    Abstract: A configuration to configure a first wireless device to detect clutter echo in order to improve a configuration for SIM. The apparatus receives a SIM configuration having one or more parameters specific to clutter echo detection. The apparatus performs SIM for the clutter echo detection based on the SIM configuration. The apparatus reports one or more beams having a largest self-interference RSRP due to clutter echo.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: August 29, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Qian Zhang, Navid Abedini, Yan Zhou, Tao Luo, Junyi Li, Andrzej Partyka
  • Patent number: 11714154
    Abstract: Techniques for determining a location of a client device using recursive phase vector subspace estimation are described. One technique includes receiving a plurality of angle-of-arrival (AoA) measurements from a plurality of access points (APs). Each AoA measurement includes a plurality of entries for phase values measured from a signal received from a client device at the plurality of APs. At least one AoA measurement of the plurality of AoA measurements that includes at least one of: (i) one or more entries with missing phase values and (ii) one or more entries with erroneous phase values is identified, based on a recursive phase estimation. The plurality of AoA measurements are updated based on the identified at least one AoA measurement. The location of the client device is determined, based on the updated plurality of AoA measurements.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: August 1, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Zhigang Gao, Matthew A. Silverman, Fred J. Anderson, Huaiyi Wang
  • Patent number: 11709263
    Abstract: An object detector includes: a triangulation calculation unit that performs triangulation calculation for detecting a location of an object based on first distance information calculated based on direct waves in which transmitted waves transmitted from a first transmission and reception unit are reflected by an object and received by the first transmission and reception unit, and second distance information calculated based on indirect waves in which transmitted waves transmitted from a second transmission and reception unit arranged in a location different from the first transmission and reception unit are reflected by an object and received by the first transmission and reception unit; and a prohibition processing unit that prohibits triangulation calculation when a difference between first velocity information indicating a velocity of an object calculated based on the direct waves and second velocity information indicating a velocity of an object calculated based on the indirect waves exceeds a predetermin
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: July 25, 2023
    Assignee: AISIN CORPORATION
    Inventors: Koichi Sassa, Ippei Sugae
  • Patent number: 11703562
    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices associated with sensor output segmentation are provided. For example, sensor data can be accessed. The sensor data can include sensor data returns representative of an environment detected by a sensor across the sensor's field of view. Each sensor data return can be associated with a respective bin of a plurality of bins corresponding to the field of view of the sensor. Each bin can correspond to a different portion of the sensor's field of view. Channels can be generated for each of the plurality of bins and can include data indicative of a range and an azimuth associated with a sensor data return associated with each bin. Furthermore, a semantic segment of a portion of the sensor data can be generated by inputting the channels for each bin into a machine-learned segmentation model trained to generate an output including the semantic segment.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: July 18, 2023
    Assignee: UATC, LLC
    Inventors: Ankit Laddha, Carlos Vallespi-Gonzalez, Duncan Blake Barber, Jacob White, Anurag Kumar
  • Patent number: 11693110
    Abstract: Systems and methods for operating radar systems. The methods comprise, by a processor: receiving point cloud information generated by at least one radar device; generating a radar track initializer using the point cloud information; determining whether the radar track initializer includes false information; generating a radar track for a detected object when a determination is made that the radar track initializer does not include false information; and/or using the radar track to control operations of a vehicle.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: July 4, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiufeng Song, Avinash Ajit Nargund
  • Patent number: 11668832
    Abstract: A LIDAR device for measuring a distance to an object in a scanning zone includes a light source, a light receiver, a rotatable mirror, a motor, an angle sensor, and a controller. The rotatable mirror is configured to reflect the light beam emitted from the light source toward the scanning zone. The motor is configured to rotate the mirror back and forth between a first position and a second position. The angle sensor is configured to detect a rotation angle of the mirror and to output a detection signal indicative of the rotation angle of the mirror at a plurality of predetermined angle intervals during each rotation cycle between the first position and the second position of the mirror. The controller is configured to output a control signal to the light source to emit a light beam upon receiving the detection signal from the angle sensor.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: June 6, 2023
    Assignee: DENSO CORPORATION
    Inventors: Teiyuu Kimura, Noriyuki Ozaki, Akifumi Ueno
  • Patent number: 11668791
    Abstract: A simulation method for predicting a false positive for a predefined region outside a desired field of view of a radar sensor. Calculated primary rays having a respective primary energy level represent the radar signal. Reflected rays are calculated based on the primary rays or other reflected rays and based on geometrical data for at least one item within the predefined region. An energy level is determined for each reflected ray based on an estimated reflectivity of the at least one item and based on the primary energy level of the respective primary ray, and a clustering level for the reflected rays is determined based on distances of the respective reflection points. A probability for an occurrence of a false positive is estimated based on the energy level and the clustering level.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 6, 2023
    Assignee: APTIV TECHNOLOGIES LIMITED
    Inventor: Armin Talai
  • Patent number: 11661055
    Abstract: A vehicle safety system performs close-in incipient collision detection that combines high sample rate near-field sensors with advanced real-time processing to accurately determine imminent threats and the likelihood of a collision before a collision occurs. This allows applicable countermeasures to be deployed based upon the probability of a collision, while also taking into account the type of threat and the impending impact's location on the vehicle. This radically new approach will soon transform the passive safety market to greatly reduce injuries from automotive crashes and save lives.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: May 30, 2023
    Assignee: PreAct Technologies, Inc.
    Inventors: Kurt Brendley, Keith Brendley, Jared Bench, Paul Drysch
  • Patent number: 11650288
    Abstract: A method of estimating a radar cross section of a target in an environment using a detection device, wherein the detection device is configured to transmit transmission signals into a field of view and to receive reception signals, may include: generating a calibration curve that provides signal amplitude values as a function of positions in the field of view; detecting a reception signal, obtaining a corresponding detection profile, and analyzing the detection profile to identify the target, having a target signal amplitude and a target position corresponding thereto; and estimating the radar cross section of the target by comparing the target signal amplitude with a signal amplitude base value, provided by the calibration curve at the target position. The generating of the calibration curve may include: generating a combined profile as a function of position; and optionally, generating a filtered profile by applying a filter to the combined profile.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: May 16, 2023
    Assignee: INXPECT S.p.A.
    Inventors: Alessio Degani, Marco Garatti, Andrea Tartaro
  • Patent number: 11650283
    Abstract: A detection device includes: a transmitter that transmits a high-frequency signal as a transmission signal; a receiver that receives a reception signal including a reflection signal formed by reflecting the transmission signal at a target; and a controller that detects the target based on a frequency of the reflection signal, and changes a frequency of the transmission signal based on a frequency of the reception signal.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 16, 2023
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Maiko Saito, Masaru Sakurai, Syunichi Iizuka, Masahiro Yanagi, Kimihiro Maruyama
  • Patent number: 11630522
    Abstract: Disclosed embodiments include techniques for providing alerts to a driver of a vehicle. The techniques include detecting a condition that exceeds a threshold hazard potential; detecting a predetermined gesture of a driver, the predetermined gesture indicating that the driver has acknowledged the detected condition; in response to detecting the predetermined gesture, reducing an urgency level for alerting the driver of the detected condition; and determining whether to issue an alert to the driver based on the reduced urgency level.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 18, 2023
    Assignee: Harman International Industries, Incorporated
    Inventors: Stefan Marti, Priya Seshadri, Joseph Verbeke, Evgeny Burmistrov
  • Patent number: 11619704
    Abstract: A detection device includes: a transmitter that transmits a high-frequency signal as a transmission signal; a receiver that receives a reception signal including a reflection signal formed by reflecting the transmission signal at a target; and a controller that detects the target based on a frequency of the reflection signal, and changes a frequency of the transmission signal based on a frequency of the reception signal.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: April 4, 2023
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Maiko Saito, Masaru Sakurai, Syunichi Iizuka, Masahiro Yanagi, Kimihiro Maruyama
  • Patent number: 11614533
    Abstract: A collision determining unit (404) determines whether a vehicle (1000) collides with an object (1001) when a Doppler velocity component between the vehicle (1000) and the object (1001) varies to a first reference value, or when the vehicle (1000) has traveled to a range R corresponding to the first reference value.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: March 28, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuro Furuta, Hiroshi Sakamaki, Teruyuki Hara
  • Patent number: 11604270
    Abstract: A radar system configured to determine radar-ground distance measurements. The radar system includes transmission and reception means configured to transmit two radiofrequency signals towards the ground and to receive the signals obtained by the reflection of the two transmitted signals by the ground and computation means configured to determine the frequential representations of the transmitted signals and of the received signals and determine a frequential quantity as a function of the frequential representations.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 14, 2023
    Assignee: THALES
    Inventors: Thierry Mazeau, Patrick Garrec
  • Patent number: 11599816
    Abstract: A method and system is disclosed for determining a probability that an encountered platform was of a specific type given that a plurality of emitters exist on the platform and each emitter has a computed probability that it is of each of a set of types. A preprocessing stage operates on a description of the environment and determines the probability of a set of events that are independent of any observation. A runtime processing stage uses the terms computed in the preprocessing stage along with data assembled from a set of observations to determine the conditional probability that a particular platform type was the type encountered.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: March 7, 2023
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Ronald James Frank
  • Patent number: 11572071
    Abstract: A computer-implemented method for determining awareness data includes determining occlusion information related to a surrounding of a vehicle, determining a viewing direction of an occupant of the vehicle, and determining awareness data representing the occupant's awareness of the surrounding based on the occlusion information and the viewing direction.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: February 7, 2023
    Assignee: Aptiv Technologies Limited
    Inventor: Dariusz Cieslar
  • Patent number: 11540085
    Abstract: A method of determining a position of a mobile telecommunication device (10) which transmits a signal (S) to base stations (1, 2, 3, . . . ) connected by a data link (8) comprises the steps of: correlating the received signal (S) and a reference signal (S?) so as to produce a correlation for each base station, detecting a maximum in each correlation, which maximum is indicative of a time of arrival of the signal (S) at the respective base station, and using the respective times of arrival and the distances (D1, D2, . . . ) derived therefrom to derive a location of the mobile telecommunication device. The method uses receivers (21, 22, . . . ) coupled to a data network (7), each receiver (21, 22, . . . ) deriving the reference signal (S?) from the received signal (S). Each base station may select, if it receives multiple reference signals, the reference signal (S?) having the highest quality.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: December 27, 2022
    Assignee: K.Mizra LLC
    Inventors: Martin Van Rijn, Franciscus Hendrikus Elferink
  • Patent number: 11507092
    Abstract: In one embodiment, a method includes accessing a set of data points captured using a radar system of the vehicle. Each data point is associated with at least three measurements include a Doppler measurement, a range measurement, and an azimuth measurement in reference to the radar system. The method also includes clustering the set of data points into one or more first clusters based on a first pair of the three measurements associated with each of the data points; and clustering the set of data points into one or more second clusters based on a second pair of the three measurements associated with each of the data points. The second pair being different from the first pair of the three measurements.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: November 22, 2022
    Assignee: Woven Planet North America, Inc.
    Inventors: Ali Mostajeran, Mohammad Emadi, Jamaledin Izadian, Renyuan Zhang
  • Patent number: 11493596
    Abstract: A method for a radar sensor, in particular a radar sensor for motor vehicles. The method includes the steps: determining, for particular evaluation channels that correspond to different central antenna positions of relevant transmitting antennas and receiving antennas in one direction, and for particular individual radar targets, a respective individual radial velocity of the particular radar target associated with the particular evaluation channel, based on signals obtained in respective evaluation channels; estimating a particular velocity of the particular radar target based on the determined individual radial velocities of the radar target, the velocity including information concerning a velocity in the forward direction in relation to the radar sensor, and a tangential velocity; and associating radar targets as belonging to an extended radar object as a function of the estimated velocities of the radar targets. A radar sensor is also described.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: November 8, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Michael Schoor
  • Patent number: 11491977
    Abstract: A driver assistance system includes a detector configured to detect pedestrians or obstacles in a front detection area and a rear detection area of a vehicle; an accelerator pedal sensor configured to detect a position of an accelerator pedal of the vehicle; and a controller configured to selectively activate the front detection area and the rear detection area according to a gear state of the vehicle, when there is the pedestrians or the obstacles in the activated detection area, to recognize an acceleration pedal change amount from an acceleration pedal position detected through the accelerator pedal sensor, to determine whether emergency braking of the vehicle is necessary based on the recognized acceleration pedal change amount, and when the emergency braking is necessary, to perform the emergency braking for the vehicle.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: November 8, 2022
    Assignee: HL Klemove Corp.
    Inventor: Soo Myung Jung
  • Patent number: 11480662
    Abstract: The techniques of this disclosure enable lidar systems to operate as fast-scanning FMCW lidar systems. The fast-scanning lidar system alternates chirp patterns frame by frame as a way to increase scanning speed, without adding additional hardware. Each consecutive pair of frames includes a frame with a long chirp pattern with multiple chirps and a frame with a short chirp pattern with as few as a single chirp, which is derived from the long chirp pattern assuming a constant object velocity between frames. The chirp pattern applied to each pixel is consistent within each frame but different from one frame to the next. The combined duration of two consecutive frames is less than the combined duration of two consecutive frames of a traditional FMCW lidar system that uses the same chirp pattern from one frame to the next. The shorter duration increases frame rate, scanning speed, or overall throughput of the fast-scanning lidar system.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: October 25, 2022
    Assignee: Aptiv Technologies Limited
    Inventors: Geng Fu, Ali Haddadpour, Denis Rainko, Roman Dietz
  • Patent number: 11472578
    Abstract: A method for estimating a direction of a satellite in the transfer phase. The direction of the satellite is estimated relative to a measurement antenna by executing steps for measuring the reception power, by the measurement antenna, of a target signal emitted by the satellite, for different pointing directions of the measurement antenna. The target signal has a substantially sinusoidal component referred to as a single-frequency component. Each power measurement step includes a transposition in the frequency domain of a digital signal, obtained from a signal supplied by the measurement antenna, to obtain a frequency spectrum of the digital signal over a predetermined frequency band having the single-frequency component. The power measurement for the pointing direction being considered is determined based on a maximum value of the frequency spectrum.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: October 18, 2022
    Assignee: AIRBUS DEFENCE AND SPACE SAS
    Inventors: Jean-Marc Aymes, Sébastien Mazuel, Antoine Poulet
  • Patent number: 11448722
    Abstract: For example, an apparatus may include a radar antenna including at least one Transmit (Tx) antenna to transmit a Tx radar signal; and a plurality of Receive (Rx) antennas to receive Rx radar signals based on the Tx radar signal, wherein a distance between a first Rx antenna of the planarity of Rx antennas and a second Rx antenna of the plurality of Rx antennas, which is adjacent to the first Rx antenna, is at least ten times a wavelength of a central frequency of the Tx radar signal.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: September 20, 2022
    Assignee: INTEL CORPORATION
    Inventors: Nir Dvorecki, Yuval Amizur, Leor Banin
  • Patent number: 11385721
    Abstract: Various embodiments utilize application-based processing parameters to dynamically configure a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. The first application can also dynamically configure processing parameters of the radar-based detection system, such as digital signal processing parameters and machine-learning parameters. In some cases, a second application assumes execution priority over the first application, and dynamically reconfigures the radar-based detection system to emit a radar field suitable to a second operating context associated with the second application.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: July 12, 2022
    Assignee: Google LLC
    Inventors: Jaime Lien, Erik M. Olson
  • Patent number: 11353553
    Abstract: A multisensor data fusion perception method includes receiving feature data from a plurality of types of sensors, obtaining static feature data and dynamic feature data from the feature data, constructing current static environment information based on the static feature data and reference dynamic target information, and constructing current dynamic target information based on the dynamic feature data and reference static environment information such that construction of a dynamic target and construction of a static environment are performed by referring to each other's construction results and the perception capability is for the dynamic target and the static environment that are in an environment in which the moving carrier is located.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 7, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xueming Peng, Zhixuan Wei, Qi Chen
  • Patent number: 11354961
    Abstract: A method to determine user intent for an access control including sensing biometrics data from a body-worn device; sensing biometrics data at an access control; comparing the biometrics data from the body-worn device and the access control; and determining a user intent to access the access control in response to the comparing.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: June 7, 2022
    Assignee: CARRIER CORPORATION
    Inventor: Maxim Rydkin
  • Patent number: 11262446
    Abstract: A synthetic aperture radar (SAR) generates concurrent first radar pulses in first frequency channels. The SAR transmits, and receives returns of, the concurrent first radar pulses by first antenna feeds that form first beams in the first frequency channels and that are directed to respective first subswaths of a swath on the Earth separated by subswath gaps. The SAR generates concurrent second radar pulses in second frequency channels. The SAR transmits, and receives returns of, the concurrent second radar pulses by second antenna feeds configured to form second beams in the second frequency channels and that are directed to respective second subswaths of the swath on the Earth and that coincide with the subswath gaps. The SAR processes the returns of the first radar pulses from the first subswaths and the returns of the second radar pulses from the second subswaths to form a SAR image contiguous across the swath.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: March 1, 2022
    Assignee: Eagle Technology, LLC
    Inventors: Kerry Timothy Speed, Donald A. Lieb, Timothy Earl Durham, Robert M. Taylor
  • Patent number: 11204647
    Abstract: A method for gesture recognition includes receiving, by a processor, a first digital intermediate frequency (IF) signal stream from a first receive antenna and receiving, by the processor, a second digital IF signal stream from a second receive antenna. The method also includes computing, by the processor, a weighted Doppler metric stream based on the first digital IF signal stream and the second digital IF signal stream and computing, by the processor, an angle metric stream based on the first digital IF signal stream and the second digital IF signal stream. Additionally, the method includes computing, by the processor, a correlation between the weighted Doppler metric stream and the angle metric stream, to generate a first correlation and recognizing, by the processor, a gesture, based on the first correlation.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 21, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Rao, Sachin Bharadwaj, Piyali Goswami
  • Patent number: 11177554
    Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: November 16, 2021
    Assignee: Humatics Corporation
    Inventors: Gregory L. Charvat, David A. Mindell
  • Patent number: 11163059
    Abstract: Data from a radar sensor moving through a static environment may be smoothed and used to generate range profiles by approximating peaks. A direction of arrival (DOA) can then be determined based on the range profile in order to generate a reprojection map. The reprojection map is used to provide updates to a stored map in a robot.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 2, 2021
    Assignees: BSH Home Appliances Corporation, BSH Hausgeräte GmbH
    Inventors: Laurenz Altenmueller, Philip Roan
  • Patent number: 11137478
    Abstract: A system for aiming a radar sensor angle which adjusts an angle of the radar sensor mounted on a vehicle entering an inspection line includes: a radar sensor mounted inside a front bumper of the vehicle, a wireless terminal connected to the radar sensor through an in-vehicle communication line and connected to the outside through a repeater, a centering unit for aligning a position of the vehicle by a driving roller based on a reference inspection position of the radar sensor, an array antenna for measuring an intensity of a radar signal transmitted from the radar sensor and detecting a radar center value, and a server detecting an angular error value of the radar sensor by comparing the radar center value with a reference center value of a set mounting specification and transmitting an angular correction value to the radar sensor.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: October 5, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Jihoon Park, Jin Seok Kim, David Oh