Determining Direction Patents (Class 342/147)
  • Patent number: 6856279
    Abstract: A method for processing radar return data to determine a physical angle, in aircraft body coordinates to a target, is disclosed. The radar return data includes a phase difference between radar return data received at an ambiguous radar channel and a left radar channel, a phase difference between radar return data received at a right radar channel and an ambiguous radar channel, and a phase difference between radar return data received at a right radar channel and a left radar channel. The method includes adjusting a phase bias for the three phase differences, resolving phase ambiguities between the three phase differences to provide a signal, and filtering the signal to provide a physical angle to the target in aircraft body coordinates.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: February 15, 2005
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Lavell Jordan, Todd R. Burlet
  • Patent number: 6839017
    Abstract: A system employs null angle measurements developed in response to the detection of radiation, such as jamming, along with the positions at which the null angles are measured, to determine the location of the radiation source through reverse triangulation.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: January 4, 2005
    Assignee: Rockwell Collins
    Inventor: David J. Dillman
  • Patent number: 6816105
    Abstract: An algorithm for improved tracking of Air Traffic Control Radar Beacon System transponders is disclosed. The algorithm can be combined with a system that includes an interrogator which transmits an interrogation signal to an associated vehicle transponder at a first frequency, preferably 1030 MHZ in accordance with FAA regulations, and a receiver array which receives the transponder reply signal transmitted by the transponder at a second frequency, preferably 1090 MHZ in accordance with FAA regulations. An angle of arrival processor calculates an angle of the received reply signal, and a position processor calculates the vehicle position based on at least the received angle data.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: November 9, 2004
    Inventors: Karl Winner, Benjamin Khen
  • Patent number: 6801152
    Abstract: Emitter target range and heading are estimated from bearing measurements enhancing bearings-only estimator convergence to a target track, and permitting optimization of an observer position relative to the target at the end of the total bearing measurement period. One or more estimates of the target range, speed and heading made from bearing measurements before an observer maneuver are used to determine the most appropriate observer maneuver giving complete bearings-only target-motion-analysis observability. A set of parameters characterizing a set of potential emitter signal sources is generated based on measured emitter characteristics. A most probable set of emitter platforms is identified and the emitter operating mode and corresponding platform set are associated with a kinematic regime set. A specific speed or discrete set of speeds best adapted to a set of all possible platform missions, emitter speed as a continuous function of emitter range, and emitter range are all determined.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: October 5, 2004
    Assignee: Northrop Grumman Corporation
    Inventor: Conrad Rose
  • Patent number: 6798349
    Abstract: A system for identification and tracking of microwave responsive tags, the system comprising, a microwave responsive tag having a passive modulating element to uniquely backscatter directed microwave beams, a microwave base station for directing microwave beams in room sized areas, and a tag tracking system receiving input from the microwave base station, the tag tracking system storing state records of position and informational content of the microwave tag.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: September 28, 2004
    Assignee: Xerox Corporation
    Inventors: Edward A. Richley, Beverly L. Harrison
  • Publication number: 20040183719
    Abstract: A radar device (2) includes plural transmission antennas and plural reception antennas. The reception antennas constitute a reception-side antenna portion (20) and are arranged at an interval of d. The transmission antennas constitute a transmission-side antenna portion (18) and are arranged at an interval of d′=d×(n−1). The path length at which the electric wave is reflected from a target is identical between channels A9 and B1, and seventeen kinds of channels (A1 to A8, A9 or B1, B2 to B9) which are different in path length by every fixed distance are achieved. The data of the channels (A1 to A9 and B1 to B9) using different transmission antennas are respectively collected in different measuring cycles, and an error based on the time difference between the measuring cycles is corrected on the basis of a correction value calculated from the data of the channels A9, B1.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Applicant: DENSO CORPORATION
    Inventors: Kazuma Natsume, Hiroshi Hazumi
  • Patent number: 6791475
    Abstract: A plurality of roadside wireless devices are provided on a roadside of an entry of a toll area. A first roadside wireless device, which communicates with a vehicle-mounted device over wireless communication, sends unique information obtained from the vehicle-mounted device to a second roadside wireless device located, downstream to the first roadside wireless device, along a moving direction of the vehicle. The second roadside wireless device checks if unique information on the vehicle-mounted device obtained from the vehicle-mounted device matches the unique information on vehicle-mounted device notified from the first roadside wireless device to judge if the moving direction is a direction of entry into a toll area and charges the vehicle-mounted device for toll only when it is judged that the moving direction is the direction of entry into the toll area.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: September 14, 2004
    Assignee: NEC Corporation
    Inventor: Hiroshi Yamashita
  • Patent number: 6784826
    Abstract: Methods and apparatus are disclosed for measuring position and motion of a “marker” antenna (14), disposed on a subject (12) at a physical location to be tracked. Relative distance of the marker antenna (14) from receiving antennas (18) is measured by phase differences of its microwave signals (40) at the receiving antennas (18) for at least two successive marker positions. Alternatively, actual distances (104, 106) are calculated by choosing a source position (102) and iterating the distances (104, 106) until the calculated phase differences match those measured. Four to six receiving antennas (18) are positioned at edges of a volume (16) where activity is conducted. Each received signal (40) is amplified and down-converted in a mixer (44). A single reference oscillator (46) feeds all the mixers (42) to preserve phase relationships of the received signals. Received signals (40) are digitized and presented to a multi-channel digital tuner (50).
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: August 31, 2004
    Assignee: Tera Research Incorporated
    Inventors: Ronald J. Kane, David Stevenson Spain, Jr.
  • Patent number: 6774837
    Abstract: A bistatic radar system (100), method and computer program (178) are provided for mapping of oceanic surface conditions. Generally, the system (100) includes at least one transmitter (102) and at least one receiver (106) located separate from one another, and each having a local oscillator locked to a Global Positioning System (GPS) signal received by a GPS synchronization circuit (134) to provide the necessary coherency between the transmitted and received signals. Preferably, the present invention enables an existing backscatter radar systems to be quickly and inexpensively upgraded to a bistatic radar system (100) through the addition of a transmitter (102) and/or receiver (106) separate from the backscatter radar system, the GPS circuit (134), and use of the computer program (178) and method of the present invention.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: August 10, 2004
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Peter M. Lilleboe, Belinda J. Lipa, James Isaacson
  • Patent number: 6762711
    Abstract: In a method for detecting target objects and determining their direction, range, speed and the like for a radar device, the invention provides that at least three transmitting and receiving devices for radar beams are arranged in such a manner that their beam fields (a, b, c, d, e) form the dectection area of the radar device, and the at least three transmitting and receiving devices are activated and deactivated successively in such a manner that at least two adjacent transmitting and recieving devices are activated simultaneously.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: July 13, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventor: Reiner Doerfler
  • Publication number: 20040119633
    Abstract: Apparatus for and methods of obtaining positional information about one or more objects in a detection field are disclosed. An array including a transmitting element and a plurality of receiving elements is provided. In one aspect a truncated cross-correlation function is applied to determine the interval between signals received by a plurality of the receiving elements, thereby to determine an angular position of an object. In another aspect a warning zone is defined and it is determined whether an object is within the warning zone. Also disclosed are techniques for stretching received signals, and techniques for obtaining positional information relating to an object using non-Doppler radar. Various implementations, modifications and applications of the techniques described are disclosed. Typical applications of the techniques described are with vehicles.
    Type: Application
    Filed: June 26, 2003
    Publication date: June 24, 2004
    Applicant: Cambridge Consultants Limited
    Inventors: Gordon Kenneth Andrew Oswald, Alan Trevor Richardson, Michael Hugh Burchett, Eric Nicol Clouston, Danielle Emma Toutoungi
  • Patent number: 6753804
    Abstract: A method for tracking a target vehicle through a curve in a roadway is disclosed. The method includes measuring an azimuth angle between the target vehicle and a host vehicle, calculating a relative velocity between the target vehicle and the host vehicle, developing a theoretical relationship, wherein the relationship is a function of the measured azimuth angle and the measured relative velocity, and comparing the developed theoretical relationship with measured relationship between the azimuth angle and the relative velocity. Further, the target vehicle is determined to be in the same lane or path of the host vehicle by evaluating how well the developed theoretical relationship fits the with the measured azimuth angle and calculated relative velocity. Therefore, the present invention determines the path of a target vehicle without relying on inaccurate conventional methods based on the yaw rate of the host vehicle.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 22, 2004
    Assignee: Visteon Global Technologies, Inc.
    Inventor: Shunji Miyahara
  • Patent number: 6744401
    Abstract: A method for testing a radar system utilizing flight test radar data is described. The method includes time synchronizing measured radar data with a GPS based time marker, storing at least a portion of the time synchronized radar data, storing the GPS data, processing the stored GPS data to correspond with a physical position of an antenna which received the radar data, providing a radar model, and comparing the processed radar model data to the stored radar data.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: June 1, 2004
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Jason I. Formo, Jens M. Henrickson
  • Patent number: 6744397
    Abstract: A method of determining a target location from a vehicle is described. The method includes identifying the target utilizing a video system, determining an angular location vector to the target with respect to the vehicle, determining a position of the vehicle utilizing a digital terrain elevation map and precision radar altimeter, calculating a location where the angular location vector would intersect with the digital terrain elevation map, and generating a target position based on vehicle position and the location of the intersection of the angular location vector and digital terrain elevation map.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: June 1, 2004
    Assignee: Honeywell International, Inc.
    Inventors: James R. Hager, Larry D. Almsted, Thomas Jicha
  • Patent number: 6714157
    Abstract: A pulse radar system capable of mapping multiple targets essentially simultaneously using a single radar antenna. By alternately transmitting radar pulses toward multiple targets positioned at different angles relative to the antenna and alternately receiving return signals from the multiple targets as the radar antenna is switched between multiple beam positions, a time-interleaved radar operation is achieved which enables multiples targets to be mapped, and thus tracked, at the same time. A different radio frequency is preferably employed for each target so as to avoid interference and ambiguous returns. Using the teachings of the present invention, between two and twenty radar maps, and possibly more, can be generated simultaneously in approximately the same amount of time required to map a single target using conventional systems of the prior art.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: March 30, 2004
    Assignee: The Boeing Company
    Inventor: Peter S. Wittenberg
  • Patent number: 6697012
    Abstract: A system and method for detecting and tracking a target object, including the calculation of the target object's altitude, is disclosed. During the processing of signals received by a receiver, the system selectively calculates the altitude of the target object from signals modified by an interference effect pattern formed by the signals broadcast by a transmitter, or from the calculation of geometric shapes associated with three or more transmitters and determining the intersection point of those shapes.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Lockheed Martin Corporation
    Inventors: Richard A. Lodwig, Bonnie L. Adams, Gregory A. Baker
  • Publication number: 20040027276
    Abstract: A method for determining a location of an emitter in a monitored area includes the step of providing an array representative of the monitored area, the array including a plurality of elements. Next, at least one first curve and at least one second curve is provided in the array. The first and second curves are representative of possible locations of the emitter in the monitored area. Then, possible emitter locations are identified at intersections of the first and second curves. The intersections are identified by determining locations in the array where an element having an assigned attribute corresponding to a first curve has a predetermined number of adjacent elements having an assigned attribute corresponding to a second curve.
    Type: Application
    Filed: August 6, 2002
    Publication date: February 12, 2004
    Applicant: Lockheed Martin Corporation
    Inventor: Carl R. Herman
  • Patent number: 6680687
    Abstract: A method to determine a target azimuth with a radar. The radar sends out a wave of N-pulse bursts. The method includes in one burst: splitting up a N-pulse burst into two half bursts, of a front burst and a rear burst; filtering the front and rear bursts to associate an azimuth value &thgr;1 and an amplitude value A1 with the front burst, and an azimuth value &thgr;2 and an amplitude value A2 with the rear burst; and obtaining the target azimuth Az at a value corresponding to a maximum of a Gaussian curve passing through points having components (&thgr;1, A1) and (&thgr;2, A2).
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: January 20, 2004
    Assignee: Thales
    Inventor: Michel Phelipot
  • Patent number: 6680691
    Abstract: A phase processor is disclosed which is configured to receive processed radar return data from a left radar channel, a right radar channel, and an ambiguous radar channel. The phase processor comprises a plurality of phase detectors each with an input and a reference input. The phase detectors are configured to determine a phase difference between radar return data received at the input and radar return data received at the reference input.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: January 20, 2004
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Jens M. Henrickson, Lavell Jordan, Todd R. Burlet
  • Patent number: 6677884
    Abstract: For interferometric and/or tomographic remote sensing by means of synthetic aperture radar (SAR) one to N receiver satellites and/or transmitter satellites and/or transceiver satellites with a horizontal across-track shift the same or differing in amplitude form a configuration of satellites orbiting at the same altitude and same velocity. Furthermore, a horizontal along-track separation, constant irrespective of the orbital position, is adjustable between the individual receiver satellites. In this arrangement one or more receiver satellites orbiting at the same altitude and with the same velocity are provided with a horizontal across-track shift varying over the orbit such that the maximum of the horizontal across-track shift occurs over a different orbital position for each satellite, the maxima of the horizontal across-track shifts are positioned so that the baselines are optimized for across-track interferometry.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: January 13, 2004
    Assignee: Deutsches Zentrum fur Luft-und Raumfahrt e.V.
    Inventors: Alberto Moreira, Gerhard Krieger, Josef Mittermayer
  • Patent number: 6661368
    Abstract: A system for reducing multi-path reflections from adjacent metal objects which cause distortion in an IFSAR includes a reflective cone extending between the top of the IFSAR and the skin of its aircraft, and a reflective shroud surrounding the IFSAR. Each of these components may be coated with radar absorbing material.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: December 9, 2003
    Assignee: Sandia Corporation
    Inventors: Steven E. Allen, Billy C. Brock
  • Patent number: 6661366
    Abstract: A radar system and technique provide the capability to detect a target of interest and maintain the detection in the presence of multiple mainlobe and sidelobe jamming interference. The system and technique utilize digital beamforming to form sub-arrays for canceling jamming interference. Jamming is adaptively suppressed in the sub-arrays prior to using conventional deterministic methods to form the sum, &Sgr;, and difference, &Dgr;, beams for monopulse processing. The system and technique provide the ability to detect a target of interest, provide an undistorted monopulse ratio, m, and maintain target angle estimation, in the presence of multiple mainlobe and multiple sidelobe jammers.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: December 9, 2003
    Assignee: Lockheed Martin Corporation
    Inventor: Kai-Bor Yu
  • Patent number: 6653972
    Abstract: A system and method (32) for measuring line-of-sight angular rates for all-weather precision guidance of distributed projectiles (16) and a guidance system (10) based thereon. In accordance with the novel method (32) for measuring line-of-sight angular rates, first the range rates of the target (14) relative to at least two projectiles (16) is determined, as well as the position and velocity of each projectile (16). Then, the line-of-sight angular rate of the target (14) relative to at least one projectile (16) is computed from the range rates, positions, and velocities. In the illustrative embodiment, the range rate of the target (14) relative to a projectile (16) is determined based on a monostatic target Doppler measurement, a monostatic projectile Doppler measurement, a bistatic Doppler measurement of the target (14) by the projectile (16), and the carrier frequency of a data link (26) between the projectile and the shipboard system.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: November 25, 2003
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Publication number: 20030210177
    Abstract: A method for processing radar return data to determine a physical angle, in aircraft body coordinates to a target, is disclosed. The radar return data includes a phase difference between radar return data received at an ambiguous radar channel and a left radar channel, a phase difference between radar return data received at a right radar channel and an ambiguous radar channel, and a phase difference between radar return data received at a right radar channel and a left radar channel. The method includes adjusting a phase bias for the three phase differences, resolving phase ambiguities between the three phase differences to provide a signal, and filtering the signal to provide a physical angle to the target in aircraft body coordinates.
    Type: Application
    Filed: May 13, 2002
    Publication date: November 13, 2003
    Inventors: James R. Hager, Lavell Jordan, Todd R. Burlet
  • Publication number: 20030210184
    Abstract: An inexpensive, small, low-power consumption, wide-band, high resolution spectrum analyzer is provided as a listening device for throw-away applications such as surveillance that involve deployment of large numbers of battery-powered spectrum analyzer modules to detect a signal source such as two-way radio traffic. Power requirements are minimized by the utilization of only one chirp generator to elongate battery life while providing a high resolution result. In order to minimize power drain the spectrum analyzer includes a single compound-chirp Fourier Transform generator. The compound chirp generator is used in one embodiment with a surface acoustic wave, SAW, dispersive delay line in conjunction with a surface electromagnetic wave, SEW dispensive delay line.
    Type: Application
    Filed: May 9, 2002
    Publication date: November 13, 2003
    Applicant: BAE SYSTEMS Information Electronic Systems Integration, Inc.
    Inventor: John T. Apostolos
  • Patent number: 6646591
    Abstract: A series of police doppler single mode radars and a multimode police doppler radar, all with direction sensing capability are disclosed. A quadrature front end which mixes received RF with a local oscillator to generate two channels of doppler signals, one channel being shifted by an integer multiple of 90 degrees in phase relative to the other by shifting either the RF or the local oscillator signal being fed to one mixer but not the other. The two doppler signals are digitized and the samples are processed by a digital signal processor programmed to find one or more selected target speeds. Single modes disclosed are: stationary strongest target; stationary, fastest target; stationary, strongest and fastest targets; moving, strongest, opposite lane; moving, strongest, same lane; moving, fastest, opposite lane; moving, fastest and strongest, opposite lane; moving, fastest, same lane; moving fastest and strongest, same lane.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: November 11, 2003
    Assignee: Applied Concepts Inc.
    Inventors: John L. Aker, Robert S. Gammenthaler
  • Publication number: 20030206132
    Abstract: The invention concerns a method and apparatus for cascaded processing of signals in a phased array antenna system in which a plurality of antenna elements are configured as a plurality of sub-arrays. A weighting factor is applied to each of the antenna elements to form a plurality of sub-array beams, each pointed in a selected direction. For each sub-array, an output from each the antenna elements in the sub-array can be combined to produce a sub-array output signal. The sub-array output signals are selectively weighted and combined in a fully adaptive process. Subsequently, the system can estimate an angle-of-arrival direction for a signal-of-interest (“SOI”) and at least one signal-not-of-interest (“SNOI”). Based on this estimating step, the system calculates a new set of weighting factors for controlling one or more of the sub-array beams to improve the signal-to-noise plus interference ratio obtained for the SOI in the array output signal.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 6, 2003
    Inventors: H. Richard Phelan, Mark L. Goldstein, G. Patrick Martin, Richard J. Nink
  • Patent number: 6621448
    Abstract: A system and method for imaging objects obscured by a covering layer of snow. The system preferably utilizes a continuous-wave radar generating short-wavelength radio-frequency (RF) signal beam-scanned over angular displacements following a scanning pattern toward a target area. Reflections of the:RF signal from objects buried beneath the snow are registered by an array of RF detectors whose signal magnitudes are summed arid correlated with scan direction to generate a signal providing spatial object information, Which by way of example, is visually displayed. The radio-frequency beam may be scanned over the scene electronically or by either mechanically or electromechanically modulating antenna direction or the orientation of a beam deflector. The system is capable of generating multiple image frames per second, high-resolution imaging, registration of objects to a depth exceeding two meters, and can be implemented at low cost without complex signal processing hardware.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: September 16, 2003
    Assignee: The Regents of the University of California
    Inventors: Ty A. Lasky, Tabib Shahrdad, Bahram Ravani
  • Patent number: 6618000
    Abstract: In a method and apparatus for controlling the distance of a vehicle to a vehicle traveling ahead, in which the distance and the relative velocity of the vehicle traveling ahead are measured and the distance, in a distance control mode, is controlled by accelerating or decelerating the vehicle to a preestablished setpoint distance, wherein the deceleration permitted by the distance control process is limited and, in situations in which the setpoint distance cannot be maintained at this limited deceleration, the transition is made from the distance control process to a process limiting the distance to a minimum distance which is smaller than the setpoint distance, and the vehicle, after reaching the minimum distance, is further decelerated, so that the distance once again increases to the setpoint distance.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: September 9, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Hermann Winner, Albrecht Irion
  • Publication number: 20030142001
    Abstract: The relative movement of a receiver and transmitter in a communications system is used to advantage by electronically synthesizing a larger apparent antenna aperture, thereby increasing signal-to-noise ratio. The approach may be used regardless of whether the transmitter is fixed and the user or vehicle is moving, or the user or vehicle is fixed and the transmitter is moving. According to the method, the apparent angle between the receiver and transmitter is determined relative to the direction of movement and used to produce time-delayed replicas of the received signaling stream which are coherently added to synthesize the increased apparent receiver antenna aperture. Since only the receiver is modified according to the invention, existing transmitters and infrastructures can be used without modification. Significant cost potentials can be realized via economy of scale, due to relatively simple FFT processing.
    Type: Application
    Filed: January 22, 2003
    Publication date: July 31, 2003
    Inventors: Nikola Subotic, Christopher Roussi, Joseph Burns
  • Publication number: 20030141973
    Abstract: The presentation is a low-cost, two-way communication system and method for aid in locating an object, such as a container or a package and reporting the contents of the object to a site remote from the location of the object. In one embodiment, the system includes two modules. A remote module includes a directional antenna array mounted on the top of the module (i.e., in a remote site), a processor including a direction-finding software, and a display for pointing the direction of the container's location relative to the remote site.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 31, 2003
    Inventors: Hen-Geul Yeh, Hsien-Yang Yeh
  • Patent number: 6600443
    Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 29, 2003
    Assignee: TC (Bermuda) License, Ltd.
    Inventor: Jeremy A. Landt
  • Patent number: 6593873
    Abstract: An obstacle recognition system for automotive vehicles is provided which is designed to recognize targets such as preceding vehicles to be tracked by a radar by grouping data elements derived through a scan of a frontal detection range using laser pulses. The system determines the radius of a curve in a road on which a system vehicle is traveling and shifts one of the data elements from which the grouping operation is to be initiated as a function of the radius of the curve, thereby enabling the recognition of the targets without decreasing the control reliability even when the system vehicle is turning the curve.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: July 15, 2003
    Assignee: Denso Corporation
    Inventors: Yoshie Samukawa, Keiji Matsuoka, Hiroshi Ookata, Toyohito Nozawa, Noriaki Shirai
  • Patent number: 6573859
    Abstract: A radar apparatus of the present invention is provided with a reception array antenna having a plurality of antenna elements, a first bearing detector for detecting a bearing of a target by carrying out signal processing on individual element signals received on an element-by-element basis through the respective antenna elements, and a second bearing detector for detecting a bearing of a target by carrying out signal processing different from that of the first bearing detector, on the individual element signals received through the respective antenna elements. Since the radar apparatus is provided with the two detectors of the first bearing detector and second bearing detector as means for acquiring the target bearing, both or either one of the results of detection by the two detectors can be selectively utilized as occasion demands.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: June 3, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Setsuo Tokoro
  • Publication number: 20030058155
    Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.
    Type: Application
    Filed: October 18, 2002
    Publication date: March 27, 2003
    Inventor: Jeremy A. Landt
  • Publication number: 20030058153
    Abstract: A method and system for are provided for detecting one or more radar targets of interest in the presence of jamming signals. A plurality of sub-arrays are formed from an antenna array. Sub-array beams are adaptively formed so as to point one or more nulls in one or more respective directions corresponding to one or more jammers. A super-resolution technique is applied to determine a count of the one or more radar targets and to determine the corresponding direction of arrival.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 27, 2003
    Applicant: Lockheed Martin Corporation
    Inventor: Kai-Bor Yu
  • Publication number: 20030052812
    Abstract: Disclosed is a method to determine target azimuth by the use of a radar, especially of the ASR type. The radar sends out a wave of detections by N-pulse bursts. The method comprises at least the following steps in one burst: a step in which the burst is split up into two half bursts, one front burst and one rear burst; a step for the filtering of the half burst to associate an azimuth value &thgr;1 and an amplitude value A1 with the front burst, and an azimuth value &thgr;2 and an amplitude value A2 with the rear burst; a step to obtain the target azimuth Az at a value corresponding to the maximum of a Gaussian curve passing through the points having components (&thgr;1, A1), (&thgr;2, A2). The invention can be applied especially to surveillance radars used, for example, in air traffic management applications.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 20, 2003
    Applicant: THALES
    Inventor: Michel Phelipot
  • Patent number: 6535158
    Abstract: A method for determining the velocity of features such as wind. The method preferably includes producing sensor signals and projecting the sensor signals sequentially along lines lying on the surface of a cone. The sensor signals may be in the form of lidar, radar or sonar for example. As the sensor signals are transmitted, the signals contact objects and are backscattered. The backscattered sensor signals are received to determine the location of objects as they pass through the transmission path. The speed and direction the object is moving may be calculated using the backscattered data. The data may be plotted in a two dimensional array with a scan angle on one axis and a scan time on the other axis. The prominent curves that appear in the plot may be analyzed to determine the speed and direction the object is traveling.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: March 18, 2003
    Assignee: Utah State University Research Foundation
    Inventors: Thomas D. Wilkerson, Jason A. Sanders, Ionio Q. Andrus
  • Patent number: 6522286
    Abstract: A multi-channel radar apparatuses optimizes the number of channels used for detecting a body in terms of position detection precision and processing time reduction. The multi-channel apparatus detects the position of the body that produces reflecting waves by calculating, for example, the center of gravity using only the received signals of monostatic channels (B1, B3, and B5) when the level of the received signals is high and using the received signals of the monostatic channels (B1, B3, and B5), as well as the received signals of bistatic channels (B2 and B4) when the level of the received signals is low.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: February 18, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Jun Ashihara
  • Patent number: 6498581
    Abstract: A system identifies a number of targets within a main beam of an antenna array that transmits the main beam and receives echo returns from the main beam. A covariance matrix is generated using the echo returns. The presence of at least one target within a single range cell is detected. A plurality of consecutive pulses are transmitted in a direction of the single range cell within a sufficiently short period that the at least one target remains within the single range cell while the plurality of consecutive pulses are transmitted. An echo signal is sampled from each of the plurality of pulses. An updated covariance matrix is estimated each time the echo signal is sampled. An eigenvalue decomposition is updated each time the covariance matrix is updated. The number of targets in the single range cell is estimated, based on the updated eigenvalue decomposition.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: December 24, 2002
    Assignee: Lockheed Martin Corporation
    Inventor: Kai-Bor Yu
  • Publication number: 20020175851
    Abstract: A protective device for a person, specifically for a person participating a sport, having at least one sensor device for detecting obstacles in the vicinity of the person to be protected; an evaluation device having a microcontroller for a situation evaluation with respect to the surroundings of the person to be protected; a triggering device for activating a protective application; and a protective application, which can be integrated in the equipment of the person to be protected.
    Type: Application
    Filed: March 18, 2002
    Publication date: November 28, 2002
    Inventors: Arno Schaumann, Dirk Weber, Alfred Kuttenberger
  • Publication number: 20020167440
    Abstract: A system and method for mitigating co-channel interference is disclosed. A radar system detects targets from received signals at an antenna array. The received signals include direct signals and target signals transmitted from remote transmitters. An antenna array receives the signals. A signal processing system is coupled to the antenna array to perform processing operations on the received signals. The processing system includes a primary cancellation component and a secondary cancellation component. A primary illuminator signal is cancelled from the received signals by the primary cancellation component. An adaptive beam former obtains a secondary illuminator signal from the received signals. A reference regenerator regenerates the secondary illuminator signal. An adaptive cancellation filter removes noise from the secondary illuminator signal. The secondary cancellation component mitigates co-channel interference by canceling the secondary illuminator signal from the received signals.
    Type: Application
    Filed: May 3, 2002
    Publication date: November 14, 2002
    Applicant: Lockheed Martin Corporation
    Inventor: Kevin W. Baugh
  • Patent number: 6480142
    Abstract: A method and apparatus for measuring the parameters of atmospheric turbulent flows utilizes the Doppler shifted frequencies of received radar signals backscattered from sound generated aerodynamically by atmospheric turbulent flows. Doppler frequency bandwidths of the received backscattered signals are used to estimate the atmospheric flow turbulence and the mean frequency within a bandwidth is processed to estimate its radial flow velocity. Total flow velocity and the flow velocity angle with respect to the antenna boresight of the atmospheric turbulent flow may be estimated by estimating the radial flow velocity at two radial positions and processing these radial velocities. Processing of the Doppler data is initiated when the total signal power within the Doppler frequency band exceeds a predetermined power level.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: November 12, 2002
    Inventor: William L. Rubin
  • Publication number: 20020163462
    Abstract: When a question signal of a transmitting frequency band &Dgr;F1 output from a radar device is received in search and rescue radar trans-ponder (SART) of a wreck ship, a response signal is sent from the SART to the radar device. In the radar device, the response signal and an echo of the question signal are received as a reception signal, intensity of components of the reception signal placed in almost the same frequency band as the transmitting frequency band &Dgr;F1 of the question signal is suppressed to produce a filtered response signal, and components of the filtered response signal placed in a receiving frequency band &Dgr;F2, which does not overlap with the transmitting frequency band &Dgr;F1 of the question signal, are extracted from the filtered response signal as an image signal.
    Type: Application
    Filed: September 10, 2001
    Publication date: November 7, 2002
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Kazuyosi Takase, Kioo Matuura, Kenichi Nishiguchi
  • Patent number: 6476756
    Abstract: Methods and systems for determining the direction to a transponder are disclosed. The methods and systems include transmitting a first signal to an area where communications with a transponder is desired; producing a second signal desired from the first signal; receiving the second signal via a first and second antenna forming a difference signal from the second signal received via the first and second antennas; forming a third signal by adding the second signal received via the first antenna and the second signal received via the third antenna; delaying the difference signal; and comparing a fist polarity of the delayed difference signal with a second polarity of the third signal.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: November 5, 2002
    Assignee: TC (Bermuda) License, Ltd.
    Inventor: Jeremy A. Landt
  • Patent number: 6469656
    Abstract: A method is described for detecting moving and/or stationary objects in the path of a vehicle, where the distance and velocity of the reflecting object are determined by using a radar sensor, where the frequency of the signal transmitted is modulated in the shape of a ramp according to a multi-ramp method, and some ramps have a lower slope in the frequency curve. The higher spectral components of the mixed signals from the ramps having the lower slope, which are to be assigned to a distance range of the reflecting object which is greater than the distance range belonging to the ramps having the greater slope, are used to determine the distance, speed and angle of objects.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: October 22, 2002
    Assignee: Robert Bosch GmbH
    Inventors: Klaus-Peter Wagner, Reiner Marchthaler, Bernd Ummer
  • Patent number: 6469657
    Abstract: A radio direction finding system for a low signal quality transmission signal performs a Fast Fourier Transform (FFT) on an entire received RF band into a number of FFT bins, each serving as an IF filter. The contents of each FFT bin are demodulated to decode a frequency signature from the encoded RF signal. A signal-to-noise ratio comparator receives the FFT baseband samples and determines the signal level from the known frequency signature. The FFT baseband buffer with the greatest SNR corresponding to a particular FFT frequency bin is outputted as a direction finding metric.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: October 22, 2002
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventor: Neil David Fox
  • Patent number: 6462699
    Abstract: The bistatic radar system uses a scanning beam antenna located at the transmitter to transmit a focused beam of high frequency energy into a predefined space, with the transmitted beam comprising a series of pulses. The transmitter also includes apparatus for determining pulse origination data comprising: pulse origination time and direction of propagation for each of the pulses in the transmitted beam emanating from the antenna, where the antenna is scanned in a predetermined scan pattern in at least an azimuthal direction. The bistatic radar system also includes at least one receiver, located at a site remote from the transmitter and includes apparatus for generating pulse component receipt data indicative of receipt of components of the pulses that are contained in the transmitted beam that are reflected from scatterers in the predefined space.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: October 8, 2002
    Assignee: University Corporation for Atomspheric Research
    Inventors: Joshua Michael Wurman, Mitchell Alfred Randall, Chris Dale Burghart
  • Patent number: 6456229
    Abstract: The bistatic radar network uses an incoherent transmitter for determining the presence, locus, motion, and characteristics of scatterers in a predefined space. The incoherent transmitter generates pulses of high frequency energy that vary in frequency and/or phase. The bistatic radar network having an incoherent transmitter uses a scanning beam antenna located at the transmitter to transmit a focused beam of high frequency energy into a predefined space, with the transmitted beam comprising a series of pulses, each pulse in the series of pulses having a varying frequency, phase, pulse origination time and direction of propagation as it is emanated from said antenna. The transmitter also includes apparatus for determining pulse origination data comprising: frequency, phase, pulse origination time and direction of propagation, for each of the pulses in the transmitted beam emanating from the antenna, where the antenna is scanned in a predetermined scan pattern in at least an azimuthal direction.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: September 24, 2002
    Assignee: University Corporation for Atmospheric Research
    Inventors: Joshua Michael Wurman, Mitchell Alfred Randall, Chris Dale Burghart
  • Patent number: 6445339
    Abstract: This FM-CW radar apparatus comprises a transmitter section, a receiver section, and a signal processing section. The transmitter section transmits a frequency-modulated continuous wave as a transmitted wave. The receiver section receives a radio wave resulting from reflection of the transmitted wave at a target, as a received wave, by a receiving antenna comprising an array of antenna elements, generates a beat signal which is a difference of the transmitted wave and the received wave in each of channels of the respective antenna elements, and converts this beat signal to a digital beat signal by A/D conversion. The signal processing section executes a digital beamforming operation with the digital beat signals and detects the target from the result of the operation.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: September 3, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yukinori Yamada