Testing Or Calibrating Of Radar System Patents (Class 342/165)
  • Patent number: 8803733
    Abstract: A method of optimizing an antenna system can include determining a desired angle to rotate an antenna based on an axial ratio of electromagnetic waves exiting a radome that surrounds the antenna. The desired angle can be determined by a computing device based on a set of axial ratio values.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 12, 2014
    Assignee: Mitre Corporation
    Inventors: Frank Kolak, Aleksandra Markina-Khusid
  • Patent number: 8786487
    Abstract: A radar includes a transmitting antenna and receiving antenna formed by an array of radiant elements. Antenna beams are calculated in P directions by a BFC function. Detections of a target by secondary lobes of the beams are processed by an algorithm comparing levels received in a distance-speed resolution cell, a single detection at most not being possible for each distance-speed resolution cell. Processing means use the assumption that there may probably be more than one echo with a signal-to-noise ratio that is sufficient to be detectable, for a given resolution cell of the radar, either in speed mode or in distance mode, or, alternatively, a distance-speed depending on the processing implemented; and, if there is more than one echo detectable for each resolution cell out of the plurality of beams formed by BFC, only the echo and BFC that obtain maximum power or maximum signal-to-noise ratio are/is considered valid.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Thales
    Inventors: Stephane Kemkemian, Pascal Cornic, Patrick Garrec, Patrick Le Bihan, Myriam Nouvel-Fiani
  • Patent number: 8742980
    Abstract: A radar device that detects a target includes two or more transmitting antennas and two or more receiving antennas, including a combination of two or more transmitting antennas and receiving antennas that form two or more reference paths at which spatial phases become identical; an envelope detection unit that acquires an envelope of a reception signal received by the receiving antenna in each of the reference paths; a determination unit that decides a phase correction amount between the reference paths from a delay amount that yields a minimum value of an integrated distance between envelopes of the reception signals of the reference paths; and a correction unit that aligns phases of all reception signals received by the two or more receiving antennas, using the decided phase correction amount.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 3, 2014
    Assignee: Fujitsu Limited
    Inventor: Kazuo Shirakawa
  • Patent number: 8736486
    Abstract: An imaging system for generating a three dimensional image of tissue of a patient is provided. The imaging system comprises of a transmitter, receiver, antenna system and a display element to form a synthetic aperture radar system that displays a three dimensional view of the tissue. The SAR system has been configured to operate in the near field as opposed to current equipment which can only perform satisfactorily in the far field. A calibration technique has been utilized that allows the system to perform as well as other systems that operate using far field techniques but allows for a much simpler, cost effective system.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: May 27, 2014
    Assignee: Interstitial, LLC
    Inventors: James L. Stolpman, Hans-Joachim Fabry, Todd R. Henry
  • Patent number: 8730097
    Abstract: A system for testing a phased array comprising a phase-locked loop circuit responsive to a received output signal of the phased array. The phase-locked loop circuit comprises a phase detector; a filtering element, a variable frequency oscillator and a feedback loop. The system is configured to output at least one of a value indicative of the output of the phase detector and a value indicative of the output of the filtering element for estimating at least one of an imparted phase shift and an imparted frequency modulation by array.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: May 20, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Michael Uscinowicz
  • Patent number: 8698508
    Abstract: A method and system for detecting and localizing damage on a radome. In one example, the system includes a detection mesh made up of an arrangement of conductive wires integral with the radome structure, and a digital strobe circuit coupled to the detection mesh that measures the detection mesh and reports results. In one example, the system includes a controller coupled to the strobe circuit and configured to assess the results and localize the damage based on measured changes in impedance of individual wires within the detection mesh. The controller may be further configured to provide a damage report to a user interface, the damage report optionally identifying the damaged area(s) of the radome.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Raytheon Company
    Inventors: Jerry M. Grimm, James A. Pruett
  • Patent number: 8686896
    Abstract: A method for determining beamformer scattering parameters for a plurality of phased array radar antenna subarrays that each include a radiating (e.g., dipole) component and a beamformer component provides for obtaining for the plurality of phased array radar antenna subarrays a plurality of electromagnetic measurements at a plurality of ports. Analogous electromagnetic measurements are obtained for a reference subarray including a radiating component but absent a beamformer component. The plurality of phased array radar antenna subarray electromagnetic measurements and the reference subarray electromagnetic measurements provide a plurality of beamformer scattering parameter values for the plurality of phased array radar antenna subarrays that may be used in modeling and calibrating a phased array radar apparatus that may be assembled from the plurality of phased array radar antenna subarrays.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 1, 2014
    Assignee: SRC, Inc.
    Inventors: Harvey K. Schuman, Anthony M. Davis, Donald M. McPherson, Michael Robinson, David R. Hagenmayer, John G. Wiley
  • Patent number: 8643539
    Abstract: The current invention relates to a monitoring and analysis device and a method for monitoring and analysis that utilizes the unintended electromagnetic emissions of electrically powered systems. The present invention monitors electrical devices by taking detailed measurements of the electromagnetic fields emitted by any component or system utilizing electricity. The measurements will be analyzed to both record a baseline score for future measurements and to be used in detailed analysis to determine the status of the analyzed system or component.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: February 4, 2014
    Assignee: Nokomis, Inc.
    Inventors: Gerald William Pauly, Walter John Keller, III
  • Patent number: 8604966
    Abstract: A method determines the atmospheric refraction of a radar beam by utilizing a stabilized optical telescope directed toward a star near the radar target location. This allows measuring the target refraction as observed from ships at sea without a-priori knowledge of the local refraction index or weather conditions in the target area. The telescope may employ an infra-red (IR) sensor and is capable of imaging stars. The atmospheric refraction of the star light is determined by pointing the telescope based on star ephemeris data, and measuring the star image deviation from the center of the telescope's field-of-view (FOV). The corresponding refraction of the radar beam can be determined by employing a conversion factor relating the IR-to-RF atmospheric propagation characteristics. This conversion factor can be obtained by dedicated tracking measurements.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 10, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Jerzy W. Luk-Paszyc, Jonathan A. Boardman
  • Patent number: 8593337
    Abstract: A phased array antenna includes an oscillator, a plurality of antenna elements, a phase shifter, a distributor, a receiver, and a control processor. The control processor performs a first calibration process to calibrate a phase of the phase shifter connected to a pair of antenna elements that is selected from the antenna elements and are located at a pair of positions symmetric with respect to a central axis of an array formed by the phased array antenna, and a second calibration process to calibrate a phase of the phase shifter connected to a pair of target antenna elements with respect to a phase of the phase shifter connected to a reference antenna elements located at a central portion of the array. The pair of target antenna elements are located at a pair of positions that are symmetric with respect to the central axis of the array.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: November 26, 2013
    Assignee: Denso Corporation
    Inventor: Kunihiko Ookawa
  • Patent number: 8593336
    Abstract: In a control apparatus, an acquisition unit acquires the coordinates of a detection starting position and detection ending position detected by a radar, for each of a plurality of moving vehicles moving along a road. A calculation unit calculates an average value of the coordinates of the detection starting positions and an average value of the coordinates of the detection ending positions, and stores information of radar detection including the calculated average values in a radar detection storage unit. A comparison unit compares the average values of the coordinates of the detection starting positions and detection ending positions with respective determined reference values. An abnormality determination unit determines based on the comparison results whether or not an abnormality has occurred in the radar, and outputs, if determining that an abnormality has occurred, information indicative of the occurrence of the abnormality.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 26, 2013
    Assignee: Fujitsu Limited
    Inventor: Junko Kajiki
  • Patent number: 8586901
    Abstract: Embodiments of a guidance section that compensates for boresight error (BSE) caused by effects of a composite radome. The guidance section includes a BSE compensation element to add high-pass filtered noise to compensated BSE data. The guidance section also includes and a Kalman filter to generate line-of-sight rate (LOSR) BSE noise from the compensated BSE data and the added high-pass filtered noise. In some embodiments, a method for generating a revised BSE correction matrix is provided. The revised BSE correction matrix may compensate for BSE caused by effects in the composite radome and may correct for relative target velocity error.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Raytheon Company
    Inventor: Robert L. Kesselring
  • Patent number: 8559491
    Abstract: A method for measuring certain parameters of the impulse response of a propagation channel involving emitters and reflectors that are fixed or mobile, and for detecting and determining the parameters regarding the position and kinematics of the emitters and reflectors, or for auto-locating the reception system implementing the invention, in a system comprising N sensors receiving signals from the emitters or from the reflection on the reflectors. The method determines an ambiguity function which couples the spatial analysis and the delay-distance/Doppler-kinematic analysis, and determines at least one sufficient statistic ?(l,m,K) corresponding to the correlation between the known signal s(kTe) corresponding to the complex envelope of the signal emitted and the output of a filter w(l,m) where l corresponds to a temporal assumption and m corresponds to a frequency assumption.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: October 15, 2013
    Assignee: Thales
    Inventors: Pascal Chevalier, François Delaveau, François Pipon
  • Patent number: 8466831
    Abstract: An optical modulator comprising an input suitable to receive an optical carrier, and two Mach-Zender modulators in parallel, which constitute two different optical paths, the whole circuit constituting a third Mach-Zender modulator, the optical modulator being characterized in that: the first Mach-Zender modulator is provided with an electrode suitable to carry two signals, each obtained by the sum of the two tones fR and fD, of equal power but dephased of ?/2, and with an electrode for realizing a Single Side Band modulation of the tones fR and fD; the second Mach-Zender modulator is biased by means of a DC electrode; the third Mach-Zender modulator comprising an electrode suitable to realize the reversal of the optical carrier phase of the signals deriving from the first and the second Mach-Zender modulator, so as to suppress the optical carrier and thus obtaining only the tones fR and fD in the optical spectrum.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: June 18, 2013
    Assignee: Selex Sistemi Integrati S.p.A.
    Inventors: Luigi Pierno, Mauro Varasi
  • Patent number: 8436767
    Abstract: A method executes inspections on equipment of a system. The method includes providing an equipment inspection location rule group for a piece of equipment in the system, the equipment rule group including one or more equipment inspection location rules about equipment inspection locations and expected values at said inspection locations, and actions to be commanded when sampled values match the expected values; selecting one or more of the equipment inspection location rules in a corresponding rule group, the selection being made according to a predetermined operating sequence of the equipment inspection location rules; determining if the selected one or more equipment inspection location rules has been satisfied; and executing one or more actions corresponding to the selected one or more equipment inspection location rules if the selected one or more equipment inspection location rules have been satisfied.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: May 7, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: M. Valerie Underwood, Lillian Andres, Travis Lenhart
  • Patent number: 8432308
    Abstract: A method and device for monitoring radioaltimetric heights of an aircraft, the device including an auxiliary height generation device that generates an auxiliary reliability height of an aircraft. The device also includes a determination device that determines with the aid of this auxiliary height, an error in incoherent data which are received from two radioaltimeters. To this end, the most reliable reading from the radioaltimeters is determined and sent to a user device.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: April 30, 2013
    Assignee: Airbus Operations (SAS)
    Inventors: Philippe Delga, Nour-Ed-Din Houberdon
  • Patent number: 8416118
    Abstract: A method and system for detecting chaff is disclosed. The method includes receiving range profile data including a plurality of samples, determining an average power for a first group of samples of the range profile data and a second group of samples of the range profile data, comparing the average power for the first group of samples to a first threshold value and the average power for the second group of samples to a second threshold value, and identifying a chaff detection if an average power of at least one of the first and second groups of samples exceeds its respective threshold value. The system includes a computer readable medium and a processor in communication with the computer readable storage medium and configured to perform the receiving, determining, comparing and detecting steps.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 9, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Rao M. Nuthalapati
  • Publication number: 20130082869
    Abstract: A radar circuit for controlling a radar antenna in a vehicle comprises an antenna connection for connection of a radar antenna, a transmitting and receiving circuit for transmission and reception of a radar signal, wherein the transmitting and receiving circuit is connected to the antenna connection. A test circuit is provided, wherein the test circuit is likewise connected to the antenna circuit, and the test circuit is designed to use a test signal to test whether a radar antenna is functionally correct connected.
    Type: Application
    Filed: January 17, 2012
    Publication date: April 4, 2013
    Inventors: Herbert JAEGER, Christoph WAGNER
  • Patent number: 8412486
    Abstract: Subject matter disclosed herein may relate to monitoring and/or estimating remaining life for a power converter.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: April 2, 2013
    Assignee: The University of Hong Kong
    Inventors: Man Hay Pong, Hon Man Pang
  • Patent number: 8400166
    Abstract: Systems and methods to determine electromagnetic properties are provided. A particular method includes directing electromagnetic energy toward an article under test. The method also includes taking measurements of electromagnetic energy scattered by the article under test. The method further includes determining expected baseline values of at least one electromagnetic property of the article under test. The expected baseline values are based on electromagnetic energy scattered by a control article. The method also includes determining output data based on a difference between the expected baseline values and characteristic values of the article under test determined based on the measurements of electromagnetic energy scattered by the article under test. The output data includes values indicative of inhomogeneous distribution of an electromagnetic property of the article under test.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: March 19, 2013
    Assignee: The Boeing Company
    Inventor: William Preston Geren
  • Patent number: 8401830
    Abstract: A method and a device are provided for performing channel simulation. The device includes a radio channel simulation block and a memory and it is configured to simulate a radio connection between a transmitter and a receiver in real time. The device is further configured to simulate a radio connection between at least one interfering signal source and the receiver in real time, and to store the simulation result in the memory, and to read the stored simulation results in real time from the memory and add the results read to the simulation during simulation of the radio connection between the transmitter and the receiver.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 19, 2013
    Assignee: Elektrobit System Test Oy
    Inventor: Timo Sarkkinen
  • Patent number: 8395497
    Abstract: A radiofrequency circuit embedded onboard a satellite, data being transmitted on several channels by radiofrequency signals, includes a channel corresponding to a frequency band, and a succession of gains being able to be associated with a channel so as to generate the radiofrequency signal to be transmitted on the latter. The succession includes at least one variable-gain amplifier, the radiofrequency signals thus generated being multiplexed by a multiplexer composed of bandpass filters. The successions of gains comprise a power load arranged so as to dissipate the power of signals which is reflected by the filters of the multiplexer, said load including means for generating an alarm signal representative of the power level of the reflected signals, the alarm signal being used to control the gain of the variable-gain amplifier. The subject of the invention is also a power load.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 12, 2013
    Assignee: Thales
    Inventors: Emile Tonello, Damien Pacaud, Jean-Claude Lacombe
  • Publication number: 20130057427
    Abstract: The invention relates to a driver assistance device (2) for a vehicle (1), which driver assistance device has a radar appliance (3, 4) for determining at least one measured variable (?1, ?2, R1, R2) referenced to an object (10) that is external to the vehicle, wherein the radar appliance (3, 4) comprises: at least a first and a second reception antenna (14, 15), each for receiving signals (SE1, SE2), a first down-converter (17), which is coupled to the first reception antenna (14) via a first reception path (16), and a second down-converter (23), which is coupled to the second reception antenna (15) via a second reception path (21), each for down-converting the received signals (SE1, SE2) into respective baseband signals (SB1, SB2), and a control device (5) for receiving the baseband signals (SB1, SB2) and for determining the at least one measured variable (?1, ?2, R1, R2) using the baseband signals (SB1, SB2), wherein the radar appliance (3, 4) has test means (32) for producing a local check signal (SP)
    Type: Application
    Filed: March 21, 2011
    Publication date: March 7, 2013
    Inventors: Udo Haberland, Urs Luebbert, Uwe Papziner, Frank Sickinger
  • Patent number: 8378879
    Abstract: An apparatus for sensing motion having a transmitter for transmitting a carrier signal; a frequency control connected to the transmitter for controlling the frequency of the carrier signal; a first receiver for receiving the reflected transmitted carrier signal; a second receiver for receiving the reflected transmitted carrier signal, the second receiver being placed out of phase by less than a wavelength of the carrier signal from the first receiver; means for subtracting the carrier signal received by the second receiver from the carrier signal received by the first receiver to produce an error signal; wherein when motion is sensed by the apparatus, the error signal moves from zero thereby causing a corrective signal to be generated and sent to the frequency control, the frequency control forcing the error signal to zero.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: February 19, 2013
    Assignee: The Johns Hopkins University
    Inventors: Douglas L. Lewis, Andrew E. Feldman, Christopher L. Eddins
  • Patent number: 8334803
    Abstract: A method for determining target echo detection efficacy of a signal processing algorithm of a radar system involves generating a simulated noise complex envelope sequence, generating a simulated radar target echo signal complex envelope pulse sequence and adding the simulated noise complex envelope sequence to the simulated radar target echo signal complex envelope pulse sequence, thereby producing simulated noisy radar target echo signal complex envelope sequence. The simulated noisy radar target echo signal complex envelope sequence is inputted into the signal processing algorithm and the output of the signal processing algorithm is analyzed to determine target echo detection efficacy of the signal processing algorithm.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 18, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Harry Urkowitz
  • Patent number: 8332137
    Abstract: A navigation system includes a pressure sensor, a calibration module in communication with the pressure sensor, and an altitude module in communication with the calibration module. The calibration module is configured to determine a dynamic pressure proportionality coefficient based at least in part on a static pressure proportionality coefficient, a measured pressure value from the pressure sensor, and a velocity value. The altitude module is configured to calculate a sensor-based altitude value based at least in part on the determined dynamic pressure proportionality coefficient.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 11, 2012
    Assignee: Qualcomm Incorporated
    Inventors: SaiPradeep Venkatraman, Quanwei Liu, Lionel Garin
  • Patent number: 8325084
    Abstract: A calibration system for a dual polarization radar system with built in test couplers has been developed. The system includes a dual polarization radar transmitter antenna that generates a transmission pulse. A test coupler is located behind the antenna that reads a sample of the transmission pulse a test signal. A calibration circuit receives the sample of the transmission pulse and generates a test signal that simulates a desired atmospheric condition. Finally, a test antenna transmits the test signal to the dual polarization radar transmitter antenna for calibration of the system.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: December 4, 2012
    Assignee: Baron Services, Inc.
    Inventor: William H. Walker
  • Patent number: 8319682
    Abstract: A method examining an object using millimeter-wave signals includes: (a) providing at least two millimeter-wave signal sources; (b) transmitting at least two millimeter-wave signals having at least two different frequencies from the signal sources illuminate the object; (c) in no particular order: (1) determining whether a return reflected signal is above a threshold level; [a] if yes, processing the return signal to identify object shape; [b] if not, processing another return signal; and (2) determining whether a return intermodulation product or harmonic signal is detected; [a] if yes, processing the return signal to identify object nature; [b] if not, processing another return signal; (d) determining whether checked all return signals; (1) if not, processing another return signal; (2) if yes, proceeding to step (e); (e) determining whether results are satisfactory; (1) if not, changing frequency of at least one of the wave signals; (2) if yes, terminating the method.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: November 27, 2012
    Assignee: The Boeing Company
    Inventor: Robert A. Smith
  • Patent number: 8314733
    Abstract: A radar system tracks targets, and for each target determines the maximum acceleration of the target which can be tracked. The target acceleration is compared with the maximum acceleration that the radar can maintain in track, and if the decision is that the radar cannot maintain track, the radar data rate is increased, at least for that target. In at least some cases in which the target acceleration is such that the target can be maintained in track, the data rate for that target is decreased.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: November 20, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Kourken Malakian, Stephen J. Salvatore
  • Patent number: 8279111
    Abstract: A high-precision distance measuring with a reduced error in a distance measuring system which calculates a distance from an arrival time of each pulse signal constituting a pulse sequence is provided. For an oscillator which generates pulse signals by counting the number of pulse signals constituting a received pulse sequence, a relative time difference between a transmitting device and a return device is acquired, a distance from the transmitting device to the return device is calculated, and the calculated distance is corrected based on the calculated relative time difference.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: October 2, 2012
    Assignee: National Institute of Information and Communications Technology
    Inventors: Bin Zhen, Huan-Bang Li, Ryuji Kohno
  • Patent number: 8274428
    Abstract: A method for estimating a radar cross-section (RES) of a given object by using a diffraction model of this object. With the model, it is possible to determine a basis adapted to said object on which is projected a vector of measurement. With the projected vector, it is possible to obtain a more complete reconstructed vector than the measurement vector in terms of incident wave and diffracted wave observation directions/polarizations and the components of which have a better signal/noise ratio than the measurements. The reconstructed vector is then used for calculating the RCS.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: September 25, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Olivier Vacus, Sylvain Morvan
  • Patent number: 8274427
    Abstract: A radar device including: a reception antenna that receives radio waves, includes at least three antennas and is arranged so that the phase center points thereof form an isosceles triangle; an arrival direction detection unit that detects an arrival direction of the radio waves by a phase monopulse method; and a phase correction unit that corrects a phase difference between phases of radio waves respectively received by two adjacent antennas among the three antennas based on the relationship of the phases of the radio waves respectively received by the three antennas.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshiaki Minami
  • Patent number: 8259002
    Abstract: Systems and methods for radar altimeter antenna performance monitoring via reflected power measurements are provided. In one embodiment, a single antenna radar altimeter comprises: an antenna; a circulator coupled to the antenna; a transmitter coupled to the circulator; a receiver coupled to the circulator; wherein the circulator provides coupling of the transmitter and the receiver to the antenna while providing isolation between the transmitter and the receiver; a reflected power monitor positioned between the circulator and receiver; and a processor coupled to the reflected power monitor via a first analog-to-digital converter, the processor configured to compute and track reflected power measurement statistics from data generated by the reflected power monitor and provide a performance output indicating when one or more of the reflected power measurement statistics exceed a predetermined deviation threshold.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Anthony H. Luk
  • Patent number: 8253621
    Abstract: A radar volume in a cued direction is searched with sequential pencil beams. The cued direction is subject to uncertainty in the form of covariance. The covariance defines an ellipse rotated relative to the azimuth axis. Before determining the extent of the acquisition face, the ellipse is projected onto a viewplane normal to the radar range axis, and rotated so the principal axes are parallel with the traverse and elevation directions. The acquisition face is then found. The number of beams required to scan the search volume is determined. In one embodiment, the search volume is sent to the radar, and the radar rotates the beams to their correct positions. The beams are then scheduled.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: August 28, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Friesel
  • Patent number: 8248297
    Abstract: System that measures absolute or additive phase noise includes a power divider for dividing an input RF signal, a local oscillator, two mixers, each arranged in a path of a respective signal component from the power divider and receiving input from the power divider and local oscillator, two digital radio frequency memories, each associated with a respective mixer and receiving an input signal therefrom, and a digital signal processor that receives signals from the digital radio frequency memories and outputs a digital data stream indicative of measured phase noise. For absolute phase noise measurement, phase noise of the input RF signal is provided. For additive phase noise measurement, a unit under test is arranged in one of the paths between the power divider and the mixer. The system may be interposed between a radar transmitter of a radar environment simulator and a radar receiver coupled to a radar target display.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 21, 2012
    Assignee: Advanced Testing Technologies, Inc.
    Inventors: John Baker, Eli Levi
  • Patent number: 8217829
    Abstract: A radar, mounted on a vehicle, emits electromagnetic waves to a side area of a vehicle and receives reflected electromagnetic waves to detect a distance and a bearing of a physical object. A speed of the vehicle is detected. When the vehicle speed is greater than a predetermined value, it is determined whether multiple reflection occurs based on at least distances detected by the radar. If it is determined that the multiple reflection occurs, an axis deviation of the radar is determined based on a difference between the detected bearing of the multiple reflection waves and a reference bearing.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: July 10, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Masahito Shingyoji
  • Patent number: 8212716
    Abstract: A method for calibrating an antenna comprising a phased array of antenna elements connected to a plurality of transceivers, the method comprising providing an RF source located close to the antenna and synchronized with the transceivers, determining, per antenna element, a calibration ratio adapted to accommodate for presence of at least one interfering structure electromagnetically interfering with a signal transmitted from the RF source and received by the antenna, wherein the determining includes generating simulated far field and near field signals so as to simulate a signal transmitted by an RF source located at infinity and located near the RF source respectively, internally injecting an internal signal into the antenna via an internal injection network, using the RF source to externally inject an external signal into the antenna; and, for each individual antenna element, computing said calibration ratio by combining information characterizing the internal and external signals as received by the individ
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: July 3, 2012
    Assignee: Elta Systems Ltd.
    Inventors: Elad Goshen, Yacov Vagman, Haim Reichman
  • Patent number: 8212714
    Abstract: A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 3, 2012
    Assignee: Sandia Corporation
    Inventors: Armin W. Doerry, Jay D. Jordan, Theodore J. Kim
  • Publication number: 20120146840
    Abstract: A phase array antenna includes an oscillator, a plurality of antenna elements, a phase shifter, a distributor, a receiving unit, and a control processor. The control processor performs a calibration process to select, from the antenna elements, a reference and target antenna elements to allow the radio waves generated by the oscillator to be provided for the reference and target antenna elements via the distributer, obtain a pattern of a change in a received power of radio waves received at the receiving unit, when a phase of the phase shifter for the reference antenna element is fixed and a phase of the phase shifter for the target antenna element is changed, extract, from the pattern obtained, the phase of the phase shifter for the target antenna element at which the received power becomes a local minimal value, and add the phase extracted to 180° to set its resultant value to a calibration value for the phase of the phase shifter for the target antenna element.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Applicant: DENSO CORPORATION
    Inventor: Kunihiko Ookawa
  • Publication number: 20120139775
    Abstract: Methods of testing GNSS-based positioning systems in obstructed environments may include specifying a required accuracy threshold for use in determining a reference trajectory. One or more difficult areas of relatively poor or missing GNSS availability may be located within the obstructed environment. Positioning information may be established for first reference points outside the difficult areas. Subsequently, by surveying with respect to the first reference points, positioning information may be established for second reference points within the difficult areas. The first and second reference points may then be used to determine a true path associated with the reference trajectory.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Applicant: Honda Motor Co., Ltd.
    Inventor: Zeljko Popovic
  • Patent number: 8193971
    Abstract: A method and a system for calibrating at least one antenna (1,1-1,3. 1,j). At least a first antenna (1,4) within a first antenna array (102) can be selected as a primary reference antenna. At least one antenna (4,3) that is not within the first antenna array can be selected as a secondary reference antenna. At least a first signal propagation characteristic (122) can be measured based on at least one signal wirelessly communicated between the primary reference antenna and the secondary reference antenna. At least a second signal propagation characteristic (118) can be measured based on at least one signal wirelessly communicated between the secondary reference antenna and at least a second antenna (1,2) within the first antenna array. At least a first calibration coefficient can be determined for the second antenna.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 5, 2012
    Assignee: Motorola Mobility, Inc.
    Inventors: Frederick W. Vook, Nicholas E. Buris, Bruce D. Mueller
  • Patent number: 8193972
    Abstract: In a method for adaptive calculation of pulse compression filter coefficients for a received signal in a radar installation, which received signal is evaluated with the aid of a complex pulse compression mismatch filter, a pulse compression filter coefficient set h(t) is calculated for an ideal theoretical received signal s(t) for a pulse compression mismatch filter, such that a pulse compression output signal results with a desired main lobe to side lobe ratio.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: June 5, 2012
    Assignee: EADS Deutschland GmbH
    Inventor: Franz-Xaver Hofele
  • Publication number: 20120112956
    Abstract: An integrated circuit for cancelling a radio frequency transmit leakage signal comprises: a transmitter portion comprising at least one amplifier stage for transmitting a radio frequency signal to an antenna port; and a first coupler arranged to operably couple the transmitter portion, the antenna port and a receiver portion. The receiver portion is arranged to receive a first composite signal that comprises a received radio frequency signal from the antenna port and the transmit leakage signal.
    Type: Application
    Filed: July 16, 2009
    Publication date: May 10, 2012
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Saverio Trotta, Bernhard Dehlink, Ralf Reuter
  • Patent number: 8170135
    Abstract: A method is provided for coordinating detection of emitted signals by a receiver with transmission of signals by a transmitter, wherein the receiver and the transmitter are located on the same platform. The receiver scans a surrounding environment to detect emitted signals in multiple frequency ranges while the transmitter transmits signals in a predetermined frequency range. The receiver may employ dwells which may be defined as receiver configurations. A dwell, when executed, may be used to detect signals in a certain frequency range. If a frequency range of the dwell conflicts with the frequency range of transmitter signals, which may result in interference of transmitter signals with detection of emitted signals, execution of the dwell may be delayed. If the frequency range of the dwell is such that transmitter signals do not interfere with execution of the dwell, the dwell can be executed.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 1, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Craig A. Hanna, Anthony J. Gounalis, Robert Haefner
  • Patent number: 8169355
    Abstract: To depict test objects using electromagnetic waves, particularly to check people for suspicious articles, an apparatus is provided having: an antenna which emits electromagnetic waves, particularly millimetric waves, means for concentrating the emitted waves in three dimensions, and means for manipulating the waves at the point of high concentration such that this point serves as a moving virtual antenna for SAR evaluation. Whereby the means for three-dimensional concentration contain a rotatably mounted, focusing or defocusing, quasi-optical element and the means for manipulating the waves at the point of high concentration contain a reflector. In accordance with the invention, the quasi-optical element and the reflector are rotatably mounted about a common rotary axis and at the same angular velocity.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 1, 2012
    Assignee: Smiths Heimann GmbH
    Inventors: Bernd Bartscher, Uwe Flehmig, Michael Jeck
  • Patent number: 8159384
    Abstract: To suppress cross-ambiguities in the examination of an ice region or dry region by means of aircraft- or aerospace-supported radar echo sounding, the region to be examined is overflown by a radar sensor (6) by multiple compatible radar sensors of the same operating wavelength on multiple spatially separated, substantially parallel paths, wherein the radar signal data received on each path are recorded. The radar signal data recorded for each of the different paths are summed coherently and using a weighting to form a radargram, wherein an adaptive complex-valued weighting for each of the individual paths is performed using a geometrical model which takes into account the topography of the environment of the region to be examined. The weighting for every depth of the examined region is determined by solving a system of linear equations from which is calculated a synthetic antenna pattern which has zeros in the direction of the ambiguities.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 17, 2012
    Assignee: Deutsches Zentrum fur Luft-und Raumfahrt E.V.
    Inventor: Rolf Scheiber
  • Patent number: 8149161
    Abstract: A maximum gap method and system provide for identifying a space sector within which a system capable of engaging an object, should search for the object. A detector system that may be a radar or other active range determination system tracks position of the moving object and based on position estimates and the uncertainties associated with the position estimates, generates a range of possible positions for each estimate then determines gaps between the uncertainties and derives the search sector based on the maximum gap.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: April 3, 2012
    Assignee: Lockheed Martin Coporation
    Inventors: Mark A. Friesel, Thomas R. Gillespie
  • Patent number: 8144050
    Abstract: A system for performing radar cross section measurements of a target may include a radar system and an antenna associated with the radar system to transmit signals and to receive reflected signals from the target and a clutter source. An EM tagging device is locatable proximate to the clutter source to spectrally tag the clutter source by causing changes in an electromagnetic signal reflected by the clutter source when a predetermined radar signal transmitted by the radar system is incident on the target, the clutter source and the EM tagging device. A module may identify a spectrally tagged component of reflected signals received by the radar system from the target, the clutter source and the EM tagging device.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 27, 2012
    Assignee: The Boeing Company
    Inventors: John D. Foster, Douglas P. Morgan, Scot J. McLean
  • Patent number: 8134492
    Abstract: A radar volume in a cued direction is searched with sequential pencil beams. The allowable scan time is limited. The cued direction and uncertainty identify a search face, and the range gives a search volume. The number of beams required to scan the volume is determined, and compared with the maximum time. If less than the maximum, the scan is initiated. If greater than the maximum time, the scan region about the cued volume is subdivided into smaller portions, each of which is scanned sequentially.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: March 13, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Friesel
  • Patent number: 8125375
    Abstract: A radar that detects the presence or absence of interference when detecting a target based on a frequency spectrum of a beat signal of a transmission signal and a reception signal. Whether or not the number of peaks exceeding a noise threshold in the frequency spectrum exceeds a predetermined number is determined. According to the determination result, the presence or absence of interference on the beat signal is detected. If “interference exists”, the threshold for extraction of target peaks that appear on the frequency spectrum is increased. This allows detection of the presence or absence of a spike noise superposed on the beat signal to be performed more certainly, thereby enabling processing according to the presence or absence of interference.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: February 28, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Motol Nakanishi