Presence Detection Only Patents (Class 342/27)
  • Patent number: 9383438
    Abstract: A presence detection system is equipped with a transmitter that transmits a multipath wireless signal and a receiver that detects the presence of a person by receiving the transmitted wireless signal, within a prescribed space. On the basis of the reception level for a wireless signal received intermittently at the beginning of a first interval, the receiver determines whether there has been a change in the present/absent state of a person. When it is determined that there has been a change in the present/absent state of a person, the receiver determines whether a person is present/absent on the basis of variation in the reception level for a wireless signal received at the beginning of a second interval, which is shorter than the first interval.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: July 5, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masahiro Ishihara, Yoshiaki Koizumi
  • Patent number: 9310468
    Abstract: A includes a plurality of antennas and a controller. Each antenna is configured to detect a reflected radar signal reflected by an object in a field-of-view of the system. The controller is configured to receive an antenna signal from each antenna corresponding to the reflected radar signal detected by the antenna. The controller is also configured to determine a reflected signal profile of each antenna signal. The controller is also configured to determine a composite data set based on a combination of the reflected signal profiles. The controller is also configured to determine if the composite data set includes a composite data point characterized as greater than a composite threshold. The controller is also configured to determine if any of the reflected signal profiles indicate that the radar signal is reflected by more than one object.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: April 12, 2016
    Assignee: Delphi Technologies, Inc.
    Inventor: Alebel Hassen Arage
  • Patent number: 9282258
    Abstract: Disclosed herein is a method and system for detecting potentially hazardous and/or explosive material concealed under clothing or in luggage. Through the emission, reflection, and reception of microwave radiation, a 3D image of a targeted area can be constructed. The image will show the outline of a moving person as well as any dielectric objects potentially hidden on their body. By measuring phases and amplitudes of microwaves reflected off a dielectric object, the optical path of the microwave through a hidden object can be determined, thus allowing for the creation of a 3D microwave image of a targeted area. Several emitters and receivers can be utilized at once, and video imaging can also be superimposed over the microwave image for improved detection accuracy. The invention has security and safety applications across the nation, particularly in areas of mass transit and large public events.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: March 8, 2016
    Assignee: APSTEC SYSTEMS USA LLC
    Inventors: Andrey Kuznetsov, Valery Averyanov, Igor Gorshkov
  • Publication number: 20150145711
    Abstract: An onboard vehicle detection system for detecting roadway items of interest. The vehicle detection system includes a central controller and a detection system connectable to the vehicle and operably coupled to the central controller. The detection system outputs a detection signal. A target device is connectable to the roadway item of interest and configured to receive the detection signal from the detection system and output a unique return signal to the detection system. The detection system receives the return signal and transfers the return signal for processing to the central controller, whereby the central controller identifies the roadway item of interest and determines a responsive action.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: JOHN M. MADDOX, William Buller
  • Patent number: 9041592
    Abstract: A radar sensor and a method of detecting an object by using the same are provided. The method includes: receiving at least one radar signal reflected from the object; converting the received at least one radar signal to at least one signal in a frequency domain; accumulating the converted at least one signal for a predetermined time and extracting at least one feature from the accumulated at least one signal; and identifying the object by comparing the extracted at least one feature with at least one reference value stored in a database.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 26, 2015
    Assignee: SAMSUNG TECHWIN CO., LTD.
    Inventor: Ki-Yong Jeon
  • Patent number: 9041585
    Abstract: A method of synthetic aperture radar autofocus for ground penetration radar. The method includes transmitting a signal via an antenna; receiving a reflected signal comprising a plurality of image blocks via the antenna; reading each image block from the reflected signal via a processor; locating prominent targets in each image block via the processor; estimating ground penetration phase error via the processor in each image block via phase error inputs including pulling range and quantization level by generating a 1D phase error and converting the 1D phase error into a 2D phase error of an image spectra; refocusing each image block according to estimated ground penetration phase error for that image block via the processor; and forming an image mosaic comprising each refocused image block via the processor.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 26, 2015
    Assignee: RAYTHEON COMPANY
    Inventor: Michael Y. Jin
  • Patent number: 9035818
    Abstract: Disclosed is a detection sensor, which can detect various detection regions even with a small-sized antenna.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 19, 2015
    Assignee: MANDO CORPORATION
    Inventor: Seong Hee Jeong
  • Publication number: 20150130652
    Abstract: The signal processing device in accordance with the present invention includes: a frequency analyzer to convert a sensor signal corresponding to a radio wave reflected by an object into a frequency domain signal, and extract, by use of a group of individual filter banks with different frequency bands, signals of the individual filter banks from the frequency domain signal; a normalizer to normalize intensities of the signal passing through the individual filter banks by a sum of the signals extracted by the frequency analyzer or a sum of intensities of signals passing through predetermined filter banks, and output normalized intensities; and a recognizer to perform a recognition process of identifying the object based on at least one of a frequency distribution and a component ratio of the normalized intensities calculated from the normalized intensities of the individual filter banks outputted from the normalizer.
    Type: Application
    Filed: June 3, 2013
    Publication date: May 14, 2015
    Applicant: Panasonic Intellectual Property Management Co., Lt
    Inventors: Satoshi Sugino, Tatsuo Masuda, Tadashi Murakami
  • Publication number: 20150130653
    Abstract: A vehicle detecting sensor assembly (1) includes a microwave module (4) and a radome (5) for detecting the presence or absence of a parked vehicle, parked in a predetermined parking area (3), according an FMCW scheme. A shielding member (10) is provided on each of left and right sides, each of upper and lower sides or each of upper and lower and left and right sides of the module so as to protrude in a direction, conforming to the direction of transmission of a microwave, so that a detection range angle by the microwave can be varied in dependence on the position of the sensor and the size of the parking area, and a so disposed that the distance of separation between the module and the radome, through which the microwave passes, may lie in the vicinity of n times the half-wave length of the microwave.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 14, 2015
    Applicant: OPTEX CO., LTD.
    Inventors: Masanao SHIRAISHI, Yasuhiro TAKADA, Naoki KAGEYAMA, Mitsugu MIHARA
  • Patent number: 9030351
    Abstract: A land-based Smart-Sensor System and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed Smart-Sensor System is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) an IBM CELL supercomputer to process the collected data in real-time. The Smart Sensor System can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 12, 2015
    Assignee: Vista Research, Inc.
    Inventors: Phillip A. Fox, Joseph W. Maresca, Jr.
  • Publication number: 20150123836
    Abstract: A wire detection apparatus comprises antenna means with a transmitter and a receiver, so devised as to form a pulsed radar system, further including polarization control means for controlling the polarization of waves transmitted and/or received through the antenna means, and processing means for identifying returns from wires according to wires' characteristic polarization echoes. The transmitted waves have a wavelength longer than the diameter of wires to be detected and identified. The transmitted waves preferably have a wavelength more than six times longer than the diameter of wires to be detected and identified. The apparatus is so devised as to detect wires suspended in the air.
    Type: Application
    Filed: May 1, 2013
    Publication date: May 7, 2015
    Inventors: Haim Niv, Alon Slapak, Marc Zuta
  • Patent number: 9024802
    Abstract: An automatic frequency control is used to keep a continuous wave (CW) transmission tuned to the resonant frequency of a resonant microwave patch antenna (RMPA). Changes in loading and the bulk dielectric constant of the mixed media in front of the RMPA will affect its resonant frequency and input impedance. A significant shift in the measured input impedance is interpreted as an object moving nearby, and the phase angle of the measured input impedance is used to estimate the direction of an object's movement.
    Type: Grant
    Filed: April 13, 2013
    Date of Patent: May 5, 2015
    Assignee: Stolar, Inc.
    Inventor: Larry G. Stolarczyk
  • Publication number: 20150109164
    Abstract: A target detection apparatus includes a first target detection section which detects a target which exists ahead of a vehicle and has a height sufficient to strike against the vehicle; a second target detection section which detects the target in an area different from an area in which the target is detected by the first target detection section, and a reliability degree setting section which sets a target reliability degree indicating probability that the target exists. When the target is detected only by the first target detection section or the second target detection section, and after the target is detected by both the first and the second target detection sections, the reliability setting section sets the target reliability degree based on an overlap detection time which is a period of time during which both the first and the second target detection sections continuously detect the target.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventor: Ryo TAKAKI
  • Publication number: 20150109163
    Abstract: Some embodiments are directed to methods of detecting a target that include: receiving signals reflected from a target of interest, the signals having a bandwidth large enough to provide a plurality of range cells along an expected target, and processing the received signal(s) by (i) determining the phases of contiguous groups of range cells, the group size selected to approximate to sizes of targets of interest, (ii) phase-shifting the returns within a group to increase constructive interference and thereby signal power; and (iii) combining the phase shifted returns to produce phase-adjusted combined returns, and performing a detection on those combined returns. Some embodiments may provide enhanced target detection capabilities. The process may be repeated for different potential target sizes, and may be performed either on real time data, or off-line on recorded data, and is applicable to both radar and sonar.
    Type: Application
    Filed: March 4, 2013
    Publication date: April 23, 2015
    Inventor: Christopher John Peacock
  • Patent number: 9007256
    Abstract: This invention will be an apparatus, system and use of Ground Penetrating Radar (GPR) as a noninvasive and non-destructive means to detect and examine tree roots, below grade of the soil surface. This invention will provide a means and methodology for objective evaluation of tree root defects based upon standards for urban trees at all levels of the Nursery Tree Industry. The output from software algorithms will provide guidance for remediation of defects when appropriate, inventory and management data for proactive maintenance at all levels of the supply chain. This apparatus, system and methodology will be a new and useful process at all levels of the supply chain for nursery tree stock.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 14, 2015
    Inventor: Marie V. Ambusk
  • Patent number: 9007257
    Abstract: The invention relates to a method for controlling a sensor in a combat aircraft (1) comprising the steps of: a) determining (3) direction and size of a defence zone around the combat aircraft (1) based on a plurality of characteristic parameters of an enemy combat aircraft (2), b) determining (4) direction and size of at least one offence zone around the combat aircraft (1) based on the plurality of characteristic parameters of the enemy combat aircraft (2), and c) controlling (5) the sensor in the combat aircraft (1) according to emission level and detection capacity within at least one of the defence zone and the at least one offence zone. In this way, the sensors are controlled reliably and thus the pilot can act and react mission-oriented.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 14, 2015
    Assignee: SAAB AB
    Inventors: Anders Lundqvist, Vibeke Kensing
  • Publication number: 20150097713
    Abstract: A radar apparatus includes a change amount calculation section for obtaining, for each of a plurality of peaks of a first spectrum belonging to the same group, a peak value at the present point in time and calculating the difference between the peak value and a peak value obtained before the present point in time; a ratio calculation section for comparing the obtained difference with a predetermined difference threshold and calculating a ratio of the number of peaks whose differences are greater than the difference threshold to the number of all the peaks belonging to the same group; and a pedestrian determination section for determining that the object is a pedestrian when the calculated ratio is greater than a predetermined ratio threshold and at least one of peaks belonging to the same group differs from the remaining peaks in terms of the sign of the difference.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 9, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Makoto NAKAI, Shin-ichiro MATSUZAWA, Yoshiaki MINAMI, Yuji ODA
  • Patent number: 8994579
    Abstract: An RF pulse signal generation switching circuit for controlling an output of a power FET for amplifying a high frequency signal to generate an RF pulse signal that is the high frequency signal pulse formed into a pulse-wave shape is provided. The circuit includes first and third n-type FETs of which gates are inputted with a control pulse that supplies a rise timing and a fall timing of a pulse, and a second n-type FET of which a gate is connected with a drain of the first FET. A source of the first FET and a source of the third FET are grounded, respectively. The drain of the first FET is applied with a first drive voltage via a resistor. A drain of the second FET is applied with a second drive voltage. A source of the second FET is connected with a drain of the third FET and the connection point therebetween is connected with the power FET. A capacitor is connected between the connection point and an end of the resistor from which the first drive voltage is applied.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: March 31, 2015
    Assignee: FURUNO Electric Company Ltd.
    Inventor: Tomonao Kobayashi
  • Patent number: 8988281
    Abstract: A reversing radar Sensor Component presented by the invention includes a sensor, a damping rubber ring sleeved on a peripheral portion of the sensor, a base cover for receiving a front portion of the sensor and damping rubber ring therein, and a top cover capable of being mounted with the base cover and having an opening defined therein for exposing the front portion of the sensor therefrom. Both the base cover and top cover have several walls formed thereon. Several grooves are defined in the wall of the top cover. A buffer rubber ring is disposed between the wall of the top cover and wall of the base cover. The buffer rubber ring has plural protruding posts corresponding to the grooves. The buffer rubber ring and circular rubber sleeve and damping rubber ring form together double damping construction which increases the protection of the sensor from vibration.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 24, 2015
    Assignee: Steelmate Co., Ltd
    Inventor: Zhitao Li
  • Publication number: 20150077281
    Abstract: A dump truck includes a vehicle body portion that includes an upper deck on which a cab is disposed and a frame which is disposed in a longitudinal direction, a vessel that is disposed above the frame, and a sixth imaging device that is disposed below the vessel at a rear end of the frame and can image the rear side of the vehicle body portion. The sixth imaging device is a wide dynamic range camera.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 19, 2015
    Applicant: KOMATSU LTD.
    Inventors: Jun Taniguchi, Tomikazu Tanuki, Shinji Mitsuta, Takeshi Kurihara, Yukihiro Nakanishi, Masaomi Machida, Dai Tsubone
  • Publication number: 20150077282
    Abstract: A combination of active reader tags and ultra wideband (UWB) radar systems provide real-time monitoring of first responders, with identification of each team member using active tags, and detection of victims or other subjects using motion or breathing detection, in a field of operations such as a building affected by fire or hazardous material or search and rescue mission area. Initially, a cluster of miniaturized radars (sensors) act in a static mode of operation, gathering static radar information used to depict a constructed layout of the premises. The cluster of radars then operate in a dynamic mode that detects motion or breathing of multiple subjects inside the field of operations. With dual mode operation the system can read the active tags identification, and by triangulation, display the position of each first responder with its identification and positions of subjects on a composite image of the constructed layout.
    Type: Application
    Filed: October 31, 2013
    Publication date: March 19, 2015
    Inventor: Farrokh Mohamadi
  • Patent number: 8976056
    Abstract: Autonomous Underwater Vehicles (AUV) collect and transmit information about ice floe thickness; this is combined with SYNTHETIC APERTURE RADAR images from satellites to identify and track dangerously thick regions of ice. The overlayed data is presented graphically to allow tracking of the thick ice regions over time. This information is used to alert drilling platforms in icy ocean conditions of pending ice floe dangers.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 10, 2015
    Assignee: ConocoPhillips Company
    Inventors: Rolf Christer Broman, Dominique P. Berta, Khalid A. Soofi, Peter G. Noble
  • Patent number: 8976061
    Abstract: A radar system (100) is described including a transmitting assembly (10), a receiving assembly (20), a control unit (30) and a signal processing unit (40). The transmitting assembly (10) receives an input signal (31) and transmits an incident radar signal (2). The transmitting assembly (10) includes a Rotman lens (12) having a lens cavity (74), a plurality of beam ports (60), a plurality of array ports (62) and a patch antenna assembly (14). The lens cavity (74) has a lens gap (h) between 10 microns to 120 microns, and preferably 40 microns to 60 microns. The patch antenna assembly (14) includes a plurality of antenna arrays (130) operable to receive a plurality of time-delayed, in-phase signals from the Rotman lens (12) and to transmit the incident radar signal (2) towards a target (4). The receiving assembly (20) receives a reflected radar signal (6) and produces an output signal.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 10, 2015
    Inventor: Sazzadur Chowdhury
  • Publication number: 20150061915
    Abstract: A radar transmitter Txs (s=1) generates a baseband transmission signal by modulating a first code sequence having a prescribed code length on the basis of a first transmission timing signal and gives a first transmission phase shift corresponding to each transmission cycle to the transmission signal. A radar receiver Txs (s=2) generates a baseband transmission signal by modulating a second code sequence having the prescribed code length on the basis of a second transmission timing signal and gives, to the transmission signal, a second transmission phase shift that correspond to each transmission cycle and opposite to the first transmission phase.
    Type: Application
    Filed: November 7, 2012
    Publication date: March 5, 2015
    Inventors: Takaaki Kishigami, Hirohito Mukai
  • Patent number: 8970429
    Abstract: Aspects of the present invention relate to a system (10) and a method for tracking one or more targets by a radar using a multiple hypothesis tracking (MHT) algorithm, the method including operating the radar to transmit a radar beam from a first location toward the one or more targets, operating the radar to receive a plurality of return signals at the first location from the one or more targets, and to generate a plurality of observations for a single radar dwell respectively corresponding to the plurality of return signals, and processing the plurality of observations in accordance with the MHT algorithm for at least two passes such that more than one of the plurality of observations are associated with a single track of the one or more targets.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Raytheon Company
    Inventors: Catherine Pickle, Samuel S. Blackman, Douglas B. Tyler
  • Publication number: 20150054671
    Abstract: A system includes a self-propelled robotic vehicle carrying an UWB sensor. The UWB sensor responds to binary transitions of a mode control signal to select for its modes of operation.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Inventor: Farrokh Mohamadi
  • Publication number: 20150054673
    Abstract: A first specifying-means specifies a first-region including a first detection-point, which is of a first-target on an X-Y plane on which a width direction of a vehicle is defined as an X-axis, and a longitudinal direction of the vehicle is defined as a Y-axis. A second specifying-means specifies a second-region including a second detection-point, which is of a second-target on the X-Y plane, based on a direction of the second detection-point and a target-width, which is a width along the X-axis of the second-target. A determination means determines that the first- and second-targets are the same, provided that an overlapping portion exists therebetween. An estimation means estimates a true-value target-width, based on the direction of the second detection-point and the first detection-point, provided that the first- and second-targets are the same. A correction-means corrects a position of the second-region specified next time by using the true-value target-width as the target-width.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Inventor: Takahiro BABA
  • Publication number: 20150054672
    Abstract: A radar signal processing device is provided, which performs a scan correlation in a polar coordinate system to secure accuracy of the scan correlation, and prevents a suppression of a target object moving at high speed due to the scan correlation. A polar coordinate correlator performs, in a polar coordinate system, a correlation between reception data and previous correlated data stored in a previous data storage. A trend curve calculating module calculates a trend curve of a distance-direction signal level of the reception data in the polar coordinate system. A target detecting module detects a target based on the signal level of the reception data and the trend curve. Further, the polar coordinate correlator changes the contents of the correlation of the reception data based on the target detection result from the target detecting module.
    Type: Application
    Filed: February 5, 2013
    Publication date: February 26, 2015
    Applicant: Furuno Electric Co., Ltd.
    Inventors: Masahiro Nakahama, Yasuo Itoh
  • Publication number: 20150054670
    Abstract: A multichannel UWB-based radar life detector includes a transmitting antenna and three receiving antennas for forming three radar echo signal channels.
    Type: Application
    Filed: June 20, 2011
    Publication date: February 26, 2015
    Inventors: Jianqi Wang, Xijing Jing, Yang Zhang, Hao Lu, Yanfeng Li, Zhao Li, Teng Jiao, Xiao Yu
  • Publication number: 20150048965
    Abstract: An active and passive detection device is provided with a low probability of interception having a fixed antenna structure, transmission means and reception means. The antenna structure is formed by a plurality of radiating elements grouped into identical subnetworks and comprises at least one transmission subnetwork and at least three reception subnetworks. The transmission means are capable of generating an unfocused continuous waveform having low peak power in one plane and of transmitting said waveform. The reception means are capable of detecting the targets following the formation of a plurality of directional beams on the basis of the signals received on the reception subnetworks. The reception means are likewise capable of implementing the interception of radar signals from other radar sources using cross correlation processing between the signals received on at least three reception subnetworks.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Inventors: Pascal Cornic, Patrick Le Bihan, Stephane Kemkemain
  • Publication number: 20150042503
    Abstract: A method of target detection comprising transmitting a continuous wave (CW) waveform and a random step frequency (RSF) waveform from which return signals are to be monitored in a detection period, processing return signals received in the detection period based on the transmitted CW waveform to obtain Doppler shift data indicative of Doppler frequency shifts corresponding to one or more targets, and processing the return signals of the detection period based on the transmitted RSF waveform and the obtained Doppler shift data to obtain range information corresponding to one or more targets.
    Type: Application
    Filed: March 1, 2013
    Publication date: February 12, 2015
    Inventors: Mark Richard Morelande, Li Mei, Robin J. Evans
  • Patent number: 8952706
    Abstract: A conduit survey apparatus having a carriage capable of movement axially down a conduit. The carrier includes a radio frequency (RF) signal generator and an RF signal detector positioned on the carriage along with a controller controlling the signal generator and signal detector. The carrier further includes a waveguide with an open throat transmitting signals from the signal generator and directing received signals to the signal detector. Finally, the carrier includes a waveguide positioner mounted on the carrier and adapted to selectively engage an interior wall of the conduit, wherein the waveguide guide is connected to the positioner such that the open throat of the waveguide is within about 1 inch of the interior wall when the positioner engages the interior wall.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 10, 2015
    Assignee: Louisiana Tech University Research Foundation
    Inventors: Erez Allouche, Arun Prakash Jaganathan
  • Publication number: 20150035694
    Abstract: A method for determining an object in a surroundings of a motor vehicle includes: scanning a far range, which extends as of a predetermined minimum distance from the radar sensor, using a radar sensor for scanning the far range; detecting objects in the far range based on reflections of a radar signal emitted by the radar sensor; and determining a crossing object in a close range, which lies between the radar sensor and the far range, if a previously detected object is no longer able to be detected in the far range using the radar sensor.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Applicant: ROBERT BOSCH GMBH
    Inventors: Raphael van Uffelen, Alexander STEINMETZ
  • Publication number: 20150029052
    Abstract: A quantum harmonic radar method includes comparing the determined timing or spacing of the detected hertzian waves with the pre-determined amplitude and frequency of the hertzian waves being transmitted from a transmitter, and by the comparison determining if the detected hertzian waves have a spacing therebetween is greater than a spacing between said transmitted hertzian waves having said pre-determined amplitude and frequency, whereupon signalling a presence in said transmission field of an electromagnetic energy absorbent object.
    Type: Application
    Filed: December 19, 2012
    Publication date: January 29, 2015
    Inventor: James Andrew Leskosek
  • Patent number: 8937571
    Abstract: A method for detecting the wheels of a vehicle that is traveling on a roadway in a travel direction and whose wheels project downward from the vehicle body and are at least partially exposed laterally at the level of the vehicle body, with the steps: emitting a concentrated electromagnetic measurement beam with a known temporal progression of frequency from the side of the roadway onto an area a predetermined distance above the roadway and at a slant with respect to the travel direction, receiving the measurement beam reflected by a passing vehicle and recording the temporal progression, relative to the known progression, of its frequency, and detecting a rectangular pulse occurring in the recorded progression within the time period when the vehicle body passes, as a wheel.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: January 20, 2015
    Assignee: Kapsch TrafficCom AG
    Inventor: Oliver Nagy
  • Publication number: 20150019080
    Abstract: A driver assistance system and method are disclosed which provides improved determination of possible collision objects. The system includes at least one sensor and a classification device. The threshold value of the classification device for classifying an object sensed by means of the at least one sensor as possible collision object is lowered when a possible hazard situation in a region of surroundings located in front of the motor vehicle based on data received from an inter-vehicular communication device. As a result, hazard situations which may not yet be determined by means of sensors belonging to conventional vehicles because of the distance or the position of the possible hazard situation with respect to the motor vehicle can be detected early on.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 15, 2015
    Inventor: Tobias Schneider
  • Publication number: 20150015434
    Abstract: A peripheral object detection apparatus that is installed in a vehicle to detect a peripheral object obstructing travel by a vehicle includes: a radar that obtains a reflection intensity by transmitting an electromagnetic wave and receiving an electromagnetic wave reflected by an object; and a determination unit that calculates an integrated value of an amount of variation in the reflection intensity within a predetermined section, obtained by the radar, and determines on the basis of the integrated value whether or not the object is a low object not obstructing travel by the vehicle.
    Type: Application
    Filed: January 28, 2013
    Publication date: January 15, 2015
    Applicants: FUJITSU TEN LIMITED, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshinori Okita, Jun Itoh
  • Publication number: 20150009061
    Abstract: The invention relates to a method for controlling a sensor in a combat aircraft (1) comprising the steps of: a) determining (3) direction and size of a defence zone around the combat aircraft (1) based on a plurality of characteristic parameters of an enemy combat aircraft (2), b) determining (4) direction and size of at least one offence zone around the combat aircraft (1) based on the plurality of characteristic parameters of the enemy combat aircraft (2), and c) controlling (5) the sensor in the combat aircraft (1) according to emission level and detection capacity within at least one of the defence zone and the at least one offence zone. In this way, the sensors are controlled reliably and thus the pilot can act and react mission-oriented.
    Type: Application
    Filed: February 8, 2012
    Publication date: January 8, 2015
    Applicant: SAAB AB
    Inventors: Anders Lundqvist, Vibeke Kensing
  • Patent number: 8922420
    Abstract: An electromagnetic body scanning system may include a measuring system for measuring data of radio waves scattered by a body in two distinct subbands; and a computer system. The computer system is arranged for constructing a first image of the body using the measured data, generating synthetic scattered data of the body in a frequency range outside the subbands, and constructing a second image of the body using both the measured data and the synthetic data. The step of constructing a first image includes matching an image to a human model.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: December 30, 2014
    Assignee: Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventor: Albert Gezinus Huizing
  • Patent number: 8922424
    Abstract: A radiation type oscillator including a radiation type oscillator substrate including a microwave transistor for generating negative resistance by short-duration operation and a resonant cavity structure; a high-frequency pulse signal of an oscillation frequency/frequency bandwidth determined by negative resistance produced by the short-duration operation of the microwave transistor and the resonant cavity structure is generated as a transmitted RF signal and simultaneously radiated into space. The radiation type oscillator performs oscillating operation when a received RF signal that is a reflected wave of the transmitted RF signal from an object of detection enters the radiation type oscillator, an IF signal is acquired from an IF signal output terminal owing to homodyne mixing by the radiation type oscillator itself, and this is analyzed and processed to detect the object of detection.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 30, 2014
    Assignees: National Institute of Information and Communications Technology, Communications Research Laboratory, Inc.
    Inventors: Hitoshi Utagawa, Toshiaki Matsui
  • Patent number: 8922371
    Abstract: An array of paired V-band sensors is provided to act as a virtual fence to detect human intrusion. Each sensor includes a rotating circuit board that includes an antenna array. The sensor pivots the circuit board with regard to a weight base to align with an opposing sensor. By alternatively transmitting and receiving with regard to the opposing sensor, a V-band bistatic radar system is enabled that detects human intrusion between the opposing sensors.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 30, 2014
    Assignee: TiaLinx, Inc.
    Inventors: Farrokh Mohamadi, Mehran Mohktari, Mohsen Zolghadri
  • Publication number: 20140368374
    Abstract: Disclosed are a radar apparatus and an antenna apparatus. In particular, disclosed are a radar apparatus and an antenna apparatus including an antenna structure capable of suppressing a grating lobe while enhancing resolution.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Seung Un CHOI, Seong Hee JEONG
  • Patent number: 8910986
    Abstract: An automotive vehicle fascia assembly is provided. The fascia assembly includes a bumper cover and an impact sensor assembly attached to, without mechanically fastening, the bumper cover. The sensor assembly includes a housing configured to selectively rotate from a first position to a second position, a sensor disposed within the housing, and a wall preventing access to the sensor when the housing is in the first position. The sensor is accessible when the housing is in the second position.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: December 16, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Jayagopal Appukutty, Steven Yellin Schondorf, Erich Kemnitz
  • Patent number: 8912950
    Abstract: This invention relates to sense through the wall radar. A main channel of a radar system (12) is operated at a frequency capable of penetrating opaque barriers such as the wall (24) of a building (22) to sense targets (16) therein. The main channel performance may be impaired by multipath interference, i.e., radar returns resulting from targets (20) outside the building (22) illuminated by reflection from the wall (24). A guard channel of the radar, operating at a higher frequency which does not penetrate the wall (24), is used to identify targets (20) outside the building (22) and suppress the multipath interference they produce in the main channel.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 16, 2014
    Assignee: Raytheon Company
    Inventor: Scott E. Adcook
  • Patent number: 8912944
    Abstract: A presence detector unit (PDU) of the type relying on microwave radiation provides a signal indicating movement within a defined space when such movement occurs. A source of microwave radiation within a housing projects a beam of microwave radiation directed through a side of the housing to suffuse at least a portion of the defined space. A detector within the housing senses changes in microwave radiation reflected back toward the detector. An adjustable beam occlusion structure is supported by the housing and blocks a portion of the microwave radiation emanating from the source and through the side of the housing.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 16, 2014
    Inventors: Thomas W. Gow, Edward L. Schwarz
  • Publication number: 20140361919
    Abstract: A method for target detection includes: receiving input data via an input signal; generating a histogram from the received data by a processor; rank-ordering the received data based on power or amplitude of the received input signal; comparing the ranked data received in a current time period to the ranked data received in a previous time period to calculate a Bivariate Conditional Exceedance function (BCEF); utilizing the calculated BCEF to estimate a Gumbel Copula parameter; accumulating a log-likelihood statistic from the estimated Gumbel Copula parameter and the generated histogram; comparing the log-likelihood statistic with a threshold value; and determining a detection of the target, when the log-likelihood statistic is below the threshold value.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Andrew J. Pomerance, Richard Hugh Anderson, Kurt James Lightner, Katherine S.H. Johnson
  • Patent number: 8894119
    Abstract: An automotive vehicle fascia assembly is provided. The fascia assembly includes a bumper cover and an impact sensor assembly attached to, without mechanically fastening, the bumper cover. The impact sensor assembly includes a housing, a sensor disposed within the housing, and a planar tab bonded to the bumper cover. The impact sensor assembly is spaced away from the bumper cover a distance no greater than a thickness of the planar tab.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: November 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Paul Kevin Kula, Steven Yellin Schondorf, Yeruva Satya Reddy, Erich Kemnitz
  • Publication number: 20140343891
    Abstract: A vehicle detection sensor apparatus including a frame and a dual mode sensor connected to the frame, the dual mode sensor having an active and a passive sensing mode wherein at least one of the active and passive sensing mode is automatically cycled between on and off states when providing a positive reading condition.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: fybr
    Inventors: Paul Becker, Richard E. Goodwin, Edwin Horton, Gregory L. Charvat
  • Patent number: 8890744
    Abstract: A method for detecting an object, comprising the steps of defining expected characteristics of scattered electromagnetic radiation to be received at a receiver; attenuating at least a portion of electromagnetic radiation received at the receiver by a presence of an object within a path of electromagnetic information; and detecting the attenuation to indicate a presence of the object. The object may be a low radar profile object, such as a stealth aircraft. The electromagnetic radiation is preferably microwave, but may also be radio frequency or infrared. By using triangulation and other geometric techniques, distance and position of the object may be computed.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 18, 2014
    Inventor: James L. Geer
  • Publication number: 20140333466
    Abstract: Systems and methods for screening, where a subject walks through or in front of a passive detector (or scanning unit) to be screened for possession of unauthorized electronics devices, provide for detecting and monitoring electronics systems not authorized to be used in secure areas. By focusing a very narrow beam width antenna array, individuals can be screened who may have concealed electronics devices that can pose danger to the surroundings. There is no need for removing clothing or accessories such as a jacket or backpack, for example. The detection system may include a frequency scanned passive receiver that captures a signal from a detected electronics device, measures its strength, and identifies the device or classifies it according to a pre-determined set of categories (e.g., cellular phone, camera, or global positioning system (GPS)).
    Type: Application
    Filed: May 13, 2014
    Publication date: November 13, 2014
    Inventor: Farrokh Mohamadi