Presence Detection Only Patents (Class 342/27)
  • Patent number: 8723717
    Abstract: An adaptive sensing system including a passive sensor that receives electromagnetic radiation, an active sensor that emits and receives electromagnetic radiation, a detection unit that detects the presence of human beings and objects other than human beings in a region of observation, and a control unit that controls the active sensor and the passive sensor based on a result of the detection by the detection unit.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: May 13, 2014
    Assignee: Sony Corporation
    Inventor: Shin Saito
  • Patent number: 8723721
    Abstract: A multistatic radar surveillance system includes transmitter elements and receiver elements arranged according to a zone to be monitored, and a command and control unit that configures the elements and collects information relating to objects detected by the receiver elements. Each transmitter element transmits a signal, the bandwidth of which is substantially equal to the totality of a frequency band B allocated to the system. Each transmitter element transmits a common waveform to all of the transmitter elements, and the waveform is modulated by a binary signal specific to the element in question, this signal allowing each of the receiver elements receiving a signal to identify the transmitter element at the source of this signal. The coding applied to the waveform is defined so that the spread spectrum caused to the signal transmitted by the latter does not exceed the frequency band B allocated to the system.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 13, 2014
    Assignee: Thales
    Inventors: Michel Moruzzis, Daniel Muller, Jean-Marie Ferrier
  • Patent number: 8717223
    Abstract: The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N×N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 6, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David H. Chambers, David W. Paglieroni
  • Publication number: 20140118180
    Abstract: A package, wireless sensor module, wireless sensor node and wireline sensor node are disclosed including a radar configured to embed beneath vehicles in pavements, walkways, parking lot floors and runways referred to herein as in ground usage. An access point interfacing to at least one of the sensors is disclosed to provide traffic reports, parking reports, landing counts, takeoff counts, aircraft traffic reports and/or accident reports based upon the sensor's messages regarding the radar and possibly magnetic sensor readings. A runway sensor network is disclosed of radar sensors embedded in lanes of at least one runway for estimating the landing count and/or takeoff count effect of aircraft.
    Type: Application
    Filed: March 16, 2013
    Publication date: May 1, 2014
    Applicant: Sensys Networks, Inc.
    Inventor: Robert Kavaler
  • Patent number: 8711028
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 29, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, David H. Chambers, Steven W. Bond, N. Reginald Beer
  • Patent number: 8704704
    Abstract: Presented is a method for determining speeds (vr14, vr16) and distances (r14, r16) of objects (14, 16) relative to a radar system (12) of a motor vehicle (10), wherein a coverage area (EB) of the radar system (12) is divided into at least two part-areas (TB1, TB2, TB3), the coverage area (EB) is examined for reflecting objects (14, 16) in successive measuring cycles (MZ1, MZ2; MZi, MZi+1), wherein radar signals received in a measuring cycle (MZ1, MZ2; MZi, MZi+1) are processed separated in accordance with part-areas (TB1, TB2, TB3) and processed signals are assembled to form a total result differentiated in accordance with spatial directions. The method is characterized in that from signals received in a first measuring cycle (MZ1; MZi), hypotheses for the distance (r14, r16) and speed (vr14, vr16) of reflecting objects (14, 16) are formed and the hypotheses are validated in dependence on signals received in at least one further measuring cycle (MZ2; MZi+2).
    Type: Grant
    Filed: June 16, 2007
    Date of Patent: April 22, 2014
    Assignee: VALEO Schalter und Sensoren GmbH
    Inventors: Urs Luebbert, Udo Haberland
  • Patent number: 8704702
    Abstract: The invention relates to a method for estimating an object motion characteristic from a radar signal. The method comprises the step of receiving radar data of an object from a multiple beam radar system. Further, the method comprises the steps of associating radar data with estimated height and/or cross-range information of object parts causing the corresponding radar data and fitting an object model with radar data being associated with a selected estimated height and/or cross-range information interval. The method also comprises the step of determining an object motion characteristic from the fitted object model.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Philip van Dorp
  • Patent number: 8686891
    Abstract: The invention relates to a locating device, in particular a hand-guided locating device, with a locating unit (36) for detecting the presence of an object (16, 18) arranged in an examination object (14) by means of an examination signal (38), which has a polarization unit (50) provided for a procedure with the examination signal (38), and with a housing (20) for taking up the locating unit (36), which has a longitudinal axis (24). It is proposed that in at least one operating mode the polarization unit (50) specifies at least one first polarization plane (52, 54) aligned obliquely to the longitudinal axis (24).
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Reiner Krapf, Heiko Braun, Michael Mahler, Christoph Wieland, Ulli Hoffmann
  • Patent number: 8681035
    Abstract: A microwave imaging system uses microwave radiation provided by a microwave source to image targets. The system includes an array of antenna elements that are capable of being programmed with a respective direction coefficient to direct the microwave illumination from the microwave source toward a position on the target. The antenna elements are further capable of being programmed to receive reflected microwave illumination reflected from the position on the target. A processor is operable to measure an intensity of the reflected microwave illumination to determine a value of a pixel within an image of the target. Multiple beams can be directed towards the target to obtain corresponding pixel values for use by the processor in constructing the image.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: March 25, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Izhak Baharav, Robert C. Taber, Gregory S. Lee, John Stephen Kofol
  • Patent number: 8681038
    Abstract: Described are computer-based methods and apparatuses, including computer program products, for radar data processing. In some examples, the method includes determining a plurality of substantially equally spaced frequency intervals within radar data based on an interval size; transforming parts of the radar data within each of the plurality of substantially equally spaced frequency intervals; determining a magnitude of each of the transformed parts of the radar data; and summing the magnitude for each of the transformed parts of the radar data to form adaptive radar data. The adaptive radar data can have a higher signal-to-noise ratio than the radar data.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 25, 2014
    Assignee: Raytheon Company
    Inventors: Arjang J. Noushin, Kenric P. Nelson
  • Patent number: 8681036
    Abstract: A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 25, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: N. Reginald Beer, David W. Paglieroni
  • Patent number: 8681039
    Abstract: Devices, methods, and systems for occupancy detection are described herein. One or more device embodiments include a memory and a processor. The processor is configured to execute executable instructions stored in the memory to determine an interference temperature associated with a number of radio equipped devices located in an area at a point in time, determine a radio tomographic map associated with the area at the point in time, and determine whether the area is occupied at the point in time based on the determined interference temperature and the determined radio tomographic map.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 25, 2014
    Assignee: Honeywell International Inc.
    Inventors: Lance Hester, Soumitri Kolavennu
  • Publication number: 20140077988
    Abstract: An adaptive sensing system including a passive sensor that receives electromagnetic radiation, an active sensor that emits and receives electromagnetic radiation, a detection unit that detects the presence of human beings and objects other than human beings in a region of observation, and a control unit that controls the active sensor and the passive sensor based on a result of the detection by the detection unit.
    Type: Application
    Filed: November 19, 2009
    Publication date: March 20, 2014
    Applicant: Sony Corporation
    Inventor: Shin SAITO
  • Patent number: 8674871
    Abstract: The invention relates to environmental characterization on the basis of an Ultra Wide Band (UWB) radiofrequency communication network. Pulses are emitted and the waveform received is compared with predicted waveforms corresponding to well determined interactions between the wave and its environment. The comparison is done by searching for maximum temporal correlation. The interactions can be notably reflections of the wave on walls or obstacles. The deformations are very dependent on the nature of the materials and directions in which the pulses are emitted and received. If predicted waveforms are stored for various pairs of direction of emission and of reception, it is possible through these correlation operations to find where a wall which gave rise to a reflection is situated.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 18, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Benoît Denis, Vincenzo La Tosa, Bernard Uguen, Friedman Tchoffo-Talom
  • Patent number: 8674875
    Abstract: The invention provides a security scanner that produces a radar profile of a clothed person or another object such as a bag carried by a person at a distance and does not require close proximity of the person or object to the scanner itself. The scanner includes a millimeter wave antenna system optimised for short-range active imaging and arranged to provide rapid high-resolution images of an object or person of interest and processing means for resolving the images so as to detect the presence of predetermined objects. The processing means preferably includes means for comparing contrasts in reflectivity in the scanned images with predetermined expected values from skin and light clothing. The processing means may also include means for detecting predetermined behavioral or physical traits such as the effect on gait on carried weighty objects or stiff structures strapped to the person from the images of a scanned object or person. The scanner may be incorporated within a turnstile access arrangement.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 18, 2014
    Assignee: MBDA UK Limited
    Inventors: Christopher Ralph Carter, Charles Anthony Rowatt
  • Publication number: 20140062755
    Abstract: A helicopter collision-avoidance system is disclosed. An exemplary system includes at least one lamp, such as a light emitting diode (LED) lamp, an incandescent lamp, a halogen lamp, an infrared lamp, or the like; a radar emitter configured to emit a radar signal; a radar detector configured to receive a radar return signal associated with reflections of the emitted radar signal that are reflected from an object; and a radio frequency (RF) system configured to wirelessly transmit radar information associated with the received radar return signal to a radar information receiver configured to receive the wirelessly transmitted radar information. The light module is located at one of a plurality of light positions on an external surface of a helicopter.
    Type: Application
    Filed: December 6, 2012
    Publication date: March 6, 2014
    Applicant: Honeywell International Inc.
    Inventor: Honeywell International Inc.
  • Patent number: 8665117
    Abstract: The invention relates to a method and a device for assisting a parking process of a vehicle (1) into a longitudinal parking space (P) which is arranged next to a carriageway (F) having a measuring device for measuring the parking space (P) while said vehicle (1) travels past, and for determining the position of a front boundary (A2) and/or of a rear boundary (A1) of the longitudinal parking space (P), and having an evaluation device for determining, on the basis of the position (O1, O2) of the front boundary (A2) and/or of the rear boundary (A1), a parked position (G2) of the vehicle (1) in the longitudinal parking space (P), and of determining a parking travel (E).
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 4, 2014
    Assignee: VALEO Schalter und Sensoren GmbH
    Inventor: Harald Barth
  • Patent number: 8666656
    Abstract: An object detection device includes: an ultrasonic sensor for transmitting a signal and further receiving reflected signals of the transmitted signal; a delay-sum processing unit for generating two-dimensional distance information in which the reflected signals received by the ultrasonic sensor are delay-summed in a plurality of reference planes set in advance; a distance information integration unit for generating integrated distance information in which the two-dimensional distance information in the plurality of reference planes generated by the delay-sum processing unit is summed in a vertical direction to the reference planes; and an object detection unit for detecting an object at a position where an intensity in the vertical direction is equal to or larger than a threshold value by referring to an intensity in the vertical direction of the integrated distance information generated by the distance information integration unit.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Mikami, Takashi Hirano, Marika Niiyama
  • Publication number: 20140015706
    Abstract: A presence detection system is equipped with a transmitter that transmits a multipath wireless signal and a receiver that detects the presence of a person by receiving the transmitted wireless signal, within a prescribed space. On the basis of the reception level for a wireless signal received intermittently at the beginning of a first interval, the receiver determines whether there has been a change in the present/absent state of a person. When it is determined that there has been a change in the present/absent state of a person, the receiver determines whether a person is present/absent on the basis of variation in the reception level for a wireless signal received at the beginning of a second interval, which is shorter than the first interval.
    Type: Application
    Filed: April 4, 2011
    Publication date: January 16, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masahiro Ishihara, Yoshiaki Koizumi
  • Patent number: 8624605
    Abstract: The present invention exploits extreme sensitivity to initial conditions in ray-chaotic enclosures to create a method to distinguish nominally identical objects through their unique “wave fingerprints.” The fingerprint can be measured through transmission of a pulsed microwave signal as a function of carrier frequency and time. When internal components are re-arranged, the Electromagnetic Fingerprints (EMF) changes in significant ways. The EMF can be detected by direct injection measurements of the enclosure or through remote measurement.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: January 7, 2014
    Assignee: University of Maryland, College Park
    Inventors: Sameer Hemmady, Steven M. Anlage
  • Patent number: 8618976
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: December 31, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David W. Paglieroni, Jeffrey E. Mast, N. Reginald Beer
  • Publication number: 20130335258
    Abstract: A mobile communication device including a system ground plane, an antenna, a signal distributor, a transceiver and a sensing controller is provided. The antenna converts an electromagnetic wave to a radio-frequency signal. Besides, the antenna and the system ground plane form a sensing capacitor to detect an object and generate a detecting signal accordingly. The signal distributor is electrically connected to the antenna through a first connection terminal and a second connection terminal and guides the radio-frequency signal and the detecting signal from the antenna to a third connection terminal and a fourth connection terminal. The transceiver is electrically connected to the third connection terminal and processes the radio-frequency signal. The sensing controller is electrically connected to the fourth connection terminal and determines whether the object exists around the antenna according to the sensing signal.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 19, 2013
    Applicant: WISTRON CORPORATION
    Inventors: Kuan-Jen Chung, Wen-Yi Tsai, Chia-Wei Su, Pei-Cheng Hu
  • Patent number: 8604968
    Abstract: An integrated radar-camera sensor is provided which includes a camera sensor component and a radar sensor component both housed within a common single module housing. The sensor module also includes processing circuitry for processing the radar sensor and camera outputs. The sensor module is located behind the windshield of a vehicle and may include glare and/or EMI shields.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 10, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Stephen W. Alland, Richard C. Lind, William G. Shogren, Lawrence A. Humm, William A. Bauson, Shawn Shi
  • Patent number: 8604971
    Abstract: A method and apparatus is devised for detecting objects of interest in which frequency-scanned RF in the HF region of the electromagnetic spectrum is projected out across a given area and returns are detected and converted into image data in which phase, amplitude, range and frequency associated with the incoming data is correlated with frequency-dependent range templates to determine the existence of, the range of and the direction of the objects of interest.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: December 10, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John T. Apostolos, Richard J. Millard
  • Patent number: 8593331
    Abstract: Example methods, apparatuses, and articles of manufacture are disclosed herein that may be utilized to facilitate or otherwise support RF ranging-assisted local motion sensing based, at least in part, on measuring one or more characteristics of a range between communicating devices in one or more established RF links.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: November 26, 2013
    Assignee: QUALCOMM Incorported
    Inventors: Ming-Chang Tsai, Amal Ekbal, David Jonathan Julian, Chong U. Lee
  • Patent number: 8593279
    Abstract: System (10) for detecting the position of a mobile or immobile entity (20) in a defined space (30), characterized in that it includes: means (40) of detecting the presence of said entity in at least two partially overlapping observation areas (Z1, Z2) of said space, said means being adapted for collecting at least one piece of immobile presence information (Ip) and one piece of movement information (Im) of said entity in each of said observation areas, processing means (50) which are adapted for carrying out logic operations on at least a portion of said information collected for each of said observation areas, decision means (60), which are connected to the processing means and adapted for controlling an action on the basis of a logic signal generated by the processing means.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 26, 2013
    Assignees: Office National d'Etudes et de Recherches Aerospatiales (ONERA), ISITEK
    Inventors: Philippe Dreuillet, Gérard Bobillot, Luc Vignaud, François Tardivel, Florin Paun
  • Patent number: 8587474
    Abstract: A radar system includes at least one transmit array comprising a plurality of metamaterial elements. The radar system further includes at least one near-field stimulator for inputting electromagnetic signal to the transmit array so that a sub-wavelength target is illuminated with an electromagnetic wave.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: November 19, 2013
    Assignee: Alliant Techsystems Inc.
    Inventors: Christopher Fuller, John R. Lamberg, John J. Geddes, Michael J. Gawronski
  • Patent number: 8581773
    Abstract: In embodiments a system to generate a dual frequency, circularly polarized beam of rotating electromagnetic radiation comprises a first radiation source to generate a first radiation beam at a first frequency, a second radiation source to generate a second radiation beam at a second frequency, different from the first frequency, and a tee. In some embodiments the tee receives the first radiation beam and the second radiation beam, outputs a third radiation beam which represents a sum of the first radiation beam and the second radiation beam, and outputs a fourth radiation beam which represents a difference between the first radiation beam and the second radiation beam, wherein the third radiation beam and the fourth radiation beam are separated by a ninety-degree phase shift. The system further comprises a combiner to combine the third and fourth beams to produce an output beam. Other embodiments may be described.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 12, 2013
    Assignee: The Boeing Company
    Inventor: Sandor Holly
  • Patent number: 8576110
    Abstract: A method of detecting a target in a room using a radar system having a transmitter for irradiating the object, a sensor for receiving reflected radiation, and circuitry for analyzing the reflected radiation to determine at least one characteristic thereof, the method including determining at least one parameter for each wall of a plurality of walls of a room containing the target; determining possible signal paths between the target and the sensor for paths including up to N reflections based on the at least one parameter of each wall and the location of the sensor; calculating target image locations based on the possible signal paths; and processing the received radiation to determine a target location based on target image locations.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 5, 2013
    Assignee: Raytheon Company
    Inventor: Mark L. Valentine
  • Patent number: 8576664
    Abstract: A moving object detection system is provided with an existence detection part, an integrating part and an existence judgment part. Based on first and second detection signals, the existence detection part calculates a rotation angle of each transition factor that is obtained from the first and second detection signals and rotates around the origin in a two-dimensional coordinate system. The existence detection part is configured so that the rotation angle becomes less than 90 degrees. The integrating part integrates each rotation angle to obtain an integrated angle. The existence judgment part judges whether or not a moving object approaching or leaving a receiver of the device exists in a detection area based on the integrated angle and a threshold angle.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Fumihiro Kasano, Toshimasa Takagi, Hidehiko Fujikawa, Toru Mugiuda
  • Patent number: 8576112
    Abstract: A multifunction airborne radar device includes a plurality of transmit antenna modules and/or receive antenna modules that are fixed relative to the aircraft, placed substantially over the surface of the aircraft so as to form transmit and receive beams, enabling targets to be detected for implementing a sense-and-avoid function. The airborne radar device may also comprise processing means for tracking the detected targets and for generating information sent to an air traffic control center and/or to a control device on board the aircraft. The processing device may also receive data relating to the aircraft, enabling the antenna beams to be adjusted and the tracking calculations to be refined.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: November 5, 2013
    Assignee: Thales
    Inventors: Patrick Garrec, Pascal Cornic, Stéphane Kemkemian
  • Patent number: 8558731
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 15, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8558730
    Abstract: A method for detecting precipitation in a region monitored by radar beams includes ascertaining a first average power of a first backscattered radar signal, ascertaining a second average power of a second backscattered radar signal, and detecting an existence of a homogenous medium when the average powers conform.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: October 15, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Alebel Arage Hassen
  • Patent number: 8558733
    Abstract: According to embodiments, there is provided a radar apparatus including: a transmission antenna configured to transmit an electromagnetic wave; a reception antenna configured to receive an electromagnetic wave when the transmitted electromagnetic wave has been reflected by an object; a reception wave acquisition section configured to acquire the received electromagnetic wave at specific intervals in time; a reception power calculator configured to compute the power of the received electromagnetic wave as a function of the acquisition time number by the reception wave acquisition section; a representative point extractor configured to extract plural representative points from the function; and a determination section configured to determine whether or not the object is an overhead object positioned higher than the optical axis of the receiving antenna based on the representative points.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: October 15, 2013
    Assignee: Honda Elesys Co., Ltd.
    Inventors: Hiroyuki Kamo, Takeshi Kambe
  • Patent number: 8552902
    Abstract: An imaging receiver includes a low noise amplifier (LNA) module to receive and amplify the radio-frequency (RF) input signal; one or more switches configured to selectively pass RF input to one or more of the power detector circuits; one or more power detector circuits coupled to the switches to generate output voltages proportional to associated powers at their input ports; one or more reference circuits to provide reference signals to the switches; and one or more integrator circuits to integrate the output voltages of the power detector circuits.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: October 8, 2013
    Assignee: Sabertek
    Inventors: Farbod Behbahani, Vipul Jain
  • Patent number: 8547274
    Abstract: A millimeter wave object detection system includes a millimeter wave imager and a data entry device configured to assign assessment information to events where a concealed object is detected by an operator/observer or automated computer program interrogating imagery produced by the millimeter wave imager. A computer is programmed to store assessment data from the data entry device into a database, and statistical operations can be performed upon the database.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 1, 2013
    Assignee: Microsemi Corporation
    Inventor: Willem H. Reinpoldt, III
  • Patent number: 8542109
    Abstract: An intrusion detection system that provides foliage penetration is disclosed employing an array of field disturbance transceivers operating at UHF frequencies. The array of transceivers generate a multiplicity of electromagnetic wave fields between nearby units and detect the presence of intruders by detecting disturbances in these fields. The emitted UHF signals used to generate the electromagnetic wave fields are also used to provide the communication link between transceivers in the array and to a control station. The control station facilitates the operation of the array from a remote monitoring site. A unique method of array deployment provides multiple opportunities to detect an intruder and secondarily provides redundant communication links in case of a sensor failure. Automatic means of setting detection thresholds based on environmental conditions assures a high probability of detection along with a low false alarm rate.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: September 24, 2013
    Assignee: Flir Systems, Inc.
    Inventors: Walker Butler, John Edward Bjornholt
  • Publication number: 20130241760
    Abstract: An object detection device includes a RF emitter composed of a RF emitting module and an emitter antenna for emitting an EM wave, a RF receiver composed of a RF receiving module and a RF antenna for receiving a reflected EM wave by a predetermined object and a processor connected to the RF emitter and the RF receiver to process the received reflected EM wave so as to obtain a received signal strength indicator (RSSI) such that existence of the object is determined based on fluctuation of the RSSI when compared with a predetermined threshold value.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 19, 2013
    Inventors: Yao-Jen CHEN, Chun-Kai Derrick WEI, Jui-Hsiang CHANG, Ming-Li CHENG, Rung-Chi CHUANG, Yu-Jen LIN, Hsiao-Ping YUAN, Tien-Hsiung SUNG
  • Patent number: 8538669
    Abstract: Methods and apparatus are provided for transmitting incursion alerts to a plurality of in-flight aircraft in accordance with preconfigured pilot preferences. The apparatus comprises a data store module containing data sets against which the pilot preferences are evaluated during flight, including weather, airspace and flight restrictions, ground delay programs, and air traffic information. The apparatus further includes a flight path module containing route and position information for each aircraft. An incursion alert processing module evaluates the flight path, data store, and pilot preferences and generates incursion alerts which are transmitted to each aircraft during flight, either directly or via ground based dispatchers or flight operations personnel.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 17, 2013
    Assignee: Honeywell International Inc.
    Inventors: Anand Agarwal, David Brabham, Trip Redner, SatyaBhaskar Payasam
  • Patent number: 8525725
    Abstract: The present disclosure describes a method and system for detecting and determining the position of a target or intruder using a plurality of sensors positioned throughout a secured perimeter and a single antenna. The system of the present disclosure detects and determines the position of a target by first analyzing the return signal strength values of each of the sensors. Next, Zvalues for each of the sensors are calculated. Based on the Zvalues, certain sensors are selected to compute a signal strength center-of-mass location, which is then used to determine the position of the target.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: September 3, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Vibeke Libby, Troy E. Wenski, Allen R. Lorenz
  • Publication number: 20130222173
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Application
    Filed: April 9, 2013
    Publication date: August 29, 2013
    Applicant: Honda elesys Co., Ltd.
    Inventor: Honda elesys Co., Ltd.
  • Patent number: 8519883
    Abstract: A motion detector system includes the ability to detect motion through the use of a Doppler radar sensor or a combination of PIR sensors and a Doppler radar sensor. The system includes an outdoor light fixture having one or more lamps and a housing coupled to the outdoor light fixture. The housing includes a Doppler radar sensor and a microprocessor for analyzing the signals received by the Doppler radar sensor. Alternatively, the housing includes a combination of PIR sensors and a Doppler radar sensor and a microprocessor for analyzing the signals received from these sensors. The lamps in the light fixture are activated when either the PIR sensor or the Doppler radar sensor generates a signal indicating motion within the monitored area. Alternatively, the lamps can be activated when either the PIR sensor or the Doppler radar sensor senses predetermined number of motion activities over a limited time period.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 27, 2013
    Assignee: Cooper Technologies Company
    Inventors: George Michael Drake, Ryan Crist, Tyler Fleig, Milton Dallas, Scott Kroeger, Norm Siegel, Charlie Ketelhohn
  • Patent number: 8519826
    Abstract: An application specific integrated circuit chip includes capacitors and antennas. The antennas receive energy from an outside source, and charge capacitors on the chip in order to provide power to the chip itself. The chip in turn communicates by antenna to outside receivers for the purposes of identification of the chip and hence a bag or article to which it is attached. The chip is attached to its article by means of glue which is in turn applied by an applicator which shoots the chip and the glue against the article.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 27, 2013
    Inventor: Tümay O. Tümer
  • Publication number: 20130214961
    Abstract: A radar apparatus includes a phased array receiver, with a steerable receive beam. The receiver elements are grouped into subarrays, which each provide a subarray signal to a mixer. The mixer signals are then used by a DBF algorithm to determine narrow virtual beams within the receive beam. The receive beam is used to obtain radar data from sectors of the field of view, and the sectors may be approximately as wide as the receive beam. The order in which sectors are examined may be determined by the sector importance, related to the presence, nature, and/or behavior of previously tracked targets within each sector.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Jae Seung Lee, Paul Donald Schmalenberg
  • Patent number: 8508402
    Abstract: The invention relates to a system and method for detecting, locating and identifying objects located above ground or below ground in an area of interest, comprising an airborne vehicle which circumscribes the area of interest and which includes a built-in radar having an antenna with a respective transmitter and receiver, signal-processing means, data-storage means and graphical interface means. According to the invention, the area of interest has been pre-referenced and the radar is a heterodyne ground penetration radar (GPR). The signal transmitted by the antenna generates a beam that illuminates a strip of earth, consisting of a sinusoidal electromagnetic signal having a frequency that is varied in precise pre-determined progressive steps. This signal is mixed with the received (reflected) signal, thereby producing two sets of values corresponding to the phases of each frequency step or stage.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: August 13, 2013
    Assignee: Pontificia Universidad Catolica de Chile
    Inventors: Mario Manuel Duran Toro, Marcelo Walter Guarini Herrmann
  • Patent number: 8502728
    Abstract: New systems and methodologies that use radio tomography for object tracking.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: August 6, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Sarang Joshi, Anthony Joseph Wilson, Neal Patwari
  • Patent number: 8502730
    Abstract: A method detects a bird or an object flying level with a single wind turbine, using a device for radio wave detection of at least one bird or another flying object, in the form of at least one radar. The analog image from each radar is transformed into a digital image and an outer safety area and an inner safety area is defined for the image. A safety space for each radar is defined and an action is performed in the event of a detection within the safety areas.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 6, 2013
    Inventor: Henri-Pierre Roche
  • Patent number: 8497477
    Abstract: A system and technique for imaging a subject at a scene overcomes the weaknesses in the existing gain fluctuation techniques by switching the environmental temperature at the scene at a rate sufficiently fast enough to obtain subsequent samples in a time period where the gain has not fluctuated sufficiently to have a negative effect on detection sensitivity. This technique is utilized in conjunction with the method of subsequent subtraction of alternate samples which both reveals the reflectance of the scene and removes gain fluctuation.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: July 30, 2013
    Assignee: MVT Equity LLC
    Inventor: Thomas D. Williams
  • Patent number: 8497797
    Abstract: Provided are a two-dimensional array antenna and a device for detecting an internal object using the same. The device includes a plurality of unit antennas in a two-dimensional array of m columns and n rows on a board (where m and n are integers greater than 1), a first switch selecting one or more transmitting antenna to radiate a pulse signal onto an internal object in a structure from among the unit antennas; a second switch selecting one or more receiving antenna to collect a signal reflected from the internal object from among the unit antennas, and a transceiving analysis module analyzing information about the position and shape of the internal object.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 30, 2013
    Assignee: Electronics and Telecomunication Research Institute
    Inventors: Dae Heon Lee, Sung Hyun Kim, Sang Woo Cho, Ji Eun Choi
  • Patent number: 8489117
    Abstract: An apparatus and method is provided for real-time location estimation of a mobile station (MS) on a map of roads using non-Global Positioning Satellite location data (300) of the MS and includes a step of determining (302) a mobility of the MS. A next step (306) includes identifying a region that covers all location data. A next step (310) includes dividing the region into smaller blocks, where each block constitutes a Hidden Markov Model state. A next step (312) includes determining a distance between blocks, to be used in a varied continuous probability distribution to determining a state transition probability of each block to represent a likelihood of the MS moving to any one block. A next step (314) includes using a univariate continuous distribution as a function of a distance between each block and a raw location data.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: July 16, 2013
    Assignee: Motorola Mobility LLC
    Inventors: XiaoHui Shen, Hong-Lei Liu, Kwok Lam Cheung, Sheng-Yu Hu