Aspherical Patents (Class 351/159.71)
  • Patent number: 10338409
    Abstract: An off-axis curvature center lens is characterized by an x-y-z coordinate system of the convergence-reducing lens, the off-axis curvature lens comprising a distance-vision region with a non-negative distance-vision optical power, having a front distance-vision surface with a center of front distance-vision curvature, and a rear distance-vision surface with a center of rear distance-vision curvature; and a near-vision region with an optical power within 0.5D of the distance-vision optical power, having a front near-vision surface with a center of front near-vision curvature, and a rear near-vision surface with a center of rear near-vision curvature; wherein at least one of an x-coordinate of the center of front near-vision curvature is nasal relative to an x-coordinate of the center of front distance-vision curvature, and an x-coordinate of the center of rear near-vision curvature is temporal relative to an x-coordinate of the center of rear distance-vision curvature.
    Type: Grant
    Filed: October 9, 2016
    Date of Patent: July 2, 2019
    Assignee: eyeBrain Medical, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley, Gergely T. Zimanyi
  • Patent number: 9022563
    Abstract: Aspects of the present invention provide a lens comprising a non-rotationally symmetric aspheric optical element, surface or feature and a rotationally symmetric aspheric optical element, surface or feature. The non-rotationally symmetric aspheric optical feature can be a progressive power region. The non-rotationally symmetric aspheric optical feature and rotationally symmetric aspheric optical feature can be in optical communication when located on different surfaces of a lens or can be collapsed to occupy a single surface of a lens. The non-rotationally symmetric aspheric optical feature and rotationally symmetric aspheric optical feature can each contribute to the add power of a lens. Distortion (e.g., astigmatism) of a lens of the present invention can be reduced (e.g., globally and/or locally) by optically combing the non-rotationally symmetric aspheric optical feature with the rotationally symmetric aspheric optical feature.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: May 5, 2015
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Amitava Gupta, Ronald D. Blum
  • Patent number: 8950858
    Abstract: A system and method of forming surfaces on eyeglass lenses is described. In some examples, the surface is a spherical, cylindrical or spherocylindrical surface at a center of the lens and an aspherical surface at a periphery of the lens. In some examples, forming the surface on the lens reduces the thickness of the lens at the periphery of the lens.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: February 10, 2015
    Assignee: Digital Vision, Inc.
    Inventors: Gordon Keane, John Thompson
  • Publication number: 20140268032
    Abstract: A system and method of forming surfaces on eyeglass lenses is described. In some examples, the surface is a spherical, cylindrical or spherocylindrical surface at a center of the lens and an aspherical surface at a periphery of the lens. In some examples, forming the surface on the lens reduces the thickness of the lens at the periphery of the lens.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: DIGITAL VISION, INC.
    Inventors: Gordon Keane, John Thompson
  • Publication number: 20140253874
    Abstract: A lens for non-prescription eyewear includes: a first surface having a first surface shape; and a second surface opposite the first surface, the second surface having a second surface shape, wherein the first surface includes a point of maximum curvature and the shape of the first surface measured along a line on the first surface decreases by at least 1.5 diopters at a distance 15 mm in every direction from the point of maximum curvature.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicants: Carl Zeiss Vision Inc., Carl Zeiss Vision International GmbH, Carl Zeiss Vision Italia S.p.A.
    Inventors: Ray Steven Spratt, Sabrina Malnati, Wolf Krause
  • Patent number: 8439498
    Abstract: An intraocular lens for correcting or reducing the astigmatism of a cornea includes an optical element that has optical properties and characteristics that make it tolerant of rotational misalignment, when compared to a comparable lens having a uniform astigmatism orientation across its entire optical element, leading to more relaxed tolerances for a surgeon that implants the lens. The optical element of the toric ophthalmic lens has meridians associated therewith, including a high power meridian and a low power meridian orthogonal to the high power meridian. The optical element has at least one radially modulated meridian along which power monotonically varies with increasing radial position.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: May 14, 2013
    Assignee: Abbott Medical Optics Inc.
    Inventors: Huawei Zhao, Hendrik A. Weeber, Patricia Ann Piers
  • Publication number: 20120158131
    Abstract: Aspheric optical lenses (e.g., intraocular lenses and contact lenses) are provided. The intraocular lens includes a body portion defining an anterior optical surface and an opposing posterior optical surface. The anterior optical surface includes a central region surrounded by a first outer region and a second outer region. The central region has a first asphericity profile. The first outer region has a second asphericity profile that is different than the first asphericity profile of the central region. The second outer region has a third asphericity profile that is different than the second asphericity profile of the first outer region. The overall asphericity profile of the optical lens provides different depths of focus for different pupil sizes. The result is an optical lens that provides increased depth of focus or pseudo-accommodation while maintaining desired optical power and performance.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 21, 2012
    Inventors: Robert Angelopoulos, Stephen J. Van Noy