Exhaust, Dust Or Smoke Patents (Class 356/438)
  • Patent number: 11961387
    Abstract: Integrating location information in a fire control system is described herein. One device includes a memory, and a processor configured to execute executable instructions stored in the memory to receive, from a database external to the fire control system, a graphical representation of a facility and location information associated with a number of components of the fire control system that indicates a location of each respective component in the facility, integrate the location information associated with each respective component of the fire control system in the graphical representation of the facility such that the graphical representation includes a representation of each respective component at a location in the graphical representation that corresponds to the location of that component in the facility, and display, in a user interface, the graphical representation of the facility with the location information associated with each respective component of the fire control system integrated therein.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: April 16, 2024
    Assignee: Honeywell International Inc.
    Inventors: Jesse Otis, Robert A. Harrison
  • Patent number: 11850458
    Abstract: A flow control device includes a flow shield defining a volume and a plurality of shield openings of the flow shield arranged such that gas entering the volume must pass through at least one of the plurality of shield openings. The flow control device also includes a flow restrictor to define an opening for the gas exiting the volume.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: December 26, 2023
    Assignee: KIDDE TECHNOLOGIES, INC.
    Inventors: Eli Baldwin, James Allen Varnell
  • Patent number: 11744425
    Abstract: A vacuum cleaner charging dock comprising a base and a bracket is provided. The bracket is arranged on one side of the base and is provided with a charging socket for charging a vacuum cleaner, while a positioning slot is arranged on another side of the base, the positioning slot is used for containing a floor brush of the vacuum cleaner, the positioning slot is provided with a plurality of convex teeth, which are used for rubbing with a rolling brush on the floor brush. The vacuum cleaner charging dock is provided with convex teeth, and the rolling brush of floor brush has deformation contact with the convex teeth. When the rolling brush starts to rotate, the convex teeth are easy to perform frictional rotation. Then dust and sewage on the rolling brush are shaken off into a positioning slot to complete the cleaning to the rolling brush, which is convenient and efficient.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: September 5, 2023
    Inventor: Tao Zhang
  • Patent number: 11733158
    Abstract: A spectral imaging system configured to obtain spectral measurements in a plurality of spectral regions is described herein. The spectral imaging system comprises at least one optical detecting unit having a spectral response corresponding to a plurality of absorption peaks of a target chemical species. In an embodiment, the optical detecting unit may comprise an optical detector array, and one or more optical filters configured to selectively pass light in a spectral range, wherein a convolution of the responsivity of the optical detector array and the transmission spectrum of the one or more optical filters has a first peak in mid-wave infrared spectral region between 3-4 microns corresponding to a first absorption peak of methane and a second peak in a long-wave infrared spectral region between 6-8 microns corresponding to a second absorption peak of methane.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: August 22, 2023
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Ohad Israel Balila
  • Patent number: 11703447
    Abstract: The invention relates to a measurement apparatus for measuring the concentration of a gaseous substance. The apparatus comprises a light source, a light sensor, and a housing comprising at least one first housing member having a low thermal conductivity. A light path is formed from said light source to said light sensor, wherein the light path passes through a measurement region within said housing. The light source is configured to emit light with a spectral distribution such that said light is absorbed by said gaseous substance. Said light sensor is configured to receive the light emitted by the light source after it has passed through the measurement region. The first housing member comprises a thermal shielding region facing said measurement region on its one side and said light sensor on its other side, and is configured to permit the passage of light.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 18, 2023
    Assignee: Eppendorf SE
    Inventors: Philipp Abel, Andreas Graff
  • Patent number: 11657692
    Abstract: A smoke detector, and methods of operating a smoke detector, are described herein. In some examples, one or more embodiments include a laser emitter configured to emit a laser beam that illuminates an object in an area, a light receiver configured to receive light reflected from the illuminated object, and a controller configured to determine, based on the light reflected from the illuminated object, an amount of space in the area that is blocked from a field of view of the smoke detector by the object, and provide an indication responsive to the determined amount of space being above a threshold amount of space.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: May 23, 2023
    Assignee: Honeywell International Inc.
    Inventors: Ronald Knox, Bhanusri Yellapragada
  • Patent number: 11555776
    Abstract: Disclosed in a light scattering detection apparatus, including a sample cell for holding a liquid sample therein, a light source for irradiating the sample cell with coherent light, a detector for detecting light that coming from the sample cell, and a pair of holders for holding ends of the sample cell. Either or both of the holders has a double flange structure. The double flange structure includes a first flange configured to receiving the sample cell and a second flange configured to hold a tube connected to the sample cell. The second flange is detachably attached to the first flange.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: January 17, 2023
    Assignee: Shimadzu Corporation
    Inventors: Toru Yamaguchi, Atsushi Kasatani
  • Patent number: 11474030
    Abstract: Improved techniques for quantification of detected gases are provided. In one example, a method includes receiving infrared radiation from a scene at a sensor array comprising first and second sets of infrared sensors associated with first and second wavelength ranges of the infrared radiation, respectively. The method also includes capturing first and second images by the first and second sets of infrared sensors, respectively. The method also includes detecting a background object in the first image. The method also includes tracking the background object to identify the background object in the second image. The method also includes updating a radiometric scene map with first and second radiometric values associated with the first and second images and correlated to a location of the background object in the scene. The method also includes performing gas quantification using the radiometric scene map. Additional systems and methods are also provided.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 18, 2022
    Assignee: FLIR Systems AB
    Inventors: Henrik Viklund, Jonas Sandsten
  • Patent number: 11475552
    Abstract: The present disclosure provides to a novel two-target method for measuring the concentration of dust clouds, and an apparatus system that uses the novel two-target method. Cornstarch, corn dust, and saw dust are tested with the apparatus system with the method. This method used the light extinction coefficient of a dust cloud between two targets using a digital camera. This extinction coefficient is linearly related to the concentration of the dust, and the mass extinction coefficient is the key value for this measurement method. The mass extinction efficiency (K) depend greatly on the physical and chemical properties of the dust particles.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: October 18, 2022
    Assignee: Purdue Research Foundation
    Inventors: Rose Prabin Kingsly Ambrose, Yumeng Zhao, Zhongzhong Niu
  • Patent number: 11371742
    Abstract: The disclosure relates to an air conditioner and a control method thereof, the air conditioner including: a housing including an inlet and an outlet through which air is introduced and discharged; a fan driver configured to drive air introduced through the inlet to be discharged through the outlet; a filter configured to filter the introduced air; a sensor configured to detect a foreign material in air; a storage configured to store information; and a processor configured to control the storage to store information about mass concentration of the foreign material in air detected by the sensor, and calculate a remaining life of the filter based on the information stored in the storage. Thus, the air conditioner can identify proper time to replace the filter by calculating the remaining life of the filter.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 28, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Euy-sung Chu, Kwang-seung Lee, Ji-su Lee, Won Choe, Jae-kwon Ko, Moon-sun Shin, In-chul Yun, Se-kwan Jeong
  • Patent number: 11357172
    Abstract: A system and method for remotely managing content levels in one or more defined areas includes a computer system communicatively connected to one or more resident sensor units and controllers linked to devices such as content loading drive mechanisms and/or supply reordering modules. When a sensor reports that a content level is or will be lower or higher than desired, the computer system generates an alert and forwards the alert across a wireless communications network to a user's mobile device. The user may select a user command to send to the computer system, whereupon the computer system may selectively regulate the content levels in accordance with the response action or alternatively override the user command based upon one or more contextual determinations.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: June 14, 2022
    Assignee: Cell Sign Technologies
    Inventors: Eric Casebolt, Stephen M. Obsharksy
  • Patent number: 11151992
    Abstract: A plurality of images captured using a camera included in a robotic system are analyzed. A spatial map is generated using a sensor included in the robotic system. A semantic location map is generated using at least the analyzed plurality of captured images and the generated spatial map. A natural language input referencing a desired product item is received from a user. A speech recognition result is recognized from the natural language input and sent to a reasoning engine. In response to sending the recognized speech recognition result, one or more commands for the robotic system are received from the reasoning engine. The received one or more commands are performed and feedback to the user based on at least one of the one or more commands is provided.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 19, 2021
    Inventors: Run Cui, Won Taek Chung, Hye Jun Yu, Hong Shik Shinn
  • Patent number: 11105715
    Abstract: There is disclosed a field calibratable particle sensor solution in a low-cost, very compact form factor. This makes a low-cost sensor more accurate for low-concentration pollution measurements and decreases the cost of pollution measurement systems having a wide geographic coverage. In a related embodiment, the invention illustrates a method and system to remotely and automatically calibrate one or more of the low cost sensors disclosed herein as well as other commercially available sensors (such as optical particle counters, photometers etc.) against a reference instrument (such as a beta attenuation monitor) which may or may not be physically located in the same place as the individual sensors. The method may require minimum (or no) user interaction and the calibration period is adjustable periodically.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: August 31, 2021
    Assignee: TSI, Incorporated
    Inventors: Hee-Siew Han, James E. Farnsworth, Robert Caldow
  • Patent number: 10948404
    Abstract: A spectral imaging system configured to obtain spectral measurements in a plurality of spectral regions is described herein. The spectral imaging system comprises at least one optical detecting unit having a spectral response corresponding to a plurality of absorption peaks of a target chemical species. In an embodiment, the optical detecting unit may comprise an optical detector array, and one or more optical filters configured to selectively pass light in a spectral range, wherein a convolution of the responsivity of the optical detector array and the transmission spectrum of the one or more optical filters has a first peak in mid-wave infrared spectral region between 3-4 microns corresponding to a first absorption peak of methane and a second peak in a long-wave infrared spectral region between 6-8 microns corresponding to a second absorption peak of methane.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 16, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Ohad Israel Balila
  • Patent number: 10724936
    Abstract: A measurement apparatus includes: a measurement tank including an air inlet and an air outlet; a fan; a light source configured to irradiate micro-particulate matter with light; a photodetector configured to detect scattered light from the micro-particulate matter; a first circuit configured to detect individual particles of the micro-particulate matter based on an output of the photodetector; a second circuit configured to detect a micro-particle group of the micro-particulate matter based on the output of the photodetector; a switch configured to switch into one of a first state in which the output of the photodetector is input to the first circuit and a second state in which the output of the photodetector is input to the second circuit; and a controller configured to control a drive and stop of the fan, a turn-on and a turn-off of the light source, and a switching of a state of the switch.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: July 28, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Ryozo Takasu
  • Patent number: 9897550
    Abstract: A probe for an IR or UV sensor comprising a light emitter and detector is described comprising a lens. The detector detects the spectrums of the emitted light after it has passed a gas to be measured. The sensor of the present invention is especially suitable for such as harsh or aggressive environments measuring the exhaust gasses, for example in ships, vehicles, chimneys etc., and comprises purge gas protections for delicate optical parts to prevent particles etc. from the exhaust gas depositing on the optics. The sensor further has a flow of sample gas from the gas to be measured being adapted to prevent the purge gas from inferring with the measurements where the sample gas are split into at least two flows where one is adapted for preventing the purge gas from influencing the measurement in a measuring region.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: February 20, 2018
    Assignee: Danfoss IXA A/S
    Inventors: Carsten Moberg, Allan Skouboe, Jesper Høyer
  • Patent number: 9638631
    Abstract: A system for species concentration spatial reconstruction for an exhaust system includes an emitter, a detector, and a controller. The emitter is coupled to a first portion of the exhaust system and tuned to a specific wavelength of a species to be measured. The detector is coupled to a second portion of the exhaust system opposite to the first portion such that the detector is positioned to detect a beam attenuation of a beam from the emitter. The controller is configured to receive a plurality of beam attenuation measurements from the detector and to generate a cross-sectional species concentration map based on the plurality of beam attenuation measurements.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: May 2, 2017
    Assignee: CUMMINS EMISSION SOLUTIONS, INC.
    Inventors: Douglas A. Mitchell, Mihai Chiruta
  • Patent number: 9532009
    Abstract: A system for detecting a contaminant in a container is provided. The system includes a laser source configured to emit a laser beam into the container, an imaging array configured to detect the laser beam as imaging data, and a computing device communicatively coupled to the imaging array. The computing device is configured to determine, from the imaging data, a plurality of beam path length differences due to the contaminant, and calculate, from the beam path length differences, a volume of contaminant in the container.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: December 27, 2016
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 9188523
    Abstract: A system for estimating size distribution and concentration of aerosols in an atmospheric region includes a digital camera, a sunlight attenuation filter, and a processor. The filter is aligned between the sun and the camera's aperture. Image processing is performed on an image captured when the filter and the sky are in focus of the camera. The image includes (i) sunlight passing through the filter, and (ii) sunlight scattered by the atmosphere and not incident on the filter. The image processing compares intensity of a first portion of the image defined by the sunlight so-scattered to Mie and Rayleigh scattering computations generated for aerosols of known size distributions where a closest match is indicative of size distribution of aerosols. The image processing determines total solar irradiance in a second portion of the image defined by the sunlight so-passed through the filter as an indication of total concentration of aerosols.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 17, 2015
    Assignee: SCIENCE AND TECHNOLOGY CORPORATION
    Inventor: Mark R Schoeberl
  • Patent number: 9030667
    Abstract: A method to collect 3D measurement data regarding a working fluid in a system, e.g., a turbo-machine, including: arranging sources of beams proximate to a passage of the working fluid in or downstream of the turbo-machine such that beams from the sources are projected through the working fluid; detecting intensities of the beams after they pass through the working fluid, and generating at least a two dimensional (2D) representation of the working fluid based on the detected intensities of the beams.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventor: Olgu Tanriverdi
  • Patent number: 9013703
    Abstract: A gas analyzing apparatus includes a probe for measuring a concentration of sample gas flowing in a pipe by an optical measurement system. Influence of a thermal lens effect phenomenon is suppressed so that measurement accuracy is improved. The apparatus includes a probe tube disposed to cross a flow path of the sample gas in the pipe to introduce the sample gas flowing in the pipe to a predetermined hollow measurement region. A light emission portion and a light receiving portion for project measurement light to the measurement region in the probe tube and receive the measurement light after passing through the sample gas in the measurement region. A purge gas feed tube disposed in the probe tube supplies purge gas to a region between the optical system members and the measurement region, with a gap to the inner wall surface of the probe tube.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Horiba, Ltd.
    Inventors: Toshikazu Ohnishi, Toshiyuki Tsujimoto
  • Patent number: 9007223
    Abstract: The invention provides use of one or more emitted beams of radiation (16), for example, laser beam(s), in combination with an image capturing means (14), for example, one or more video cameras and/or optical elements to detect particles (30), for example, smoke particles, located in an open space (12).
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: April 14, 2015
    Assignee: Xtralis Technologies Ltd.
    Inventors: Ron Knox, Karl Boettger, Kemal Ajay
  • Patent number: 9007594
    Abstract: The present invention provides a fiber laser gas detection system using active feedback compensation by a reference cavity, said system comprising: an optical fiber laser consists of a laser diode pump source, a wavelength division multiplexer, an active optical fiber and a fiber Bragg grating connected successively; an optical isolator coupled with said wavelength division multiplexer for blocking a reverse light transmission in said active fiber; a coupler connected with said optical isolator for dividing the laser light after being isolated by the optical isolator into a reference beam, a detecting beam and an intensity measuring beam according a certain ration power. The gas detection system according to the present invention can take advantages of the unique superiority of compact structure and narrow linewidth of the laser output of the fiber laser, and achieve a gas detection method with high sensitive and high precision by feedback controlling.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: April 14, 2015
    Assignee: Beijing Information Science & Technology University
    Inventors: Fei Luo, Lianqing Zhu, Mingli Dong, Wei He, Yinmin Zhang
  • Patent number: 8994942
    Abstract: An interference object is identified in a scatter volume of an optical fire detector, which operates according to the scattered light principle. To achieve a higher level of interference protection using a simple structure in a compact fire detector, a common scatter volume is used instead of separate scatter volumes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: March 31, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Walter Vollenweider
  • Patent number: 8952821
    Abstract: In accordance with certain embodiments, a smoke detector utilizes a reflected-light signal and sensed ambient light to determine the presence of smoke particles.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 10, 2015
    Assignee: Valor Fire Safety, LLC
    Inventor: Matthew Erdtmann
  • Patent number: 8947243
    Abstract: In accordance with certain embodiments, a smoke detector comprises a housing, a light source, one or more light detectors, and an evaluation circuit for determining the presence of smoke particles outside the housing based on light emitted from and reflected back into the housing, as well as light emitted within the housing without emission therefrom.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Valor Fire Safety, LLC
    Inventor: Matthew Erdtmann
  • Patent number: 8947244
    Abstract: In accordance with certain embodiments, a smoke detector utilizes broadband light with a plurality of wavelengths to determine the presence of smoke.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Valor Fire Safety, LLC
    Inventor: Matthew Erdtmann
  • Patent number: 8939081
    Abstract: A weapon-locating ladar system estimates a backward trajectory of an airborne target by using flow field measurements to follow the wake turbulence trailing the airborne target from a position at which the target is detected backwards until the wake is no longer observable. The system may use the backward trajectory to estimate the point-of-origin of the target. The system may also use the flow field measurements along the backward trajectory to classify the target. Target classification may be used to refine the point-of-origin estimate, to influence counter-fire or to adapt the flow field measurements.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: January 27, 2015
    Assignee: Raytheon Company
    Inventors: Duane Donald Smith, Robert William Byren
  • Patent number: 8928885
    Abstract: A gas detection system using a semiconductor laser with a reference gas cavity compensation is provided, said system comprising a first light source emitting a first beam of a first wavelength as a detection beam; a second light source emitting a second beam of a second wavelength, which is different from the first wavelength, as a reference beam; a first wavelength division multiplexer connected with said first light source and said second light source; a broadband coupler connected with said first wavelength division multiplexer; a reference gas chamber, which is introduced with reference gas of the same composition as that of the gas to be detected and of a known concentration; a detection gas chamber, which is introduced with the gas to be detected.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 6, 2015
    Assignee: Beijing Information Science & Technology University
    Inventors: Fei Luo, Lianqing Zhu, Mingli Dong, Wei He, Yinmin Zhang
  • Patent number: 8907802
    Abstract: In accordance with certain embodiments, a smoke detector determines the presence of smoke particles outside its housing based on measurements of light detected at different wavelengths and corrected based on an ambient light level.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: December 9, 2014
    Assignee: Valor Fire Safety, LLC
    Inventor: Matthew Erdtmann
  • Patent number: 8854625
    Abstract: A particle monitoring apparatus includes a housing disposed on a gas exhaust line, a laser beam source for emitting a laser beam to particles in the gas exhaust line, a window member disposed at the housing for monitoring the particles in the gas exhaust line. The window member has a transparent base which is formed of a transparent resin or glass containing silicon and has a gas contact surface which faces a gas within the gas exhaust line, and a surface treatment layer formed on the gas contact surface of the transparent base, wherein the surface treatment layer contains one material selected from the group consisting of yttrium and calcium fluoride.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: October 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Tsuyoshi Moriya, Hiroyuki Nakayama
  • Patent number: 8842283
    Abstract: A system for detecting engine fluid constituents includes an engine having a sample channel having a conduit for a working engine fluid. The system includes an electromagnetic (EM) source that emits EM radiation through a first metal tube, where the EM radiation is EM energy at a wavelength of interest. The system further includes an EM detector that receives a remainder radiation through a second metal tube, the remainder radiation including the remaining EM radiation after passing through the sample channel. The system includes a controller that determines a composition indicator signal representative of an amount of a constituent in the working engine fluid in response to a strength of the remainder radiation, and determines a concentration of a component of interest according to the composition indicator signal.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 23, 2014
    Assignee: Cummins Inc.
    Inventors: John M. Janssen, Frederick H. Lindner, Jacob Y. Wong
  • Publication number: 20140268158
    Abstract: A method to collect 3D measurement data regarding a working fluid in a system, e.g., a turbo-machine, including: arranging sources of beams proximate to a passage of the working fluid in or downstream of the turbo-machine such that beams from the sources are projected through the working fluid; detecting intensities of the beams after they pass through the working fluid, and generating at least a two dimensional (2D) representation of the working fluid based on the detected intensities of the beams.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Olgu TANRIVERDI
  • Patent number: 8818609
    Abstract: Disclosed herein are systems and methods for classifying regions of a scanning zone of a light detection and ranging (LIDAR) scan. One example includes a method for receiving information indicative of a light detection and ranging (LIDAR) scan of a vehicle. The method further involves generating a point map of the scanning zone. The method further involves generating a density profile of the point map that is indicative of density of one or more regions of the scanning zone characterized at one or more distances. The method further involves generating an elevation profile of the point map that is indicative of elevation of one or more reflected features in the scanning zone characterized at one or more distances. The method further involves classifying regions of the scanning zone based on the density profile and the elevation profile.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: August 26, 2014
    Assignee: Google Inc.
    Inventors: Aleksey S. Boyko, Jiajun Zhu
  • Publication number: 20140226162
    Abstract: A smoke detector with a transmitter (4) for a radiation that can be detected by a receiver (5), the transmitter (4) and the receiver (5) are to be assigned a monitored region (11).
    Type: Application
    Filed: July 25, 2013
    Publication date: August 14, 2014
    Applicant: SCHAKO KLIMA LUFT Ferdinand Schad KG
    Inventor: Rainer Mueller
  • Patent number: 8773272
    Abstract: A light scattering type smoke sensor includes a sensor body, light-emitter for emitting light toward an open smoke-sensing space and outputting a light-received signal according to the amount of scattering light received, and a fire judging unit for judging whether fire occurs or not on the basis of the amount of received light determined on the basis of the outputted light-received signal.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 8, 2014
    Assignee: Hochiki Corporation
    Inventor: Tetsuya Nagashima
  • Publication number: 20140160479
    Abstract: Aspects of the invention are directed to a device and method for detecting characteristics of a gas. The gas includes an exhausted plume from a vehicle or factory plant, leaked gas from an oil well or gas resource, or unidentified gas from an unknown source. The method includes sweepingly directing a beam of light through the gas to a target surface on which the beam of light is scattered, acquiring the scattered light scattered from the target surface, and processing the acquired scattered light to determine the characteristics of the gas, where the characteristics of the gas comprise at least one of a temperature of the gas and an amount of at least one ingredient of the gas.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Applicant: Hager Environmental and Atmospheric Technologies, LLC
    Inventors: J. Stewart Hager, Geoffrey Yerem
  • Patent number: 8749789
    Abstract: A gas concentration measuring apparatus for measuring a concentration of a measurement target substance contained in a sample gas includes a light source unit in which a light source is arranged, and a sensor unit that is arranged on an optical path of the light source. The sensor unit includes a concentration measuring sensor configured to receive light from the light source after the light has passed through a sample cell unit and measure a concentration of the measurement target substance. The apparatus further includes an introducing device configured to introduce the sample gas to a vicinity of concentration measuring sensor. Therefore, a vicinity of the concentration measuring sensor is filled with an atmosphere of the sample gas so that a concentration of a measurement target substance contained in the sample gas is measured stably and accurately regardless of fluctuations in an ambient atmosphere of a measuring environment.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: June 10, 2014
    Assignee: Horiba, Ltd.
    Inventor: Takuji Oida
  • Patent number: 8743366
    Abstract: The present invention can detect smoke with high accuracy. A light emitting portion is provided with a light emitting element outputting the inspection light with high brightness, the distribution of which is adjusted. A reflection portion collects the inspection light from the light emitting element to the detection region. A diaphragm portion transmits the collected light toward the detection region, while removing light diffused to regions other than the detection region a light shielding portion shields the light diffused to the regions other than the detection region. The light emitting element is provided with a light source outputting the inspection light with high brightness and a parabolic reflective mirror whose curved surface reflects light from the light source toward the detection region, the reflected light being in a doughnut shape in which the center is relatively dark and the periphery is bright.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: June 3, 2014
    Assignee: Fenwal Controls of Japan, Ltd.
    Inventors: Kanji Numao, Tadayuki Shibuya
  • Patent number: 8717184
    Abstract: A sensor device detects an object, in particular for optically detecting smoke particles. The sensor device contains a transmitting device for emitting transmit radiation, a receiving device for receiving receive radiation having scattering radiation that is generated by an at least partial scattering of the transmit radiation by the object, and for outputting a measurement signal indicative of the receive radiation, a signal modification device for modifying the measurement signal and for outputting a modified measurement signal, a level of the modified measurement signal increasing after the transmitting device has been switched on, and a calibration device for monitoring the modified measurement signal. The calibration device is embodied such that a reaching of a predefined signal level for the modified measurement signal can be detected and that a time interval between the switching on of the transmitting device and the reaching of the predefined signal level can be determined.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 6, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans Aebersold, Ke Wei Bi, Hu Lin Wang
  • Patent number: 8711358
    Abstract: A device that detects smoke, both indoor and outdoor; especially applicable in areas prone to sustained water flooding. It can be used in underground locations susceptible to water ingress so it can be submersed in up to 6 feet of water for up to 24 hours. Usable in applications that requires NEMA 6P or IP68 level of water protection.
    Type: Grant
    Filed: February 24, 2013
    Date of Patent: April 29, 2014
    Assignee: Temitayo Gboluaje
    Inventor: Temitayo Gboluaje
  • Patent number: 8705038
    Abstract: A particle detection unit including a detection chamber and a duct detector is disclosed. The duct detector is disposed within the detection chamber. The duct detector has a rod with a first and a second end where the first end is distal the second end. A reflector may be attached to the rod adjacent the first end. A sensor and emitter device may be attached to the rod and spaced apart from the reflector.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Tyco Fire & Security GmbH
    Inventors: Daniel G. Farley, Anthony J. Capowski
  • Patent number: 8695400
    Abstract: In order to improve a system for monitoring the working area atmosphere of an operating engine, measuring devices (2) for determining readings for a gas and/or an aerosol in the working area (4) of an operating engine are used as a starting point. Each measuring device comprises a suction means (8) which extracts a gas and/or a mixture of an aerosol from the working area (4) of the operating engine and feeds it to a sensor unit (16, 17, 18). An electronics module for operating the sensor unit (16, 17, 18) is also present. The suction means is designed as a convection pump (8) preferably with a heating device (42) and a cooling device (44).
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: April 15, 2014
    Inventor: Uwe Gnauert
  • Patent number: 8654335
    Abstract: Method and device for quantifying ingredients of a plume. In one embodiment, the method includes sweepingly directing a beam of light through the plume to a surface on which the beam of light is scattered, acquiring the scattered light scattered from the surface, and processing the acquired scattered light to determine an amount of ingredients of the plume. In one embodiment, the height of the back of the vehicle is measured as the top of the plume for calculating the total mass-per-distance of the plume. In another embodiment, by comparing the absorption spectrum of the plume and the background absorption spectrum of which no plume exists, the non-methane hydrocarbons (NMHC) of the plume emitted from a vehicle can be quantified.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 18, 2014
    Assignee: Hager Environmental and Atmospheric Technologies, LLC
    Inventors: J. Stewart Hager, Geoffrey Yerem
  • Patent number: 8649013
    Abstract: A probe for gas analysis is provided in a pipe through which sample gas flows. The probe includes a tubular member and one or more sample gas inflow portions. The tubular member is disposed to cross a flow of the sample gas, and includes a measurement field to which the sample gas is introduced. The one or more sample gas inflow portions are provided in the tubular member. The sample gas flows around, and flows into the measurement field through the one or more sample gas inflow portions.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 11, 2014
    Assignee: Horiba, Ltd
    Inventors: Shigeyuki Hokamura, Toshikazu Ohnishi, Takuya Ido
  • Patent number: 8638436
    Abstract: [Problem to be Solved] To provide a smoke sensing system, a smoke sensor and a receiver that can accurately determine the type of smoke.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: January 28, 2014
    Assignee: Hochiki Corporation
    Inventor: Manabu Dohi
  • Patent number: 8625099
    Abstract: A particle concentration measuring device includes: a measurement region formation part which has a wall (10) of substantially ring-form and through an inner opening of which gas relatively flows orthogonally; a light curtain forming unit (12A, 12B) forming a planar light curtain (FL) in the inner opening: a particle detecting unit (15) receiving scattered light from particles passing through the light curtain (FL) to detect the particles; and a calculating unit (22) calculating particle concentration based on the total number of the particles detected by the particle detecting unit (15) in a volume of an airflow passing through the light curtain (FL) in a unit time.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: January 7, 2014
    Assignee: Shin Nippon Air Technologies Co., Ltd.
    Inventors: Kazuhiko Sakamoto, Hiroshi Kawakita, Hiroyuki Okami, Yusuke Iso, Ryuta Okamoto
  • Patent number: 8559721
    Abstract: A method and apparatus for quantitative and qualitative imaging of fugitive emissions of gas, vapors, or fumes are described. The apparatus includes a filter mosaic for placement in registration over an imaging focal plane array (FPA). The filter mosaic includes at least two filter elements providing transmission response functions for transmitting wavelengths of light corresponding to an absorption wavelength (online wavelength) and a non-absorption wavelength (offline wavelength) of the targeted fugitive emission. Also described is an image processing method for transforming a filtered image into an image of the targeted fugitive emission.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 15, 2013
    Assignee: Exelis, Inc.
    Inventor: Jarett Levi Bartholomew
  • Patent number: 8534116
    Abstract: A system for measuring size segregated mass concentration of an aerosol. The system includes an electromagnetic radiation source with beam-shaping optics for generation of a beam of electromagnetic radiation, an inlet sample conditioner with adjustable cut-size that selects particles of a specific size range, and an inlet nozzle for passage of an aerosol flow stream. The aerosol flow stream contains particles intersecting the beam of electromagnetic radiation to define an interrogation volume, and scatters the electromagnetic radiation from the interrogation volume. The system also includes a detector for detection of the scattered electromagnetic radiation an integrated signal conditioner coupled to the detector and generating a photometric output, and a processor coupled with the conditioner for conversion of the photometric output and cut-size to a size segregated mass distribution.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 17, 2013
    Assignee: PNC Bank, National Association
    Inventors: Xiaoliang Wang, Jugal Agarwal, George J. Chancellor, James Evanstad, Anthony E Hase, Sreenath Avula, James E. Farnsworth, David A Lieder
  • Patent number: RE44976
    Abstract: Apparatus for obtaining the speed and acceleration of a motor vehicle in which the speed and acceleration are used in combination with exhaust emissions data obtained from the motor vehicle to analyze information about the pollutants being dispersed into the air by the motor vehicle. The apparatus includes a first radiation source producing a visible laser beam received by a first detector and a second radiation source producing a visible laser beam received by a second detector. The first and second radiation sources are arranged along the roadway with a known spacing and at a height so that the visible laser beams are interrupted by the front and rear wheels of the motor vehicle as it passes along the roadway. The detectors provide output pulses indicating whether the visible laser beams are interrupted and the time of the occurrence of each of the pulses is measured and recorded. An analyzer then calculates the speed and acceleration from the known spacing distance and the stored time measurements.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: July 1, 2014
    Assignee: Envirotest Systems Holdings Corp.
    Inventors: James H. Johnson, John DiDomenico