Having Polarization Patents (Class 356/491)
  • Patent number: 10924689
    Abstract: Scopes such as medical imaging camera head devices and methods are provided using light captured by an endoscope system or other medical scope or borescope. At least one polarizing optical element manipulates the polarization properties of image light. The manipulated image light is focused on an image sensor including polarizers for each pixel. Multiple images are produced based sets of pixels having the same orientation of polarizer. The resulting images are combined with high dynamic range techniques.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 16, 2021
    Assignee: KARL STORZ Imaging, Inc.
    Inventor: George E. Duckett, III
  • Patent number: 10921608
    Abstract: Speckle artifacts as viewed in images projected on a display surface by a projector can be reduced. At least one spatial light modulator, illuminated by one or more light sources, can be imaged to a screen by a projection lens. A deflector subsystem can be provided in image space, proximate to the lens, where the image light emerges. In this location, image light directed to any given field point on the display surface is convergent, but can appear collimated. The deflector subsystem can include a tilted optical plate that is rotated in a plane along an axis. As the deflector subsystem is temporally rotated, the image light to any given field point traverses different optical paths, varying the angular diversity to reduce perceivable speckle by changing at least the angle of incidence to the screen.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 16, 2021
    Assignee: IMAX Theatres International Limited
    Inventors: Joseph R. Bietry, Andrew F. Kurtz
  • Patent number: 10831029
    Abstract: A display system includes a first light source, a second light source, at least one movable mirror, and an attenuator. The first light source is configured to provide a first light in a first optical path. The second light source is configured to provide a second light in a second optical path. A portion of the second optical path overlaps the first optical path in an overlapping portion. The attenuator is positioned in at least the first optical path and configured to attenuate at least the first light. The movable mirror is movable to deflect the overlapping portion.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: November 10, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ruipeng Sun, Yarn Chee Poon, Chuan Pu, Richard Allen James, Joshua Owen Miller
  • Patent number: 10801967
    Abstract: A mask inspection apparatus according to the present disclosure includes: a field stop unit capable of switching between a field stop for an optical mask configured to emit an incident illumination light while maintaining the polarization state thereof and a field stop for an EUV mask configured to change the polarization state of a part of the incident illumination light and to cause an illumination light including an S-polarized light and a P-polarized light; a beam splitter unit capable of switching between a PBS for an optical mask and a non-polarized BS; an objective lens configured to collect an illumination light reflected in the beam splitter unit in a mask to be inspected and collect a reflected light obtained by reflecting an illumination light in the mask to be inspected; and a ?/4 plate that can be provided in an optical path of an illumination light and a reflected light.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: October 13, 2020
    Assignee: LASERTEC CORPORATION
    Inventors: Tetsuya Sendoda, Kiwamu Takehisa, Takayuki Ishida
  • Patent number: 10801944
    Abstract: The present invention relates to an improved method for marker-free detection of a cell type of at least one cell in a medium using microfluidics and digital holographic microscopy, as well as a device, particular for carrying out the method.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: October 13, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Noha Youssry El-Zehiry, Oliver Hayden, Ali Kamen, Lukas Richter, Manfred Stanzel, Matthias Ugele, Daniela Seidel, Gaby Marquardt, Oliver Schmidt
  • Patent number: 10739580
    Abstract: To provide an optical-scanning-height measuring device capable of efficiently measuring a shape of a desired portion of a measurement object. Designation of a measurement point on an image of a measurement object S is received. Light emitted from a light emitting section 231 is deflected by the deflecting section and irradiated on the measurement object S. The deflecting section is controlled to irradiate the light on a portion of the measurement object S corresponding to the measurement point. A deflecting direction of the deflecting section or an irradiation position of the light deflected by the deflecting section is detected. Height of the portion of the measurement object S corresponding to the measurement point is calculated on the basis of the deflecting direction of the deflecting section or the irradiation position of the light deflected by the deflecting section and the light reception signal output by the light receiving section.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: August 11, 2020
    Assignee: KEYENCE CORPORATION
    Inventors: Tatsuro Homma, Kimihiko Sugino, Hiroyuki Satoyoshi
  • Patent number: 10724846
    Abstract: A system is described, for use in optical measurement of a sample.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 28, 2020
    Assignee: CONTINUSE BIOMETRICS LTD.
    Inventors: Zeev Zalevsky, Javier Garcia, Nisim Nisan Ozana, Ran Califa, Moshe Arie Ariel Schwarz
  • Patent number: 10705010
    Abstract: A particle counter includes a detector that receives, using a light receiving element, interference light between scattered light and reference light, generates a detection signal corresponding to the interference light, and amplifies the detection signal using an amplifier; a counting unit that performs counting of the particle, based on the detection signal in a measurement period for measuring particle; and an optical path length variable unit that causes the optical path length of at least one of a first optical path and a second optical path to be changed at a predetermined rate, wherein the predetermined rate is set based on a flow velocity of the fluid so as to slow a change in a phase difference between the scattered light and the reference light and to make the frequency of the detection signal lower by changing the optical path length.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: July 7, 2020
    Assignee: RION Co., Ltd.
    Inventors: Tomonobu Matsuda, Masaki Shimmura, Mitsuaki Saitou, Yuki Yamakawa
  • Patent number: 10508993
    Abstract: A bio-chip package comprises a substrate a first layer over the substrate comprising an image sensor. The bio-chip package also comprises a second layer over the first layer. The second layer comprises a waveguide system a grating coupler. The bio-chip package also comprises a third layer arranged to accommodate a fluid between a first-third layer portion and a second-third layer portion, and to allow the fluid to pass from a first side of the third layer to a second side of the third layer. The third layer comprises a material having a predetermined transparency with respect to a wavelength of a received source light, the waveguide system is configured to direct the received source light to the grating coupler, and the image sensor is configured to determine a change in the wavelength of the source light caused by a coupling between the source light and the fluid.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo
  • Patent number: 10436813
    Abstract: A Surface Plasmon Scanning-Tunneling Chemical Mapping (SPSTM) system is disclosed that determines identification characteristics of a target material. An optical beam source launches an optical beam that propagates through a transparent optical element to a material layer to excite surface plasmons of the material layer. An optical probe with a nanometer-sized tip is positioned over a nanometer-sized region of the target material, which is positioned on the material layer, to measure a probe signal associated only with the surface plasmons that tunnel from the material layer through the nanometer-sized region of the target material and collected by the optical probe. An optical property analyzer is configured to determine at least one optical property associated with the nanometer-sized region based on the probe signal associated with the surface plasmons collected by the optical probe.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: October 8, 2019
    Assignee: Institute for Electronics and Information Technology in Tianjin Tsinghua University
    Inventors: Thomas L. Ferrell, Gong Gu, Vineet K. Khullar, Ali Passian
  • Patent number: 10393579
    Abstract: A miniature spectrometer includes an optical system, a polarization interferometer with a polarizer and a Savart element and an analyzer, a detection unit with a detector, and a data unit. The optical system of the miniature spectrometer is configured as a diffuser.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: August 27, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Ingo Herrmann, Martin Husnik, Eugen Baumgart, Christian Huber, Benedikt Stein
  • Patent number: 10386174
    Abstract: An interferometer includes a first interferometer arm and a second interferometer arm. A first central beam, originating from a central image point of an image, passes through the first interferometer arm. A second central beam, originating from the central image point, passes through the second interferometer arm. The first central beam and the second central beam are superimposed and generate a kperpendicular=0 interference at a superposition point. A first light beam perpendicular to the first central beam, originating from an image point of the image, passes through the first interferometer arm. A second light beam perpendicular to the second central beam, originating from the image point, passes through the second interferometer arm. The first light beam and the second light beam overlap at the superposition point. At the superposition point, a wave vector component of the first light beam opposes a wave vector component of the second light beam.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: August 20, 2019
    Inventor: Martin Berz
  • Patent number: 10386573
    Abstract: A substrate-type optical waveguide includes: a mode conversion section including a first input light guide path and a first output light guide path; and a polarization conversion and multiplexing section including a second input light guide path and a second output light guide path. The mode conversion section converts light input into the first input light guide path into either: a superposition of a first TE fundamental mode and a first TE higher mode; or a superposition of a first TM fundamental mode and a first TM higher mode. The polarization conversion and multiplexing section converts either: the superposition of the first TE fundamental mode and the first TE higher mode; or the superposition of the first TM fundamental mode and the first TM higher mode, into a superposition of a second TE fundamental mode and a second TM fundamental mode.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 20, 2019
    Assignee: FUJIKURA LTD.
    Inventor: Kazuhiro Goi
  • Patent number: 10376991
    Abstract: A pulse width controller for a thermal processing system is disclosed. Pulsed electromagnetic radiation is directed through a rotatable wave plate to a polarizing beam splitter, which reflects and transmits according to the phase angle of the wave plate. Radiation transmitted by the polarizing beam splitter is directed into an optical circuit that returns the radiation to the polarizing beam splitter after a transit time. A second rotatable wave plate is positioned in the optical circuit. The polarizing beam splitter reflects and transmits the returned radiation according to the phase angle of the second rotatable wave plate. A second pulse width controller may be nested in the optical circuit, and any number of pulse width controllers may be nested.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: August 13, 2019
    Assignee: Applied Materials, Inc.
    Inventor: Theodore P. Moffitt
  • Patent number: 10288522
    Abstract: The system and methods are made to apply interferometry to ophthalmic applications. The system makes use of a low-coherence interferometer to obtain a plurality of measurements of a contacts lens. The system and methods characterizes the surface profile of both surfaces of a contact lens, a thickness profiles, and combines these measurements with an index information to reconstruct a complete model of the contact lens.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: May 14, 2019
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: John E. Greivenkamp, Jr., James William Haywood, Kyle C. Heideman, Russell T. Spaulding, Gregory Allen Williby
  • Patent number: 10247539
    Abstract: The present invention is related with the two-channel point-diffraction interferometer for testing the optical systems or optical elements. The two-channel point-diffraction interferometer comprising a laser source inducing a linearly polarized laser beam which is divided by a beam splitter to a working channel and to a reference channel whereas the one half of light as working channel is directed from the first collimator to the working collimator by a first single-mode optical fiber to keep polarization of light unchanged, and another half of light as reference channel is directed from the second collimator to the reference collimator by a second single-mode optical fiber to keep polarization of light unchanged.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: April 2, 2019
    Assignee: DIFROTEC OÜ
    Inventors: Nikolay Voznesenskiy, Mariia Voznesenskaia, Tatiana Voznesenskaia
  • Patent number: 10206583
    Abstract: Surgical devices and methods for utilizing optical coherence tomography (OCT) to monitor and control tissue sealing are disclosed. The surgical device includes an end effector assembly that includes first and second jaw members that are movable between a first, spaced-apart position and a second proximate position. An OCT system, at least a portion of which is incorporated into the end effector assembly, is configured to sense properties of the tissue, e.g., the structural density of the tissue, disposed between the first and second jaw members. A tissue-sealing energy source may be disposed within at least one of the jaw members and may provide tissue-sealing energy to tissue disposed between the jaw members. A controller, which is coupled to the OCT system and the tissue-sealing energy source, controls the tissue-sealing energy generated by the tissue-sealing energy source based on the properties of the tissue sensed by the OCT system.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: February 19, 2019
    Assignee: COVIDIEN LP
    Inventor: William H. Nau, Jr.
  • Patent number: 10203508
    Abstract: A lighting device may include at least one light source arrangement for generating primary light; at least one light wavelength conversion element for converting primary light into secondary light; and a filter apparatus disposed optically downstream of the at least one light wavelength conversion element and serving for filtering out primary light. The at least one light source arrangement and the at least one light wavelength conversion element are embodied or correspondingly embodied light directing means are provided in such a way that part of the primary light generated by the at least one light source arrangement impinges on the at least one light wavelength conversion element and part of the primary light generated by the at least one light source arrangement is directed past the at least one light wavelength conversion element.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: February 12, 2019
    Assignee: OSRAM GmbH
    Inventors: Oliver Hering, Juergen Hager, Stephan Schwaiger
  • Patent number: 10205592
    Abstract: Aspects of the present disclosure describe methods and systems for improved secure key generation and distribution employing environmental instability induced signal phase fluctuations that are compatible with commercial wavelength division multiplexed (WDM) optical systems and associated optical amplifiers for long-haul transmission.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: February 12, 2019
    Assignee: NEC Corporation
    Inventors: Yue-Kai Huang, Fatih Yaman, Ben Wu
  • Patent number: 10197380
    Abstract: Systems and methods are described herein for a self-referencing interferometer. The interferometer can comprise an improved spatial phase shifter that reduces the number of components, size and complexity of the spatial phase shifter and maintains a common path for a combined reference beam and signal beam. The self-referencing interferometer further comprises a single mode fiber shunt for filtering the reference beam and further reducing the size of the interferometer. The angle of the reference beam can be tilted before being recombined with the single beam which further simplifies the spatial phase shifting component of the interferometer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: February 5, 2019
    Assignee: Leidos, Inc.
    Inventors: Troy Rhoadarmer, Eric Berg
  • Patent number: 10161875
    Abstract: A bio-chip package comprises a substrate a first layer over the substrate comprising an image sensor. The bio-chip package also comprises a second layer over the first layer. The second layer comprises a waveguide system a grating coupler. The bio-chip package also comprises a third layer arranged to accommodate a fluid between a first-third layer portion and a second-third layer portion, and to allow the fluid to pass from a first side of the third layer to a second side of the third layer. The third layer comprises a material having a predetermined transparency with respect to a wavelength of a received source light, the waveguide system is configured to direct the received source light to the grating coupler, and the image sensor is configured to determine a change in the wavelength of the source light caused by a coupling between the source light and the fluid.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo
  • Patent number: 10119903
    Abstract: An apparatus and method for determining optical properties of an object includes a tunable monochromatic light source and an optical system for illuminating at least one point of the object with light from the light source, and collecting light reflected from the object. A biaxial birefringent crystal intercepts a beam of light reflected from the object and propagates the beam along an optical axis of the crystal and transforms the beam of reflected light to a ring of light having a periphery, each point of which has a different polarization plane. A detector array detects respective points along the periphery of the ring and a processing unit is coupled to the detector and is responsive to signals thereby for determining optical properties of the object.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: November 6, 2018
    Assignee: ADOM, Advanced Optical Technologies Ltd.
    Inventors: Yoel Arieli, Yoel Cohen
  • Patent number: 10116409
    Abstract: A novel terrestrial wireless communications technique for terrestrial portable terminals including hand-held mobile devices and fixed wireless instruments, utilizing a spoke-and-hub communications system, having a plurality of individual hubs and/or base-stations all in communications with the portable terminals. The portable terminals and the hubs are assigned to use incompatible polarity formats in terms of circularly polarity (CP) and linearly polarity (LP). In forward links, a signal processed by the LP ground telecommunications hubs is radiated through multiple antennas with various LP polarities to an individual CP user simultaneously. The multiple paths are organized via assignments of a plurality of polarities, frequency slots, and directions by wavefront multiplexing/demultiplexing techniques such that the same communications assets including frequency spectrum may be re-used by other users. The same polarity diversity methods can be extended to peer-to-peer communications.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: October 30, 2018
    Assignee: SPATIAL DIGITAL SYSTEMS, INC.
    Inventor: Donald C. D. Chang
  • Patent number: 10094738
    Abstract: A method is described for determining angle errors when measuring slewing angles of a pivoted light-deflecting device, including the following steps: emitting a first light beam and a second light beam, which enclose a light beam angle, onto the light-deflecting device; receiving the first light beam and second light beam deflected by the light-deflecting device and reflected by an object; calculating a first propagation path of the first light beam and a second propagation path of the second light beam; pivoting the light-deflecting device from an initial position to a final position, respective slewing angles of the light-deflecting device being measured in the process and a dependency of the first propagation path on the measured slewing angles being determined; and calculating an angle error for a measured slewing angle to be corrected from the set of measured slewing angles by using the light beam angle, the second propagation path and the dependency of the first propagation path on the measured slewing
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 9, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Manuel Dietrich, Thorsten Balslink
  • Patent number: 10095017
    Abstract: A microscope, preferably a laser scanning microscope, with at least one illuminating beam, which in a partial area along the cross-section thereof, is phase-modulated with a modulation frequency. A microscope objective is provided for focusing the illumination beam onto a sample. The microscope further has a detection beam path and at least one demodulation means, wherein a pulsed illumination beam is present. In the illumination beam path upstream of the microscope objective, a first polarization beam splitter is provided, which generates at least first and second partial beam paths that have differing, preferably adjustable, optical paths. A combination element, such as a second pole splitter, for rejoining the partial beams is provided. In one partial beam path, a phase element is provided, which has at least two areas having differing phase interferences.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: October 9, 2018
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Tiemo Anhut, Thomas Kalkbrenner, Ralf Netz
  • Patent number: 10082662
    Abstract: An ultra-high-speed 3D refractive index tomography and structured illumination microscopy system using a wavefront shaper and a method using the same are provided. A method of using an ultra-high-speed 3D refractive index tomography and structured illumination microscopy system that utilizes a wavefront shaper includes adjusting an irradiation angle of a plane wave incident on a sample by using the wavefront shaper, measuring a 2D optical field, which passes through the sample, based on the irradiation angle of the plane wave, and obtaining a 3D refractive index image from information of the measured 2D optical field by using an optical diffraction tomography or a filtered back projection algorithm.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: September 25, 2018
    Assignees: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, TOMOCUBE, INC.
    Inventors: YongKeun Park, Seungwoo Shin, Gwang Sik Park
  • Patent number: 10054516
    Abstract: Systems, methods, and devices of the various embodiments enable mitigation of the effects of birefringence in Optical Frequency Domain Reflectometer (OFDR) sensing fiber. Various embodiments enable the measurement of the polarization state of the light in a sensing fiber throughout the entire sensing cable in a highly distributed manner typical of OFDR systems. Various embodiments enable the production of a distributed fiber birefringence measurement throughout the length of an OFDR sensing fiber. Various embodiments may enable OFDR to be 100% polarization diverse, meaning that polarization effects in the fiber optic cables and sensing fiber do not negatively effect measurements. Additionally, the highly distributed measurement of the polarization state and related birefringence in a sensing fiber of the various embodiments may enable new types of measurements such as pressure, twisting, and bending along the sensing fiber.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: August 21, 2018
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADIMINSTRATOR OF NASA
    Inventors: Jason P. Moore, Matthew D. Rogge
  • Patent number: 10042264
    Abstract: A measurement system (10) for determining a polarization parameter of an optical system (50) has an illumination system (12) providing an optical radiation (14), a measurement mask (22) arranged between the illumination system and the optical system and including measurement structures (24) arranged at a plurality of field points (26) of the measurement mask, a polarization variation device (28) arranged in a beam path of the optical radiation and configured to vary a polarization state of the optical radiation in a field-point-dependent manner, such that at the same point in time one of the field points is irradiated with the optical radiation (14-1) in a first polarization state and another of the field points is irradiated with the optical radiation (14-2) in a second polarization state, and a detection module (32), which is configured to detect the optical radiation after it has interacted with the optical system.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: August 7, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Andreas Wirsing
  • Patent number: 10033149
    Abstract: An opto-electronic device (100) for processing optical and electric pulses includes a photoconductor device (10) with a sensor section (11) which is made of a band gap material and which has electrical sensor contacts (12, 13), and a signal processing device (20) which is connected with the sensor contacts (12, 13), wherein the photoconductor device (10) is adapted to create a photocurrent between the sensor contacts (12, 13) in response to an irradiation with ultra-short driving laser pulses (1) having a photon energy smaller than the energy band gap of the band gap material, having a non-zero electric field component (3) oriented parallel with a line (4) between the electrical sensor contacts (12, 13), and causing a charge carrier displacement in the band gap material, and wherein the signal processing device (20) is configured for an output of an electric signal being characteristic for at least one of carrier-envelope phase (CE phase), intensity, temporal properties, spectral intensity and spectral phase
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 24, 2018
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Agustin Schiffrin, Ralph Ernstorfer, Ferenc Krausz, Tim Paasch-Colberg
  • Patent number: 10027398
    Abstract: Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: July 17, 2018
    Assignee: AT&T INTELLECTUAL PROPERTY I, LP
    Inventors: Robert Bennett, Paul Shala Henry, Irwin Gerszberg, Farhad Barzegar, Donald J Barnickel, Thomas M. Willis, III
  • Patent number: 9972959
    Abstract: A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 15, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, J. Joseph Armstrong, Justin Dianhuan Liou, Vladimir Dribinski, David L. Brown
  • Patent number: 9906737
    Abstract: The present invention discloses a co-aperture multi-field of view (FOV) image-spectrum cooperative detection system, and the system includes an infrared optical window, a large FOV two-dimensional scanning mirror, a co-aperture multi-FOV main optical system, a large FOV scanning detector, a staring infrared detector, an infrared non-imaging broadband spectrum measuring unit, a data processing unit, a control unit, and a servo system. Correspondingly, the present invention further provides a method based on the system. The present invention searches a target area by using large FOV scanning, and identifies a target by using medium FOV staring infrared detection, and small FOV fine detection is finally performed on the area to identify the target in combination with spectrum data analysis.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 27, 2018
    Assignees: Nanjing Huatu Information Technology Co., Ltd.
    Inventor: Tianxu Zhang
  • Patent number: 9885878
    Abstract: A system and method for obtaining super-resolution image of an object. An illumination beam is directed through an optical axis onto the object to be imaged. Paraxial rays of the illumination beam are deflected away from the optical axis and into a beam dump. The non-paraxial rays are collected after being reflected by the object so as to generate an image only from the non-paraxial rays.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: February 6, 2018
    Assignee: FEI EFA, Inc.
    Inventor: Keith Serrels
  • Patent number: 9863752
    Abstract: A metrology method includes obtaining a pattern reflection light reflected from an object by irradiating a first divided light, which is generated by reflecting a polarized light, to the object; obtaining a phase-controlled mirror reflection light reflected from a reflector by irradiating a second divided light, which is generated by transmitting the polarized light, to the reflector; and obtaining a pattern of the object based on an interference signal between the pattern reflection light and the mirror reflection light.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 9, 2018
    Assignee: SK Hynix Inc.
    Inventors: Yoon Shik Kang, Seong Min Ma, Joon Seong Hahn
  • Patent number: 9857309
    Abstract: A bio-chip package comprises a substrate a first layer over the substrate comprising an image sensor. The bio-chip package also comprises a second layer over the first layer. The second layer comprises a waveguide system a grating coupler. The bio-chip package also comprises a third layer arranged to accommodate a fluid between a first-third layer portion and a second-third layer portion, and to allow the fluid to pass from a first side of the third layer to a second side of the third layer. The third layer comprises a material having a predetermined transparency with respect to a wavelength of a received source light, the waveguide system is configured to direct the received source light to the grating coupler, and the image sensor is configured to determine a change in the wavelength of the source light caused by a coupling between the source light and the fluid.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: January 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo
  • Patent number: 9851353
    Abstract: This invention relates to a system and methods including their manufacturing technologies for enhanced sensing capability of one or more bioagents covering from HIV, Pathogens, virus, to cells detection. More particularly, this invention is related to HIV and pathogen diagnosis system and methods which may increase its sensitivity and may reduce the diagnosis time. Furthermore, the diagnosis system and method may be applicable to all early stage patients with various age groups, where early and accuracy in diagnosis, are required.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 26, 2017
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Dutta
  • Patent number: 9819420
    Abstract: A system comprises: a polarization state aligner (PSA) comprising: an input port; a first polarization beam splitter (PBS) coupled to the input port; a first phase shifter (PS) coupled to the first PBS; a first polarization rotator (PR) coupled to the first PBS; a first beam splitter (BS) coupled to the first PS and the first PR; a first output port coupled to the first BS; and a second output port coupled to the first BS.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: November 14, 2017
    Assignee: Futurewei Technolgies, Inc.
    Inventors: Yangjing Wen, Fei Zhu, Yu Sheng Bai
  • Patent number: 9741163
    Abstract: A system and method for more accurately generating the surface normal calibration maps ?(AoLP) and ?(DoLP,?) to compensate for structured scene reflections for 3-D polarimetric imaging. This is accomplished using a microfacet scattering model to develop the functional form of a polarized bidirectional reflectance distribution function (BRDF) of the object surface. The ambient radiance is ray traced to the BRDF to create the calibration maps ?(AoLP) and ?(DoLP,?), which may be combined into a single calibration map ?(DoLP, AoLP). These maps are applied to the AoLP and DoLP images to compute an array of surface normals, which are then mapped to form a 3-D image of the object.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: August 22, 2017
    Assignee: Raytheon Company
    Inventor: Eric C. Fest
  • Patent number: 9715096
    Abstract: A microscope apparatus includes a light source configured to emit a coherent illuminating light, an optical system configured to irradiate a specimen with the illumination light, and a detector configured to form an image based on a light generated from the specimen by the illumination light that irradiates the specimen. The optical system is configured to project a plurality of focal points of the illumination light on the specimen, and allow the plurality of focal points to interfere with each other while changing phases of the plurality of focal points.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: July 25, 2017
    Assignee: YOKOGAWA ELECTRIC CORPORATION
    Inventor: Hiroyuki Sangu
  • Patent number: 9702829
    Abstract: Interferometer systems and methods for providing improved defect detection and quantification are disclosed. The systems and methods in accordance with the present disclosure may detect surface defects on patterned or bare wafer surfaces and subsequently quantify them. In certain embodiments in accordance with the present disclosure, amplitude maps of the wafer surfaces are obtained and are utilized in addition/alternative to phase maps for wafer surface feature detection. Furthermore, local one-dimensional and/or two-dimensional unwrapping techniques are also disclosed and are utilized in certain embodiments in accordance with the present disclosure to provide height and depth information of the detected defects, further improving the detection capabilities of the measurement systems.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: July 11, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Haiguang Chen, Jaydeep Sinha, Sergey Kamensky, Enrique Chavez, Shouhong Tang, Mark Plemmons
  • Patent number: 9584098
    Abstract: A sample clock generator includes a first optical path and a second optical path through which input lights are guided, an optical phase shifter to shift a phase of the input light guided through the first optical path, an interference-light generating unit to combine a phase-shifted input light and the input light guided through the second optical path to thereby generate an interference light for sample clock, a splitting unit to split the interference light for sample clock into two split lights having different phases, one light receiving unit to at least receive one split light from among the two split lights having different phases, the other light receiving unit to at least receive the other split light, a signal generating unit to generate a sample clock signal based on signals outputted from the one light receiving unit and the other light receiving unit.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 28, 2017
    Assignee: TOMEY CORPORATION
    Inventors: Masahiro Yamanari, Keiichiro Okamoto
  • Patent number: 9513105
    Abstract: Systems and methods are described herein for a self-referencing interferometer. The interferometer can comprise an improved spatial phase shifter that reduces the number of components, size and complexity of the spatial phase shifter and maintains a common path for a combined reference beam and signal beam. The self-referencing interferometer further comprises a single mode fiber shunt for filtering the reference beam and further reducing the size of the interferometer. The angle of the reference beam can be tilted before being recombined with the single beam which further simplifies the spatial phase shifting component of the interferometer.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: December 6, 2016
    Assignee: Leidos, Inc.
    Inventors: Troy Rhoadarmer, Eric Berg
  • Patent number: 9442014
    Abstract: A Fourier transform spectrometer (Da) of the invention extracts, in generating an integrated interferogram obtained by integrating a plurality of interferograms, an output of an interferometer (11a) within a predetermined range according to positioning information of a center burst in an interferogram measured at a time before measurement of an interferogram at the present time.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: September 13, 2016
    Assignee: KONICA MINOLTA, INC.
    Inventors: Yoshiroh Nagai, Toshio Kawano
  • Patent number: 9417050
    Abstract: A laser interferometer and a method for operating a laser interferometer perform a differential position measurement by laser interferometry of two elements while offering a rotational degree of freedom to one of the elements using a reflecting sphere as a mirror for the laser beam. The laser interferometer and method do not require the object to be aligned with the rotation axis, but instead can track the object in off-centered geometries. This is achieved by employing the pointing of the reflected beam from the sphere as a feedback signal to realign the interferometer which then has a constant beam pointing to the center of the sphere in all cases. The laser interferometer and method keep the direction of the measurement constant. The laser interferometer and method are suitable for homodyne and heterodyne types of laser interferometer technology.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 16, 2016
    Assignee: PAUL SCHERRER INSTITUT
    Inventors: Mirko Holler, Jörg Raabe
  • Patent number: 9407467
    Abstract: As system and method to transmit information with intensity interferometry includes a digital switch configured to receive a baseline message, and, for each of a plurality of bits of a received interferometric message, set the digital switch to an output position depending upon the bit value of the interferometric message. A first and second pair of transmitters separated by a first and second defined distance, wherein the defined distances are different, are configured to broadcast each of the plurality of bits of the baseline message depending upon the output position of the digital switch. One or more pairs of receivers are configured to receive the broadcast of the plurality of bits of the baseline message. An interferometric message recovery module is configured to recover the bits of the received interferometric message after receiving the broadcast of the baseline message at the one or more pairs of receivers.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: August 2, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Pedro N. Safier, Ira S. Moskowitz, Gerard Allwein
  • Patent number: 9389063
    Abstract: An interferometer module for quantum processing is described including a substrate having two or more input ports and two or more output ports; multiple photonic pathways embedded in the substrate for conveying photons from the two or more input ports and the two or more output ports; and one or more partial beam splitters embedded in the substrate in a photonic pathway for generating spatial and polarization entanglement.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: July 12, 2016
    Assignee: The Trustees Of Columbia University In The City Of New York
    Inventors: Chee Wei Wong, Franco N. C. Wong, Dirk R. Englund
  • Patent number: 9379834
    Abstract: A time space coherence interferometer (TSCI) system is provided. In one embodiment of the present invention the TSCI system includes an interferometer in communication with an RF source and a receiver. The interferometer includes a first switch, a second switch, a transmit element, a receive element and a sequencer circuit, wherein the sequencer circuit is configured to alternate the first and second switches between first and second configurations. In a first configuration, the signal from the RF source is provided to the transmit element, where it is communicated to the receive element via a signal path, and provided to the receiver. In the second configuration, the signal from the RF source is provided to the receiver via a reference path. The switching sequence results in a complex ratio of the signal path signal to the reference path signal (e.g., an S21 transmission ratio) being provided to the receiver.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 28, 2016
    Assignee: NEARFIELD SYSTEMS INCORPORATED
    Inventor: Dan Slater
  • Patent number: 9354434
    Abstract: Provided is an optical apparatus characterized in that alight from a light source is split to a first light and a second light, and the first light is focused onto an observation object, that an optical filter having a light shielding region for high resolution is disposed in at least one optical path selected from optical paths of the first light, second light and response light from the observation object, that an interference light formed by causing interference between the response light and the reference light in polarized states different from each other is split to multiple beams, and desired amplitude information signals are obtained from the multiple beams through a phase plate and a polarization plate to increase intensity of the second light, whereby the signal to noise ratio is improved.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: May 31, 2016
    Assignee: HITACHI, LTD.
    Inventor: Shigeharu Kimura
  • Patent number: 9291505
    Abstract: A system and method to obtain and process interferometer output scans is described. The interferometer-based sensor system includes a tunable laser to transmit a transmit signal and a polarization scrambler to produce a polarization state change on the transmit signal. The system also includes an interferometer to provide an output scan based on the transmit signal with the polarization state change and a processor to process the output scan.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 22, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Brooks A. Childers, Roger Glen Duncan, Ajit Balagopal, Dan R. Provenzano
  • Patent number: 9285273
    Abstract: An optical fiber environmental detection system comprising an interferometer, a broadband light source and a detector is disclosed. The interferometer further comprises a thin core fiber, a first single mode fiber and a second single mode fiber; wherein the thin core fiber is coupled to the first and second single mode fiber via a first junction and a second junction respectively. When an emission light reaches the first junction, high-order cladding modes will be excited. The excited cladding modes will interfere with the core mode at the second junction. The interferences determine the intensity maximum or minimum of the received signal. When there is an ambient environmental change, a shift of the received signal would be induced. According to the shift, environmental change, for instance ambient temperature, could be determined.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: March 15, 2016
    Assignee: Macau University of Science and Technology
    Inventors: Jianqing Li, Ben Xu