Position Or Displacement Patents (Class 356/614)
  • Patent number: 10765480
    Abstract: A fiducial marker to be tracked by a surgical navigation system. The fiducial marker is to be affixed to an object during a surgical procedure. The fiducial marker including a casing for attachment to the object; a light emitting component attached to the casing; a power source within the casing; a signal receiver to receive a signal from the surgical navigation system; and control logic to control the light emitting component in response to the signal from the surgical navigation system. The object to-be-tracked may include a plurality of the fiducial markers arranged in geometric pattern, and the markers may include a first active fiducial marker having a first light emitting component that emits light having a first spectral bandwidth, and a second active fiducial marker having a second light emitting component that emits light having a second spectral bandwidth different from the first spectral bandwidth.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 8, 2020
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Kirusha Srimohanarajah, Gal Sela, Kelly Noel Dyer
  • Patent number: 10761015
    Abstract: A handheld hemoglobin detecting device has a housing assembly including a holding base, a tubular housing and a liquid holder, a control module disposed on the housing assembly, and a lighting assembly mounted in the tubular housing and including a light emitting module, a light concentrator, and a light guide. At least one light beam emitted from the light emitting module passes through and is concentrated by the light concentrator to shine on the liquid holder, is reflected by a light reflector that is disposed in the liquid holder, enters the light guide, and is transmitted to a light sensor. The handheld hemoglobin detecting device has a simplified structure and is easy to assemble, and thus is light and has low manufacturing cost. Moreover, a lower accuracy in assembling the lighting assembly can be tolerated.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: September 1, 2020
    Assignee: Taiwan RedEye Biomedical Inc.
    Inventors: Shuo-Ting Yan, Tsung-Jui Lin, L-Hua Wang
  • Patent number: 10761036
    Abstract: Determining parameters of a patterned structure located on top of an underneath layered structure, where input data is provided which includes first measured data PMD being a function ƒ of spectral intensity I? and phase ?, PMD=ƒ(I?; ?), corresponding to a complex spectral response of the underneath layered structure, and second measured data Smeas indicative of specular reflection spectral response of a sample formed by the patterned structure and the underneath layered structure, and where a general function F is also provided describing a relation between a theoretical optical response Stheor of the sample and a modeled optical response Smodel of the patterned structure and the complex spectral response PMD of the underneath layered structure, such that Stheor=F(Smodel; PMD), where the general function is then utilized for comparing the second measured data Smeas and the theoretical optical response Stheor, and determining parameter(s) of interest of the top structure.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: September 1, 2020
    Assignee: NOVA MEASURING INSTRUMENTS LTD.
    Inventors: Boris Levant, Yanir Hainick, Vladimir Machavariani, Roy Koret, Gilad Barak
  • Patent number: 10746529
    Abstract: To suppress an erroneous measurement of a measuring object in an optical displacement meter of a light sectioning method. The optical displacement meter includes an image sensor, a cover glass arranged obliquely relative to a light receiving surface of the image sensor, and a housing which houses the image sensor and the cover glass.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: August 18, 2020
    Assignee: Keyence Corporation
    Inventor: Yutaka Miyagawa
  • Patent number: 10742956
    Abstract: A system for determining positional information of a camera, includes: a plane determination module configured to determine a first plane and a second plane based on a depth image; a plane-association module configured to associate the first plane determined by the plane determination module with a first tool-plane, and to associate the second plane determined by the plane determination module with a second tool-plane, the first and second tool-planes having known positional relationship with respect to each other; and a positional determination unit configured to determine the positional information of the camera based on an output from the plane-association module.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 11, 2020
    Assignee: Varian Medical Systems, Inc.
    Inventors: Hassan Mostafavi, Andrew G. Jeung, Alexander Sloutsky, David H. Humber
  • Patent number: 10725292
    Abstract: A gaze-tracking system for use in a head-mounted display apparatus and an aperture device. The gaze-tracking system includes a first light source and a second light source operable to emit light of first and second type respectively; an image sensor operable to capture an image of the user's eye and reflections of the light of first type from the user's eye; a primary lens; an aperture device positioned between the image sensor and the primary lens, and a processor configured to control the first and second light sources and image sensor, and to process the captured image to detect a gaze direction of the user. The aperture device provides a first aperture to the light of first type and a second aperture to the light of second type, the first aperture and the second aperture being substantially concentric, the first aperture being smaller than the second aperture.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: July 28, 2020
    Assignee: Varjo Technologies Oy
    Inventor: Mikko Ollila
  • Patent number: 10718709
    Abstract: A device for measuring radiation backscattered by a sample including: at least one light source that is configured to emit a light beam, along an axis of incidence, towards a surface of the sample so as to form, on said surface, an elementary illumination zone; an image sensor for forming an image of the radiation backscattered by the sample when the latter is illuminated by the light source, the image sensor lying in a detection plane; a bundle of optical fibres, extending, along an extension axis, between a proximal surface and a distal surface, the proximal surface being applied against the image sensor, the distal surface being configured to be applied against the surface of the sample; wherein the light source is arranged around the bundle of optical fibres, and wherein the distance between the light source and the bundle of optical fibres is less than 1 mm.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 21, 2020
    Assignee: Commissariat a I'energie atomique et aux energies alternatives
    Inventors: Nils Petitdidier, Selimen Benahmed, Anne Koenig
  • Patent number: 10666388
    Abstract: An encoder signal processing device includes a position data acquisition unit, an error data calculation unit that calculates error data in a predetermined number of position data in one cycle, and a compensation unit that compensates the position data based on the calculated error data, in which the error data calculation unit calculates first error data in the predetermined number of position data sampled at first predetermined time intervals ?Tn in one cycle, defines the first error data as the error data, calculates second error data in position data sampled at second predetermined time intervals ?Tk in each of the first predetermined time intervals ?Tn, and changes a time interval of the error data without increasing or decreasing the predetermined number of error data by replacing second error data closest to a local extremum or inflexion point in error characteristics of the first and second error data with the first error data.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: May 26, 2020
    Assignee: FANUC CORPORATION
    Inventor: Shinichirou Hayashi
  • Patent number: 10649547
    Abstract: An image projection system includes a projector and a light pen. The projector includes: an image pickup unit which performs image pickup in a periodically repeated image pickup period and does not perform image pickup in a non-image pickup period; a detection unit which detects a pointed position of the light pen; and an infrared signal receiving unit which receives pointing element information transmitted from the light pen. The light pen includes: a light emitting unit; a control unit; and a storage unit which stores the pointing element information. The light pen performs first light emission in the image pickup period and second light emission corresponding to the pointing element information in the non-image pickup period. The projector detects the pointed position, based on an image of the first light emission picked up by the image pickup unit and receives the pointing element information transmitted via the second light emission.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: May 12, 2020
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Yukihiro Karasawa
  • Patent number: 10641894
    Abstract: A sensor (10) is provided for detecting an object (20) in a monitored zone (18), having at least one sensor element (36) for detecting a sensor signal; having a switch output (30) for outputting a binary object determination signal; and having an evaluation unit (28) that is configured to generate the object determination signal from the sensor signal in dependence on the detected object (20) and to determine, in a teaching phase, a switching point that determines the association between the sensor signal and the object determination signal. The evaluation unit (28) is further configured to detect a respective sensor signal for a plurality of detection situations in the teaching phase, with the associated object determination signal being predefined for the respective detection situation and with the switching point being derived therefrom.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: May 5, 2020
    Assignee: SICK AG
    Inventor: Kai Waslowski
  • Patent number: 10636936
    Abstract: A micro-electro-mechanical systems (MEMS) array system is configured to apply suction forces for the manipulation of objects. The MEMS system includes includes a two-dimensional MEMS array of a plurality of individual MEMS elements. Each MEMS element comprises: a casing structure; a flexible membrane attached to the casing structure; and an electrode structure, wherein a voltage applied to the electrode structure actuates the MEMS element to cause the flexible membrane to flex relative to the casing structure. The flexible membrane and the casing structure define a gap into which the flexible membrane may flex, and a foot extends from the flexible membrane in a direction away from the casing structure, wherein the foot and the flexible membrane define a clearance region on an opposite side of the flexible membrane from the gap. When the MEMS element interacts with an object to be manipulated the foot spaces the membrane apart from the object.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: April 28, 2020
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hywel Hopkin, Nathan James Smith, Andrew Kay
  • Patent number: 10605898
    Abstract: A 3D measuring device is provided. The device includes a measuring head with a light transmitter and a light receiver. A control and evaluation device is coupled to the light transmitter and light receiver and determines the distance to the object. An accessory interface allows an accessory device to be mechanically connected to the measuring head and can be electrically connected to the control and evaluation device. The accessory interface includes a receiving section and a contact section. The receiving and contact sections are arranged such that the accessory device can be inserted into the accessory interface in an insertion direction in order to electrically and mechanically couple the accessory device to the accessory interface. A support structure having an integral slot is coupled to the measuring head. The slot has the receiving section for the mechanical connection and the at least one contact section.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: March 31, 2020
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Andreas Ditte, Matthias Gramenz, Andreas Woloschyn, Selim Hauschild
  • Patent number: 10596964
    Abstract: A distance measurement device includes a projection optical system, a light-receiving system to receive light projected from projection optical system and reflected by an object; and a correction system to correct a difference in timing of light emission between the plurality of light sources. The projection optical system includes a plurality of light sources and a plurality of drive circuits to drive the plurality of light sources.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: March 24, 2020
    Assignee: RICOH COMPANY, LTD.
    Inventors: Yasuhiro Nihei, Koji Masuda, Takeshi Ogawa, Hiroaki Tanaka, Shu Takahashi, Masahiro Itoh, Yoichi Ichikawa
  • Patent number: 10591276
    Abstract: An articulated arm coordinate measuring machine includes a laser line probe. The laser line probe includes a camera that can acquire metrology data and color data. A laser line probe is coupled to a probe end of an articulated arm. The laser line probe having a projector and a camera, the projector being operable to project a line of light at one or more predetermined wavelengths, the camera having a lens assembly optically coupled to a sensor assembly. The sensor assembly has a photosensitive array and a filter disposed between the photosensitive array and the lens assembly. The filter includes a plurality of red, green and blue pixels in a predetermined arrangement. A controller is coupled to the laser line probe and causes the camera to acquire a metrology image and a color image. The controller assigns a color to the three-dimensional coordinate points based on the color image.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: March 17, 2020
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Jacint R. Barba, Christopher Michael Wilson, Nitesh Dhasmana, Michael Shen, Jeremy W. Mares, Keith G. MacFarlane, Randy R. Fields, Paul C. Atwell, Kishore Lankalapalli, Yazid Tohme
  • Patent number: 10585357
    Abstract: A target structure, wherein the target structure is configured to be measured with a metrology tool that has a diffraction threshold; the target structure including: one or more patterns supported on a substrate, the one or more patterns being periodic with a first period in a first direction and periodic with a second period in a second direction, wherein the first direction and second direction are different and parallel to the substrate, and the first period is equal to or greater than the diffraction threshold and the second period is less than the diffraction threshold.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 10, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Youping Zhang, Hua Xu
  • Patent number: 10587152
    Abstract: A wireless laser power transfer system includes, in part, a transmitter and a receiver that form a wireless link. The transmitter, includes, in part, a first communication system, at least a first source of laser beam, and a controller adapted to vary power and direction of the laser beam and further to modulate the laser beam. The receiver includes, in part, a communication system adapted to establish a wireless link with the first communication system, at least a first photo-voltaic cell, and a controller adapted to demodulate and detect the power of the modulated laser beam received by the first photo-voltaic cell from the first source of laser beam. The system optionally includes at least a second source of laser beam controlled by the transmitter controller. The system optionally further includes a second photo-voltaic cell. The transmitter controller is further adapted to cause the second laser beam to strike the second photo-voltaic cell.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: March 10, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Behrooz Abiri, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Patent number: 10557796
    Abstract: A method and an associated device for determining the transmittance of a flat-glass substrate with a measuring device, with which light of at least one light source is guided from one side of the flat-glass substrate through the flat-glass substrate to the opposite side of the flat-glass substrate, where it is captured by at least one receiving unit and the transmittance of the flat-glass substrate is determined by means of a comparison between the intensity of the light emitted by the light source and the light incident upon the receiving unit. The light source is a surface-like diffuse light source, and the receiving unit comprises at least one spatially resolving receiver. By evaluating brightness values in the measuring image of the spatially resolving receiver, the transmittance is determined in a spatially resolved manner in a partial surface of the flat-glass substrate, which is covered by the measuring image.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: February 11, 2020
    Assignee: Cibite AG
    Inventors: Dieter Olschewski, Ina Döhring, Peter Lüke
  • Patent number: 10554886
    Abstract: Described herein are devices and techniques for managing power consumption of a position tracking device. The position tracking device may be a virtual reality (VR) controller having multiple optical sensors oriented to receive optical signals from different directions. A stationary optical emitter projects a laser line into a space and repeatedly scans the laser line through the space. For any given scan, some of the sensors may detect the laser line and some of the sensors may not detect the laser line because they are oriented away from the emitter or because of a blocking object. When an individual sensor fails to detect a laser scan, that sensor is disabled for one or more subsequent laser scans in order to reduce power consumption of the VR controller.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: February 4, 2020
    Assignee: Valve Corporation
    Inventor: Rob Rydberg
  • Patent number: 10549691
    Abstract: A distance measurement device includes a projection optical system, a light-receiving system to receive light projected from projection optical system and reflected by an object; and a correction system to correct a difference in timing of light emission between the plurality of light sources. The projection optical system includes a plurality of light sources and a plurality of drive circuits to drive the plurality of light sources.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: February 4, 2020
    Assignee: RICOH COMPANY, LTD.
    Inventors: Yasuhiro Nihei, Koji Masuda, Takeshi Ogawa, Hiroaki Tanaka, Shu Takahashi, Masahiro Itoh, Yoichi Ichikawa
  • Patent number: 10535148
    Abstract: A method for registering two or more three-dimensional (3D) point clouds. The method includes, with a surveying instrument, obtaining a first 3D point cloud of a first setting at a first position, initiating a first Simultaneous Localisation and Mapping (SLAM) process by capturing first initial image data at the first position with a camera unit comprised by the surveying instrument, wherein the first initial image data and the first 3D point cloud share a first overlap, finalising the first SLAM process at the second position by capturing first final image data with the camera unit, wherein the first final image data are comprised by the first image data, with the surveying instrument, obtaining a second 3D point cloud of a second setting at the second position, and based on the first SLAM process, registering the first 3D point cloud and the second 3D point cloud relative to each other.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: January 14, 2020
    Assignee: HEXAGON TECHNOLOGY CENTER GMBH
    Inventors: Bernhard Metzler, Alexander Velizhev, Stefan Martin Benjamin Gächter Toya
  • Patent number: 10520300
    Abstract: An optical liquid height determination system of the present embodiments includes light sensors capturing different amounts of light, based on level of liquid in the tank that blocks or limits light to particular sensors. The tank is enclosed in a container with a light source and the light sensors are installed on walls of the container. Light emitted by the light source is transmitted to the light sensors by passing through the liquid product, scattered, diffused, diffracted or reflected by the dairy product, through the tank walls which may be transparent or translucent, or from other surfaces in the container within which the tank is enclosed by. The set of electrical signals received from all the light sensors are compared against sets of calibrated signals corresponding to known liquid levels in the tank. The known height corresponding to the nearest set of calibrated signals is determined as the measured liquid height in the tank.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 31, 2019
    Assignee: A.C. Dispensing Equipment Inc.
    Inventors: Ian MacLean, Daniel Cantin, Anthony Alkins, Derek Cole, P. Gregory Erman, Michael Rankin, Brian Gay, Kenneth MacGillivary
  • Patent number: 10502555
    Abstract: A laser processing system having a measurement function. The laser processing system includes a processing head configured to irradiate an object with a laser beam in a scanning manner via an optical system for processing; an illumination-light emitting section provided in the processing head, and configured to cause illumination light to be emitted from the processing head toward the object along an optical axis of the optical system for processing; a light receiving section located in a predetermined positional relationship with the illumination-light emitting section, and configured to receive a reflection of the illumination light reflected at an irradiated point on the object; and a measurement section configured to process the reflection received by the light receiving section and obtain three-dimensional measurement data of the irradiated point.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: December 10, 2019
    Assignee: FANUC CORPORATION
    Inventors: Minoru Nakamura, Yoshinori Murakami, Yuuki Takahashi
  • Patent number: 10502701
    Abstract: An additive manufacturing system includes a cabinet, an electron beam system, at least one imaging device, and a computing device. The cabinet is configured to enclose a component and defines a pinhole extending therethrough. The electron beam system is configured to generate an electron beam directed toward the component. Interactions between the component and the electron beam generate x-ray radiation. The at least one imaging device is configured to detect the x-ray radiation through the pinhole. The computing device is configured to image the component based on the x-ray radiation detected by the at least one imaging device.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: December 10, 2019
    Assignee: General Electric Company
    Inventors: Vladimir Anatolievich Lobastov, Adrian Ivan, David Charles Bogdan, Jr.
  • Patent number: 10496226
    Abstract: Provided is an optical sensing member, comprising a light guide plate 102 which propagates light from a light source unit 108, detecting units 104, 106 which detect scattered light from the light guide plate 102 being touched, an optical member which guides the scattered light to the detecting units, and a primary control unit 118 which computes the touch location upon the light guide plate 102 on the basis of information relating to the detected light. The optical member has arc-shaped curved surfaces formed on the end parts which face each of the detecting units. Each of the detecting units outputs, as the information relating to the light which is detected by the detecting units, location information corresponding to the angle of entry to the detecting units of the light which is radiated from the facing arc-shaped curved surfaces. It is thus possible to clarify contours of the light which is detected by the detecting units, and to improve the precision of the detection of the touch location.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 3, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koichi Sugiyama, Nobuyuki Yoshioka
  • Patent number: 10452152
    Abstract: A wearable glasses is provided. The wearable glasses includes a sensing circuit, a communication interface, a display, and a controller. The sensing circuit senses movement information of a user wearing the wearable glasses. The communication interface receives notification message information. The display displays the notification message information within an angle of view of the user wearing the wearable glasses. The controller determines a movement state of the user based on the sensed movement information of the user and controls the display to display the received notification message information according to the movement state of the user.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: October 22, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ga-hyun Joo
  • Patent number: 10436898
    Abstract: An object recognition device includes a camera (113) and a radar (114), detects an estimated plane region estimated to be a plane from an image from the camera (113) (S202), and calculates a plane equation for the estimated plane region (S207). The object recognition device interpolates and estimates distance data within the estimated plane region based on the plane equation and the measured distance data from the radar (S210) and obtains the distance to an object by using the distance data. Accordingly, it is possible to obtain dense distance data throughout the estimated plane region and to detect the distance to small objects and distant objects.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: October 8, 2019
    Assignee: HITACHI, LTD.
    Inventors: Kenichirou Kurata, Shigeru Matsuo, Noriyasu Hasejima
  • Patent number: 10437391
    Abstract: Touch sensing based on optical sensing as disclosed herein can be implemented by using an optical stylus or pointer that emits probe light for optical sensing, and spatially distributed optical sensors at different spatial locations for sensing. The measurements from the different optical sensors can be processed to determine the position of the light from the optical stylus at the screen. Optical sensing of a position on a two-dimensional surface and a position in a three-dimensional space can be achieved for various optical touch sensing applications. In one implementation, an apparatus can include a screen or display, an optical stylus or optical pointer, and two or more optical angle sensors which determine, respectively, a first angle between the first optical angle sensor and a position of light at the screen and a second angle between the second optical angle sensor and the position of light at the screen.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: October 8, 2019
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Yi He, Bo Pi
  • Patent number: 10427254
    Abstract: A method and apparatus for manufacturing an aircraft structure. A drivable support may be driven from a first location to a second location to bring the drivable support together with at least one other drivable support to form a drivable support system. A structure may be held in a desired position using the drivable support system.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: October 1, 2019
    Assignee: The Boeing Company
    Inventors: Dan Dresskell Day, Clayton Lynn Munk, Steven John Schmitt, Eric M. Reid
  • Patent number: 10429239
    Abstract: A color capture arrangement and a method for correcting a captured brightness of an object are disclosed. In an embodiment the color capture arrangement includes a directed light source configured to direct light towards the object to be identified, evaluation electronics and a color capture device including at least three color identification sensors configured to receiving radiation reflected by the object and funnels as light-guiding elements, wherein each funnel is disposed upstream of a color identification sensor, and wherein at least one of the color identification sensors is a distance sensor.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: October 1, 2019
    Assignee: SensoPart Industriesensorik GmbH
    Inventors: Manfred Kemmler, Robert Weiss, Dirk Trueper
  • Patent number: 10414685
    Abstract: In a substrate processing method in which, for a substrate including a first layer made of a glass substrate and second layers made of a material different from that of the first layer and provided on a front surface and a back surface of the first layer, respectively, an intended mark is formed in each of the second layers, the substrate processing method includes the step of irradiating with a laser beam having an energy density capable of processing the second layers but incapable of processing the first layer from one surface side of the substrate, thereby simultaneously forming the mark at corresponding positions on each of a front surface and a back surface of the substrate.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: September 17, 2019
    Assignee: VIA MECHANICS, LTD.
    Inventors: Kenichi Ichikawa, Kaori Tateishi, Yasushi Ito
  • Patent number: 10408574
    Abstract: A handheld targeting device that includes a geolocating system and a laser targeting system is provided. The geolocating system includes a laser range finder operable to emit a first pulsed laser beam toward an object from the first end of the housing and receive a returned first pulsed laser beam to calculate a distance to a target. By combining the calculated distance with a compass direction and position of the targeting device, a location of the object can be calculated. The laser targeting system includes a laser targeting marker operable to emit a second pulsed laser beam toward the object from the first end of the housing. Other vehicles or weapons can detect the second pulsed laser beam for indication of or guidance to the target. In one aspect, the laser range finder can share an optical lens with a thermal imager that captures infrared images.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: September 10, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Richard B. Guthrie, Ivan A. Cintron
  • Patent number: 10386534
    Abstract: A method for ascertaining a valve position of a valve of an internal combustion engine having a multiplicity of valves. The method includes illuminating a combustion chamber of the internal combustion engine, detecting light emerging from the illuminated combustion chamber on a side, averted from the combustion chamber, of the valve for ascertainment, and determining the valve position of the valve for ascertainment by way of the detected light.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: August 20, 2019
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Sebastian Von Schoening
  • Patent number: 10378891
    Abstract: A system for measuring the displacement of a surface in a material handling system relative to a base reference is provided. The system includes scanning means to generate point cloud data of the surface relative to a reference point to define a three-dimensional image of the surface, storage means to store base reference data in respect of the base reference, and processing means to process the point cloud data and the base reference data to determine the relative displacement of the surface with respect to the base reference. The processing means includes a referencing means to orientate the point cloud data relative to key reference data of the base surface and transforming the point cloud data and the base reference data into a common co-ordinate system, and displacement processing means to calculate the displacement between the surface and the base reference using both sets of data in the co-ordinate system.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: August 13, 2019
    Assignee: Outotec Pty Ltd
    Inventors: Jochen Franke, Michael Paul Stewart, Derek Lichti
  • Patent number: 10365298
    Abstract: A detection arrangement and method for directing the sensitivity of an optical knife-edge detection system to its optimal operating point. This is referred to as an increase in the detection dynamic range of the system with advantageous applications for detecting motion of a surface such as for Atomic Force Microscopy as well as detecting acoustic vibrations on unstable surfaces. A pair of parallel reflecting surfaces, such as an optical slab waveguide, serve to reflect the sensing beam back onto the knife-edge detector once it is shifted off its sensing range. Allowing multiple reflections, the sensing beam is maintained on the knife-edge detector even at large angular offsets from the optimal operating point of the basic knife-edge detector. Use of a modified arrangement, with two knife-edge detectors at quadrature ensures near-optimal sensitivity at a detection dynamic range up to forty-fold larger than that of the basic knife-edge system.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: July 30, 2019
    Assignee: Technion Research & Development Foundation Limited
    Inventor: Abraham Aharoni
  • Patent number: 10365084
    Abstract: The current embodiments provide a system for determining a parameter of a tire component. The system may have a background surface, a first measurement device configured to measure a dimension with respect to the reference surface and a support surface located at least partially between the first measurement device and the reference surface, where the support surface is configured to support the tire component. The parameter may correspond to the dimension on the background surface.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: July 30, 2019
    Assignee: Bartell Machinery Systems, L.L.C.
    Inventors: Nathan Jeremy Little, Douglas Maxwell Sassaman, Collin McLaughlin Sears
  • Patent number: 10343281
    Abstract: A robotic system is proposed whereby the system comprises drivers which integrate the power switches and communications electronics for communicating over power lines or wirelessly or over another shared communications channel. In a robotic system comprising such drivers, one or more central controllers communicate with at least one actuator driver across a communications channel, wherein the communications channel is subject to interference caused by an actuator, and wherein at least one of the communication and the operation of the actuators is modified in anticipation of interference occurring such that reliable communication can be assured.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Clemens Mueller, Daniel Scharfen
  • Patent number: 10332275
    Abstract: In order to perform robust position and orientation measurement even in a situation where there are noises, an image, including a measurement target object, captured by an image capturing apparatus is acquired, a flag indicating whether any one of geometric features constituting a three-dimensional model of the measurement target object or a plurality of image features detected from the image corresponds to a shadow of the measurement target object is set, the plurality of geometric features and the plurality of image features detected from the image are associated with each other based on an approximate position and orientation of the measurement target object and the flag, and a position and orientation of the measurement target object is derived based on a result of the association by the association unit.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 25, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yutaka Niwayama
  • Patent number: 10325413
    Abstract: A method of generating a smooth optimized part design for a workpiece is presented. Topology optimization is performed based on design objectives, to generate surface data describing an optimized but unfinished surface of the workpiece. The surface data is used to generate volumetric data describing the workpiece structure. A three dimensional smoothing filter is applied to the volumetric data. A manufacturing design is generated from the resulting smoothed volumetric data.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 18, 2019
    Assignee: United Technologies Corporation
    Inventor: Matthew E. Lynch
  • Patent number: 10323928
    Abstract: A scanning probe responsive in three axes is provided for use in a coordinate measuring machine. The scanning probe includes a frame, a stylus suspension portion and a stylus position detection portion. The stylus position detection portion includes a light source that is operated to radiate source light toward a position indicating element that is fixed relative to the stylus coupling portion. The position indicating element includes a position indicating emitter having an emitter material (e.g., phosphor) that inputs and absorbs the light from the light source and responds by outputting excitation light. In various implementations, the excitation light is directed as at least one of axial measurement light along an axial measurement spot path to form an axial measurement spot on an axial position sensitive detector and/or rotary measurement light along a rotary measurement spot path to form a rotary measurement spot on a rotary position sensitive detector.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: June 18, 2019
    Assignee: Mitutoyo Corporation
    Inventor: David William Sesko
  • Patent number: 10317288
    Abstract: A method for reducing the peak factor of a signal transmitted in a frequency band comprising several channels, the signal using a plurality of channels in the band comprises: a step of clipping the signal, a step of subtracting the clipped signal from the signal, so as to obtain a peak signal, a step of filtering the peak signal with the aid of a multichannel filter configured to comply with a predetermined spectral mask for each of the channels used by the signal, and a step of subtracting the filtered peak signal from the signal. A device for emitting a multichannel signal implementing the method for reducing the peak factor is also provided.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 11, 2019
    Assignee: THALES
    Inventors: Jean Minet, Grégoire Pillet, Patrick Feneyrou
  • Patent number: 10295436
    Abstract: A field deployable, portable structured light measurement (SLM) apparatus, together with a structured light measurement process to manage part to part variation in production and in the field, to support both rotor airfoil mistuning and rotor airfoil repair limits.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 21, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Richard David Conner, Bruce David Reynolds, Jonathan C. Bittner, Srinivas Jaya Chunduru, Bruce D. Wilson
  • Patent number: 10282855
    Abstract: A method of identifying a surface point or region of an object to be measured by means of an optical sensor providing defined measuring conditions regarding emission of measuring light and reception of reflected measuring light in a defined spatial relationship. The method comprises defining a point or region of interest of the object, determining an optical property of the defined point or of the defined region and deriving an object information base on the optical property. The determination of the optical property is performed by optically pre-measuring the point or region using the optical sensor by illuminating the point or the region with the measuring light, capturing at least one image by means of the optical sensor of at least one illumination (Lr,Li) at the object and analyzing respective illuminations (Lr,Li) regarding position or appearance plausibility with respect to the measuring conditions of the optical sensor.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: May 7, 2019
    Assignee: HEXAGON TECHNOLOGY CENTER GMBH
    Inventors: Johan Stigwall, Thomas Jensen
  • Patent number: 10274435
    Abstract: A data analysis method and system are presented for use in determining one or more parameters of a patterned structure located on top of an underneath layered structure. According to this technique, input data is provided which includes first measured data PMD being a function ƒ of spectral intensity I? and phase ?, PMD=ƒ(I?;?), corresponding to a complex spectral response of the underneath layered structure, and second measured data Smeas indicative of specular reflection spectral response of a sample formed by the patterned structure and the underneath layered structure. Also provided is a general function F describing a relation between a theoretical optical response Stheor of the sample and a modeled optical response Smodel of the patterned structure and the complex spectral response PMD of the underneath layered structure, such that Stheor=F(Smodel; PMD).
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: April 30, 2019
    Assignee: NOVA MEASURING INSTRUMENTS LTD.
    Inventors: Boris Levant, Yanir Hainick, Vladimir Machavariani, Roy Koret, Gilad Barak
  • Patent number: 10267620
    Abstract: An optical three-dimensional coordinate measuring device of the present invention ensures both the measurement range and the measurement accuracy. The optical three-dimensional coordinate measuring device includes an imaging device, a table that is displaceable from an original position, a probe for designating a measurement position of a measurement object, a probe marker that is disposed on the probe, and a stage marker that is disposed on the table. The position and the attitude of the probe with respect to the imaging device are identified on the basis of the probe marker included in a captured image. The position and the attitude of the table with respect to the imaging device are identified on the basis of the stage marker included in a captured image. Relative position coordinates of a measurement position designated by the probe are obtained.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: April 23, 2019
    Assignee: Keyence Corporation
    Inventor: Masayasu Ikebuchi
  • Patent number: 10259119
    Abstract: A remote controlled robot system that includes a mobile robot and a remote control station. A user can control movement of the robot from the remote control station. The mobile robot includes a camera system that can capture and transmit to the remote station a zoom image and a non-zoom image. The remote control station includes a monitor that displays a robot view field. The robot view field can display the non-zoom image. The zoom image can be displayed in the robot view field by highlighting an area of the non-zoom field. The remote control station may also store camera locations that allow a user to move the camera system to preset locations.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: April 16, 2019
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard, Keith Phillip Laby, John Cody Herzog
  • Patent number: 10257497
    Abstract: A depth sensor and a 3D camera include a macro pixel that provides an output signal when light is received and a programmable concurrent detector (PCD) circuit that compares an electric signal provided by the macro pixel with a number of concurrence (NC) and determines a necessity of providing the output signal of the macro pixel. In addition, the depth sensor and the 3D camera may include a controller that measures a dark count of the macro pixel, changes the number of concurrence (NC) of the macro pixel, based on the dark count, and controls noise of the macro pixel. In addition, the depth sensor and the 3D camera may control the noise of the macro pixel, based on an external light count which is a noise signal generated due to the external light.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 9, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaehyuk Choi, Jinmyoung Kim, Jungwoo Kim
  • Patent number: 10228451
    Abstract: In certain embodiments, an apparatus comprises a laser detector, a lens, a Global Positioning System (“GPS”) receiver, a digital ground map, a tilt measurement device, and one or more processors. The laser detector is operable to detect a laser light emitted from a laser source, the lens is operable to pass the laser light to the laser detector, the GPS receiver is operable to determine a GPS location of an aircraft, and the tilt measurement device is operable to determine a tilt angle of the aircraft. The one or more processors of the apparatus are operable to determine a line of sight based on the detected laser light, the GPS location, and the tilt angle. The one or more processors are further operable to determine a location of the laser source from an intersection of the line of sight and the digital ground map.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: March 12, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Kurt M. Chankaya, Mike Ivor Jones
  • Patent number: 10200809
    Abstract: A positioning system that combines the use of real-time location system and a robotic total station into a single, transparent hybrid positioning system to locate one or multiple targets by one or multiple users.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: February 5, 2019
    Assignee: Topcon Positioning Systems, Inc.
    Inventor: Jason Hallett
  • Patent number: 10187567
    Abstract: Some embodiments include determining geometrical data in a space, with a measurement sequence having a measurement of a first distance to a first target point by emitting a laser beam in a first emission direction, and a measurement of a second distance to a second target point by emitting a laser beam in a second emission direction. In some embodiments the geometrical data comprises a distance between the two target points and/or a solid angle between the first emission direction and the second emission direction. Some embodiments include detecting a series of images; relating the detected images to one another using image processing and using the at least one common image area; determining a distance between the mappings of the target points in the images put in relationship with one another; and determining the geometrical data on the basis of the distance between the mappings.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: January 22, 2019
    Assignee: LEICA GEOSYSTEMS AG
    Inventor: Kurt Giger
  • Patent number: 10185096
    Abstract: Systems and methods of measuring ferrule-core concentricity for an optical fiber held by a ferrule are disclosed. The method includes: generating ferrule distance data by measuring distances to a ferrule outside surface as a function of rotation angle using a distance sensor and rotating either the ferrule or the distance sensor about an axis of rotation that is off-center from the true ferrule axis; aligning the axis of rotation with the fiber core; using the ferrule distance data to determine a position of the true ferrule center relative to the optical fiber core; and measuring the concentricity as the distance between the true center of the ferrule and the optical fiber core.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Sterling Michael Clarke, John Joseph Costello, III, En Hong, Garrett Andrew Piech, Michael Brian Webb, Elvis Alberto Zambrano