Position Transverse To Viewing Axis Patents (Class 356/615)
  • Patent number: 10514386
    Abstract: A sample liquid-surface position measurement device includes: a first light source that illuminates a side face of a container containing a sample; a first optical measurement sensor that is located on the opposite side of the container from the first light source, and measures transmitted light from the first light source; a first label position measuring unit that measures a position of a label affixed to the container; and an analysis section that calculates a liquid-surface position or an interface position of the sample in the container, from transmitted-light intensity data in a longitudinal direction of the container which is measured by the first optical measurement sensor, and from the position of the label in the longitudinal direction of the container which is measured by the first label position measuring unit.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: December 24, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Tatsuo Nakagawa, Kiyotaka Sugiyama, Tsukasa Suenari, Iwao Suzuki
  • Patent number: 10488182
    Abstract: There is provided: a pair of slanted fiber groups; a pair of parallel fiber groups; a light source for emitting two slanted light beams from a pair of slanted light-emitting fibers, and emitting two parallel light beams from a pair of parallel light-emitting fibers; a target provided to the outer peripheral surface of a rotor; a pair of light-receiving elements for detecting the intensity of light received by each of a pair of slanted light-receiving fibers; a pair of light-receiving elements for detecting the intensity of light received by each of a pair of parallel light-receiving fibers; and a computation unit for performing a computation that includes an interval affected by thermal elongation on the basis of four waveforms indicating changes in the intensity detected by each of the light-receiving elements.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: November 26, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tomoyuki Onishi, Takahiro Miyamoto, Akio Kondou
  • Patent number: 10469691
    Abstract: The present invention is related to a scanning device for scanning documents, comprises a flat-bed scanning glass; a contact image sensor arranged above the flat-bed scanning glass separately to form a scanning path therebetween, a bottom surface of the contact image sensor being arranged with a protecting glass, a middle area of the protecting glass being configured as a scanning area, and a chamfer being arranged at the bottom surface of the protecting glass at a downstream position relative to the scanning area. Hence the dust of documents in this invention would be stacked in the chamfer during the scanning process temporarily and then be wiped away by the document itself, so as to assure the dust would not be stacked in the scanning area. The scanning device in this invention is capable to maintain the scanning quality without clearing the dust even after scanned a massive quantity of documents.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: November 5, 2019
    Assignee: FOXLINK IMAGE TECHNOLOGY CO., LTD.
    Inventors: Tsung Ching Chou, Wen Ching Liao
  • Patent number: 10388026
    Abstract: A depth camera assembly (DCA) for depth sensing of a local area. The DCA includes a structured light generator, an imaging device, and a controller. The structured light generator illuminates the local area with structured light. The structured light generator includes an acousto-optic deflector (AOD) and a liquid crystal device (LCD). The AOD functions as one or more dynamic diffraction gratings that diffract one or more optical beams to form diffracted scanning beams. The LCD includes one or more liquid crystal gratings (LCGs) that diffract the diffracted scanning beams to form the structured light projected into the local area. The imaging device captures portions of the structured light reflected from one or more objects in the local area. The controller determines depth information for the one or more objects based on the captured portions of the reflected structured light.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: August 20, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Qing Chao, Lu Lu
  • Patent number: 10288413
    Abstract: An apparatus for mounting components on a substrate comprises a pick and place system with a bonding head, a camera and two optical deflection systems. The first optical deflection system and the camera form a first image detection system for recording an image of the substrate location on which the component is to be mounted. The first optical deflection system, the second optical deflection system and the camera form a second image detection system for recording an image of a bottom side of the component. The pick and place system moves the carriage from a take-up location of the component to the substrate location in a respective predetermined height H1 above the second optical deflection system, so that the bottom side of the component is located in a focal plane of the camera, and lifts the carriage to a respective predetermined height H2, so that the substrate location is situated in the focal plane of the camera.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: May 14, 2019
    Assignee: Besi Switzerland AG
    Inventors: Norbert Bilewicz, Hubert Selhofer
  • Patent number: 10264405
    Abstract: In a general aspect of the examples described, motion is detected based on received wireless signals in a mesh network. In an example, transfer function components for each pair of devices are obtained. A time series of transfer function matrices is generated, with each of the transfer function matrices comprising a respective subset of the transfer function components. Motion of an object in the space is detected based on the time series of transfer function matrices.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: April 16, 2019
    Assignee: Cognitive Systems Corp.
    Inventors: Tajinder Manku, Oleksiy Kravets
  • Patent number: 9753136
    Abstract: A portable electronic device includes a housing having at least one major face. One or more processors are operable in the device. At least two discrete signal emitters are disposed along the at least one major face. At least two discrete signal receivers are also disposed along the at least one major face. A first discrete signal emitter is proximately located with a first discrete signal receiver to form a first discrete signal emitter-receiver pair, while a second discrete signal emitter is proximately located with a second discrete signal receiver to form a second discrete signal emitter-receiver pair. The first discrete signal emitter-receiver pair is distally located along the at least one major face from the second discrete signal emitter-receiver pair, and can receive gesture input in a first mode of operation and proximity input in a second mode of operation.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: September 5, 2017
    Assignee: Motorola Mobility LLC
    Inventors: Rachid M Alameh, Justin Douglas Eltoft, Paul Steuer
  • Patent number: 9400170
    Abstract: An automatic method for measuring three-dimensional coordinates by a laser tracker includes determining whether a retroreflector is accessible within an acceptance region of an inspection location and, if not, taking corrective action.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: July 26, 2016
    Assignee: FARO TECHNOLOGIES, INC.
    Inventor: Kenneth Steffey
  • Patent number: 9332686
    Abstract: A lower supporting pin module 22 is given a shape having a contact surface 26a. On the occasion of position recognition for determining a position of a pin on the lower supporting pin module 22, an image of the lower supporting pin module 22 is captured, and the image is subjected to recognition processing, to thus detect an outer shape of an upper shaft 24B. Even when an extraneous matter on a downside surface of a substrate adheres to the contact surface 26a, the position of the lower supporting pin module 22 can be stably recognized with superior recognition precision.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 3, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shirou Yamashita, Tadashi Endo, Yasuichi Okada, Makoto Nakashima, Yuki Minamide
  • Patent number: 9267786
    Abstract: An apparatus and method for adjusting prism beam expander. The prism beam expander adjustment apparatus has a light source, a baseplate, a precise rotary stage, support columns, a two-dimensional slide stage, the first 90-degree bellcrank lever, an indication light source, the second 90-degree bellcrank lever, an optical filter, a photodetector, a computer, and an assembly platform. Incidence angles of all prisms of a prism beam expander can be precisely demarcated and designed beam magnification is obtained with the preferred adjustment methods. The parallel of the prisms can be guaranteed by monitoring the pitching of the prisms in the adjustment process. As a result, the linewidth narrowing and cavity losses decreasing can be improved by application of the fixed prism beam expander.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: February 23, 2016
    Assignee: Shanghai Institute of Optics And Fine Mechanics, Chinese Academy of Sciences
    Inventors: Haibo Zhang, Zhijun Yuan, Jun Zhou, Yunrong Wei, Liyuan Jiang, Liming Geng
  • Patent number: 9157795
    Abstract: Example methods and systems for calibrating one or more light sources are described. One example method includes determining a position of at least three photosensors relative to a world frame, controlling an orientation of at least one light source so as to cause the at least one light source to project a light beam across an area encompassing the at least three photosensors, receiving signals indicating a sensing of a light beam directed at one of the photosensors, determining orientations of the at least one light source that cause a signal at one of the photosensors, and based on the position of the at least three photosensors and the orientations of the at least one light source that cause a signal at one of the photosensors, determining a transformation from a local frame of the at least one light source to the world frame.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: October 13, 2015
    Assignee: Bot & Dolly, LLC
    Inventors: Jeffrey Linnell, Marek Michalowski, Jean-Francois Dupuis, Thiago Hersan
  • Patent number: 9027218
    Abstract: An apparatus and method for finding part position relations of parts of mechanical and opto-mechanical machining and quality control systems, and for recognizing these parts, is disclosed. The present invention relies on optical contactless sensing technology, with recording of optical fiducial patterns and therefrom determining positions close to the work positions without physical contact. Part positions of machines are determined by associating or mechanically integrating fiducial patterns (1) with key parts, and optically detecting the images of these patterns. Part positions and displacements according to given part position finder (6) strategies are found, by associating fiducial pattern images (14) and machine position data (17) to parts that are members of a part geometry relation (15), and under part displacement constraints (16), finding given part positions or displacements (18).
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: May 12, 2015
    Inventor: Gudmunn Slettemoen
  • Patent number: 9010012
    Abstract: Various gun sights and related methods are provided. In one embodiment, a gun sight includes a light source adapted to project light, a user-viewable interface, and an optical element. The optical element includes a first surface adapted to pass the light to provide a reticle at the user-viewable interface. The optical element also includes a second surface adapted to refract the light to provide a light guide at a peripheral area of the user-viewable interface to aid a user to substantially align the user's eye with the reticle. Various mechanisms for aligning gun sights, attaching gun sights, related methods, and other embodiments are also provided.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 21, 2015
    Assignee: SureFire, LLC
    Inventors: John W. Matthews, Murray Dunn, Michael LaSavio, Michael D. Picciotta, Loc Nguyen, Ammar Burayez, Mark Buczek, Mark Squire
  • Patent number: 8994959
    Abstract: The invention relates to a device for capturing the rotary position (D) of at least one rotary device (4) provided for receiving a container (3) by means of at least one sensor unit (5), wherein the rotary device (4) is provided for driving the container (3) about a rotary axis (DA), and the at least one sensor unit (5) is advantageously designed for non-contact capturing of the rotary position (D) of the rotary device (4) relative to the rotary axis (DA).
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: March 31, 2015
    Assignee: KHS GmbH
    Inventor: Carsten Beckhaus
  • Patent number: 8982359
    Abstract: A system for detecting motion of a body, the system comprising: a body; a first grating mounted substantially stationary relative to a frame of reference; a second grating mounted on the body; a detector arranged to receive one or more radiation beams diffracted at the first and second gratings thereby to detect motion of the body relative to the frame of reference; wherein the detector is coupled to the body and moveable relative to the body.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: March 17, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Jan Van Eijk, Erik Roelof Loopstra, Engelbertus Antonius Fransiscus Van Der Pasch, Johannes Petrus Martinus Bernardus Vermeulen
  • Patent number: 8913253
    Abstract: An optical position detection apparatus detects the position of a target object in a Z-axis direction and the position of the target object in an X-axis direction based on the result of the light reception in a light receiving unit when light source units that are spaced apart in the X-axis direction are sequentially turned on and the result of the light reception in the light receiving unit when light source units that are spaced apart in the Z-axis direction are sequentially turned on among a first light source unit, a second light source unit, and a third light source unit. The emission directions of the detection lights in the first light source unit, the second light source unit, and the third light source unit are equal to one another in the Z-axis direction.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 16, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Kanechika Kiyose
  • Patent number: 8867046
    Abstract: A method and an apparatus of measuring a position of a particle in a flow are disclosed. An embodiment of the method comprises temporally modulating and spatially pattering an illumination beam propagating along a first dimension, passing a particle across the modulated illumination beam, detecting a temporal profile of scattered light produced by the particle's passing through the modulated illumination beam, and determining the position of the particle based, in part, on the temporal profile of the detected scattered light.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Ronald H. Hoffeld, Jonathan Z. Lin, Nicholas M. F. Judson, George S. Haldeman, Vincenzo Daneu
  • Patent number: 8842295
    Abstract: In a system for detecting the position of an object in relation to a reference system, the object is arranged so as to be movable in relation to the reference system along at least two orthogonal first and second main movement axes. To record the position of the object in relation to the reference system, a position measuring device includes at least two two-dimensional measuring standards situated along the first main movement axis, and four scanning units for an optical scanning of these measuring standards. In addition, at least four additional supplementary scanning units are provided, which are situated between the four scanning units along the first main movement axis.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: September 23, 2014
    Assignee: Johannes Heidenhain GmbH
    Inventors: Wolfgang Holzapfel, Joerg Drescher, Markus Meissner, Ralph Joerger, Bernhard Musch, Thomas Kaelberer
  • Patent number: 8842269
    Abstract: A beam deflection device including an aluminum disc containing a plurality of lasers, each laser projecting a laser beam substantially along one of the ‘X’, ‘Y’, and ‘Z’ axes of a structural beam to which the device is attached. Wiring is attached to each of the plurality of lasers to provide power and transmit data. Passageways are provided in the solid disc to route the wiring to the exterior. A suction cup on a surface of the device allows it to be attached to the beam by pressing the device against a flat surface area of the beam.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 23, 2014
    Inventor: Nicolai Taylor Blankers
  • Patent number: 8823953
    Abstract: Method and apparatus (1a) for optical detection of the position of large-area printed products (10). The apparatus (1a) has conveyance means (2a) for movement of the printed products (10) along a conveyor path (4) past at least one contrasting light source (30), and at least one optical sensor (16). The conveyance means (2, 2a), the contrasting light source (30) and optical sensor (16) are arranged such that the printed products (10) can be conveyed between the contrasting light source (30) and the optical sensor (16).
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 2, 2014
    Assignee: Ferag AG
    Inventor: Carl Conrad Maeder
  • Patent number: 8786851
    Abstract: A system for testing a distortion of a liquid crystal display (LCD) device can test the LCD device within a chamber in a state of being assembled perpendicular to the ground, whereby whether any distortion occurs in an internal component can be fast detected even in severe conditions of high temperature and high humidity and under an actual installation environment of a user.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 22, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Gi-Bin Kim, Tae-Woo Kim, Na-Young Ha
  • Patent number: 8767219
    Abstract: A novel electro-optical sensor for the wideband and normalized translation of the two-dimensional position of a light beam transverse to its traveling direction into electrical position signals. Incident on the sensor is the light beam 122 which is divided with a beamsplitter 121 into a transmitted beam 123 and a reflected beam 124 which both have similar transverse motion behavior as the incident beam. From each of these divided beams the position is determined one-dimensionally with an one-dimensional optical position sensor, 125, 126. The one-dimensional position determination is done by dissecting each divided beam into two beams using a partitioning element. The outputted dissected beams have a power distribution that depends on the position of the divided beam relative to the partitioning element. Each beam is optically coupled to a photo detector which translates its power into an electric current.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 1, 2014
    Inventor: Paul Edmond Rutten
  • Patent number: 8760521
    Abstract: The present disclosure relates to a sensor network including a plurality of nodes, each node having a directional sensor, a communication module, and a processor configured to receive local measurements of a calibration object from the directional sensor, receive additional measurements of the calibration object from neighboring nodes via the communication module, estimate an initial set of calibration parameters in response to the local and additional measurements, receive additional sets of calibration parameters from neighboring nodes via the communication module, and recursively estimate an updated set of calibration parameters in response to the additional sets of calibration parameters. Additional systems and methods for calibrating a large network of camera nodes are disclosed.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: June 24, 2014
    Assignees: Purdue Research Foundation, Olympus Corporation
    Inventors: Henry Ponti Medeiros, Johnny Park, Avinash Kak, Hidekazu Iwaki
  • Patent number: 8755034
    Abstract: According to an example embodiment, a method to determine an exposure start position and orientation includes loading a substrate on a moving table. The substrate includes at least one alignment mark of a first set of alignment marks of a first pattern layer patterned thereon. At least one alignment mark of a second set of alignment marks of a second pattern layer is exposed on the substrate using maskless lithography. A position of the at least one alignment mark of the first set of alignment marks and a position of the at least one alignment mark of the second set of alignment marks on the substrate is measured. A relative orientation difference between a desired exposure start orientation and an obtained exposure start orientation is acquired using the measured positions of the at least one alignment mark of the first set of alignment marks and the at least one alignment mark of the second set of alignment marks.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 17, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Sung Min Ahn, Sang Don Jang, Tae Kyu Son
  • Patent number: 8742322
    Abstract: The laminated diffractive optical element includes plural diffraction gratings (21, 22 and 23) laminated with each other, the respective diffraction gratings being formed of a same light-transmissive material. In the element, reflective films are formed on grating surfaces (11 and 12) of the respective diffraction gratings, each of the reflective films being disposed between the diffraction gratings. Each of the reflective films reflects light in a specific wavelength range and transmits light in a wavelength range different from the specific wavelength range, the specific wavelength ranges of the respective reflective films being different from each other. The grating surfaces of the respective diffraction gratings are formed in shapes different from each other according to the specific wavelength ranges corresponding to the respective reflective films.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: June 3, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ko Ishizuka
  • Patent number: 8735825
    Abstract: In an optical position detection device, when light source sections emit detection light, a light detecting section detects detection light reflected from a object to detect the coordinates of the object. When seen from the detection space, the light detecting section is located inward from a plurality of light source sections, and each of the plurality of light source sections includes first and second light emitting elements. Therefore, the position of the object can be detected on the basis of a comparison result of the received light intensity in the light detecting section when the first light emitting element is turned on and the received light intensity in the light detecting section when the second light emitting element is turned on in both the case where the object is located outside a region between the light source sections and the case where the object is located inside the region.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: May 27, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Daisuke Nakanishi, Kanechika Kiyose
  • Patent number: 8711370
    Abstract: Embodiments are directed towards detecting the three dimensional position of a position sensing device (PSD) utilizing a spot scanned across a remote surface. A trajectory map may be determined for a projection system. The trajectory map may identify a location of the spot at various times during the scan. A PSD may be arranged with a clear view of the remote surface. The PSD may observe at least three spots projected onto the remote surface utilizing three lines of sight that enable moment-in-time linear alignment between the spot and a sensor. Observation angles between each of the lines of sight may be determined. For each observed spot, a transition time may be determined and a location of the observed spot may be determined based on the trajectory map. A position of the PSD may be determined based on determined observed locations and the observation angles of the PSD.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 29, 2014
    Inventor: Gerard Dirk Smits
  • Publication number: 20140111814
    Abstract: The disclosure provides a photoelectric sensor that provides useful information to set measurement conditions. The photoelectric sensor includes a light emitting unit having a light emitting element configured to emit detection light toward a detection area, a light receiving unit having a light receiving element configured to receive the detection light from the detection area and to obtain a detection value corresponding to the amount of light received, and a display unit configured to display information about the detection value in the light receiving unit. When the detection value varies across a predetermined threshold, the display unit displays a transit time that is the time from when the detection value crosses the predetermined threshold until when it crosses the predetermined threshold again, and a variation amount of the detection value in the variation.
    Type: Application
    Filed: September 18, 2013
    Publication date: April 24, 2014
    Applicant: OMRON CORPORATION
    Inventors: Soji OHMAE, Kiyohiko GONDO, Yusuke IIDA
  • Patent number: 8706264
    Abstract: A method for use in a part tracking system including a camera and a motion controller, the method comprising the steps of time synchronizing the motion controller and the camera at a trigger time when it is anticipated that a part is within the field of view of the camera, causing the camera to obtain an image, using the obtained image to determine an actual location of the part at the trigger time, comparing the actual location and the anticipated location of the part to identify a position difference and at the motion controller, using the position difference at the trigger time to adjust at least one operating characteristic of the automated system.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 22, 2014
    Assignee: Cognex Corporation
    Inventor: Dale Peterson
  • Publication number: 20140092396
    Abstract: The invention relates to a device for measuring the relative position of two objects moving relative to each other along an axis or around a rotating axis (D), with a transmitter (12) which emits unpolarized light, and with a polarizer (20), and with at least one receiver (16) which measures the luminosity of the light passing through the polarizer (20) in order to create a position-dependent signal, such that a polarizing filter is positioned in front of the receiver (16), and the receiver (16) and the polarizer (20) move relative to each other as a function of the relative position of the two objects, and such that the polarizer (20) has at least two different polarizing directions.
    Type: Application
    Filed: August 30, 2013
    Publication date: April 3, 2014
    Applicant: SICK STEGMANN GmbH
    Inventor: David HOPP
  • Patent number: 8681313
    Abstract: A patterning device, including alignment targets having alignment features formed from a plurality of diffractive elements, each diffractive element including an absorber stack and a multi-layered reflector stack is provided. The diffractive elements are configured to enhance a pre-determined diffraction order used for pre-alignment and to diffract light in a pre-determined direction of a pre-alignment system when illuminated with light of a wavelength used for the pre-alignment. The diffractive elements may occupy at least half of an area of each alignment feature. The diffractive elements may be configured to enhance first or higher order diffractions, while substantially reducing zeroth diffraction orders and specular reflection when illuminated with a wavelength used for reticle prealignment. The dimensions of each diffractive element may be a function of a diffraction grating period of each alignment feature.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 25, 2014
    Assignee: ASML Holding N.V.
    Inventors: Yuli Vladimirsky, Muhammad Arif, Robert Albert Tharaldsen
  • Publication number: 20140078518
    Abstract: The present invention relates to a method and apparatus for measuring precise high speed displacement, and more particularly, to a method and apparatus for measuring precise high speed displacement, which measures displacement of a test specimen by using a uniform intensity laser line and by using differences in a laser transmission amount according to the deformation of the test specimen, and measures a strain rate of the test specimen such as high strength fiber or the like using a high speed tensile test.
    Type: Application
    Filed: December 14, 2012
    Publication date: March 20, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Jae-Young Lim
  • Patent number: 8643835
    Abstract: A system for inspecting a depth relative to a layer using a sensor with a fixed focal plane. A focus sensor senses the surface of the substrate and outputs focus data. In setup mode the controller scans a first portion of the substrate, receives the focus data and XY data, and stores correlated XYZ data for the substrate. In inspection mode the controller scans a second portion of the substrate, receives the focus data and XY data, and subtracts the stored Z data from the focus data to produce virtual data. The controller feeds the virtual data plus an offset to the motor for moving the substrate up and down during the inspection, thereby holding the focal plane at a desired Z distance.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 4, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Scott A. Young, Daniel L. Cavan, Yale Zhang, Aviv Balan
  • Patent number: 8643851
    Abstract: The present invention relates to a scanning device for determining at least partial cross-sectional profiles of food products to be sliced in accordance with the light cutting process, having at least one illumination device for generating a light line on the surface of a product and having at least one detection device for taking images of the product surface including the light line, wherein the illumination device includes at least one light source which is configured to generate a light beam propagating in the direction of a scanning region for the product in a scanning plane and widening in so doing and includes an optically effective device which is arranged in the propagation path of the widening light beam and which is configured to counter the divergence of at least some of the incident light.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 4, 2014
    Assignee: Weber Maschinenbau GmbH Breidenbach
    Inventor: Guenther Weber
  • Patent number: 8638451
    Abstract: A system for determining a location on a 2D surface or in a 3D volume. The system includes a probe and a tracker. The probe includes a marker, an indicator, and a reflective surface, wherein the probe is configured so the reflective surface forms a virtual image of the marker having an apparent location coincident to a location of the indicator. The tracker configured to measure the apparent location of the virtual image of the marker.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: January 28, 2014
    Assignee: Ivan Faul
    Inventor: Ivan Faul
  • Patent number: 8638452
    Abstract: A chassis measuring system comprises an illumination device for producing a structured illumination (38, 58, 78, 98), which is developed in such a way that it produces a structured image on a measuring head (32, 52; 72, 92) situated opposite in the transverse vehicle direction, a reference surface (40, 60, 80, 100) facing in the same direction as the illumination device (38, 58, 78, 98), on which a structured image produced by an illumination device (38, 58; 78, 98) of the measuring head (32, 52; 72, 92) situated opposite in the transverse vehicle direction may be projected, and at least one measuring camera (34, 36; 54, 56; 74, 76; 94, 96) facing in the same direction as the illumination device (38, 58, 78, 98), which is developed in such a way that it detects the structured image on the reference surface (40, 60; 80, 100) of the opposite measuring head (32, 52; 72, 92) in order to determine the position parameters of the measuring head (32, 52, 72, 92).
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: January 28, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Daniel Muhle, Anke Svensson, Matthias Roland, Axel Wendt
  • Patent number: 8619267
    Abstract: A proximity sensor with movement detection is provided. The proximity sensor may include an ASIC chip; at least three light sources configured to emit light in a particular sequence; and a photo detector configured to receive light and generate an output signal. The proximity sensor may have a compact size package, wherein the photo detector may be stacked on the ASIC chip and disposed at a substantially equal distance from the at least three light sources. The proximity sensor includes a driver operable to generate a current to a plurality of light sources in a particular timing sequence, a photo detector configured to receive light and generate an output signal, an ASIC configured to report the movement of an object near the proximity sensor if the output signal pattern generated matches one of the output signal patterns from among a set of known output signal patterns. The proximity sensor may be configured to be used as a counter or an on/off switch based on particular movements detected.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 31, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Chee Heng Wong, Yufeng Yao, Han Kang Chong
  • Patent number: 8619266
    Abstract: An optical position-measuring device includes a light source, a measuring reflector movable in space, a detection unit and a light-beam deflection unit that can align at least one beam of rays, emitted by the light source, in the direction of the measuring reflector. The light-beam deflection unit includes a cardan system having two cardan frames. A first cardan frame is adjustable by motor about a first axis of rotation, and a second cardan frame within the first cardan frame is adjustable by motor about a second axis of rotation oriented in a direction perpendicular to the first axis of rotation. The two axes of rotation intersect in a fixed reference point, at which a reference reflector is disposed. A plurality of mirrors are disposed rigidly on the cardan frames, so that the beam of rays can be pivoted about the fixed reference point via the mirrors during alignment.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: December 31, 2013
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventors: Wolfgang Holzapfel, Florian Flossmann
  • Patent number: 8605295
    Abstract: The general field of the invention is that of optical position/orientation devices for a helmet and more particularly those whose helmet comprises neither emitters, nor receivers but solely passive optical components, detection of which is ensured by fixed opto-electronic means outside the helmet. The optical component for the optical device for detecting position/orientation of a helmet according to the invention comprises a particular “optical cube corner”. It comprises a prism in the form of a trirectangular trihedron, each of the three plane surfaces of the trihedron comprising a blade with plane and mutually parallel faces, the first face being coincident with the plane surface on which it rests, the interface between this first face and said surface comprising a semi-reflecting treatment.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: December 10, 2013
    Assignee: Thales
    Inventors: Laurent Potin, Siegfried Rouzes, Jean-Pierre Gerbe
  • Patent number: 8593647
    Abstract: An optical tracking system for determining the pose of a moving object in a reference coordinate system includes light emitters, optical detectors, and a pose processor. The processor is coupled with an optical detector and also with a light emitter. The processor determines the object's pose according to detected light. An optical detector and a light emitter are situated at a fixed position in the reference coordinate system. Other ones of the optical detectors and light emitters are attached to the object. One optical detector is a WFOV detector comprising an optical sensor and optical receptors. The receptors are spaced apart and optically coupled with the optical sensor. The sensor senses light received from a light emitter. Each receptor projects a different angular section of a scene on the sensor. The pose processor associates the representation on the sensor, with a respective receptor which projected the light on the sensor.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: November 26, 2013
    Assignee: Elbit Systems Ltd.
    Inventors: Adi Charny, Dror Yahav, Shahaf Zommer, Ilan Efrat, Rani Ben-Yishai
  • Publication number: 20130308140
    Abstract: Fringe patterns at first and second spatial frequencies are projected onto a work piece surface and a reference surface, respectively. An image of the projected fringe patterns is obtained and a measurement signal associated with work piece displacements and a reference signal are obtained based on the first and second spatial frequencies. The image of the projected fringe patterns can exhibit substantial or complete overlap of the fringe patterns at the first and second spatial frequencies, and the overlapping patterns can be separated based on the spatial frequencies. Fringe pattern shifts at one or both of the first and second spatial frequencies can be used to adjust a pattern transfer system to permit accurate pattern transfer.
    Type: Application
    Filed: March 11, 2013
    Publication date: November 21, 2013
    Applicant: NIKON CORPORATION
    Inventors: Eric Peter Goodwin, Daniel G. Smith
  • Patent number: 8570533
    Abstract: A position measuring device including a reflective scale and a scanning unit. The scanning unit includes a retroreflector and a signal unit wherein the signal unit includes a light source and a detector arrangement. The scanning unit and the signal unit are structurally separate from one another and are disposed in planes parallel to one another, and wherein the scanning unit is movable relative to the reflective scale in a measuring direction. The light source emits a beam that propagates freely in a direction to the scanning unit, wherein from the scanning unit along the direction to the signal unit a pair of interfering partial beams propagate freely and wherein between the signal unit and the scanning unit the partial beams propagate freely in a propagation direction that is oriented perpendicular to the planes.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 29, 2013
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventors: Florian Garczarek, Wolfgang Holzapfel
  • Patent number: 8548665
    Abstract: A movable body system includes a movable body to which an image pickup apparatus is attached; an image analyzer that performs image matching between the image captured by the image pickup apparatus and an image, which is previously captured on the travel path of the movable body; a wall-surface detector that detects directions of the movable body with respect to wall surfaces, which are arranged along the travel path, and distances between the wall surfaces and the movable body; and a traveling-direction calculator that detects a shift of the movable body with respect to the travel path from an output of the image analyzer or the wall-surface detector, and calculates a traveling direction to cause the movable body to travel on the travel path.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Tetsuro Izumi, Dai Kouno
  • Publication number: 20130250311
    Abstract: A detecting device includes an actuating unit for driving a transparent grating structure, a light source for emitting light to the transparent grating structure driven by the actuating unit, a light sensor for sensing the light emitted from the light source as the transparent grating structure is moved to different positions relative to the light source so as to generate a corresponding optical intensity signal, a transforming circuit coupled to the light sensor for transforming the optical intensity signal into a transforming signal, and a processing unit coupled to the transforming circuit for determining a position of the transparent grating structure according to the transforming signal transmitted from the transforming circuit.
    Type: Application
    Filed: November 29, 2012
    Publication date: September 26, 2013
    Applicant: HITI DIGITAL, INC.
    Inventors: Tsung-Yueh Chen, Chih-Chieh Lin
  • Patent number: 8537376
    Abstract: A device sends a first light beam to a target which returns a portion of the first beam as a second beam. First and second motors direct the first light beam to a first direction determined by first and second angles of rotation about first and second axes. First and second angle measuring devices measure first and second angles of rotation. A distance meter measures a first distance between device and target. A second portion of the second beam passes through a diffuser and onto a position detector which produces a first signal in response. A control system sends a second signal to the first motor and a third signal to the second motor, the second and third signals based on the first signal. The control system adjusts the first direction of the first beam to the target position. A processor provides a 3D coordinate of the target.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: September 17, 2013
    Assignee: Faro Technologies, Inc.
    Inventors: Lawrence B. Brown, Jonathan Robert Day
  • Patent number: 8537370
    Abstract: A measuring device for detecting a relative position, the measuring device including a measurement graduation movable in at least one measurement direction and a scanning unit for determining a relative position of the measurement graduation with respect to the scanning unit. The scanning unit includes a light source, a scanning grating disposed on a first side of a transparent carrier element that is positioned in a scanning beam path and a detector arrangement. The scanning unit further includes an attenuation structure that adjusts a light intensity on the detector arrangement in a defined manner, wherein either 1) the attenuation structure is disposed on a second side, opposite the first side, of the transparent carrier element or 2) the attenuation structure has a permeability that varies as a function of location at least along one direction so that a light intensity which is uniform at least in that one direction results on the detector arrangement.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 17, 2013
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventor: Ulrich Benner
  • Patent number: 8497996
    Abstract: The present invention relates to an arrangement for measuring relative movement. The measuring arrangement comprises a light source (110, 210) for emitting a light beam, a moving element (120, 220) having a reflective surface (121, 221) adapted to reflect a first wavefront portion of the light beam, and a reference element (130, 230) having a reflective surface (131, 231) adapted to reflect a second wavefront portion of the light beam. The arrangement further comprises detecting means (140, 240) for detecting changes in a spatial interference pattern produced by the light reflected from the moving element and the reference element, and processing means (150, 160, 250, 260) for calculating the relative movement between the moving element and the reference element from the phase change in the detected spatial interference pattern. The invention also relates to a method for measuring relative movement.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 30, 2013
    Assignee: Gasera Ltd
    Inventor: Jyrki Kauppinen
  • Patent number: 8493573
    Abstract: High-resolution optical position sensing is disclosed using sparse, low-resolution detectors. Precise location of two-dimensional position or angular orientation of an optical beam at the focal plane of a sensor system is made possible using sparse low-resolution detectors. The beam may be emitted directly from a source, or scattered from a remote target. The high precision in determining the beam or focal spot location is the result of a novel data processing and analysis method for the signals from the low-resolution detectors.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: July 23, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Stephen R. Chinn, Lew Goldberg
  • Publication number: 20130155419
    Abstract: A relocating device for locating and relocating a first object relative to a second object is for use in association with a means for defining a location point on the second object. The relocating device includes at least one light source, a power source. The at least one light source is producing at least two beams of light wherein each beam of light is capable of defining a beam location point on the second object. The at least one light source is operably connected to the first object. The power is source operably connected to the at least one light source. The means for defining a location point on the second object defines each beam location point on the second object.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Darren Glen Atkinson, Keith Louis Haughton
  • Patent number: 8456648
    Abstract: An optical detection device includes: an irradiation unit that emits irradiation light onto an area formed along a planar area; first and second light receiving units that receive reflection light of the irradiation light reflected by a target object; and a calculation unit that calculates positional information of the target object based on a light reception result of at least one of the first and second light receiving units. A distance between the second light receiving unit and the planar area is shorter than a distance between the first light receiving unit and the planar area, and the first and second light receiving units receive the reflection light that is incident in a direction along the planar area.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: June 4, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Kanechika Kiyose