Pivotally Or Moving In Circular Arc Patents (Class 359/225.1)
  • Patent number: 11446863
    Abstract: An additive manufacturing apparatus including a scanner for directing a laser beam on to layers of flowable material to selectively solidify the material to form an object in a layer-by-layer manner. The scanner includes an optical component operable under the control of a first actuator to reflect the laser beam over a first range of angles in a first dimension and the or a further optical component operable under the control of a second actuator to reflect the laser beam over a second range of angles in the first dimension, wherein the second actuator provides a faster dynamic response but a smaller range of movement of the laser beam than the first actuator.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: September 20, 2022
    Assignee: RENISHAW PLC
    Inventors: Ceri Brown, Nicholas H H Jones, David G J Ewing, Geoffrey McFarland
  • Patent number: 10509198
    Abstract: A lever is used to rotate a microelectromechanical systems (MEMS) mirror. The lever can be used to provide more torque from a vertical comb drive. The MEMS mirror can be part of an array of micro mirrors used for beam steering a laser in a Light Detection and Ranging (LiDAR) system for an autonomous vehicle.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 17, 2019
    Assignee: DiDi Research America, LLC
    Inventors: Qin Zhou, Youmin Wang
  • Patent number: 10509208
    Abstract: Methods and apparatus for implementing a camera having a depth which is less than the maximum length of the outer lens of at least one optical chain of the camera are described. In some embodiments a light redirection device, e.g., a mirror, is used to allow a relatively long optical chain with a relatively large non-circular outer lens. In some embodiments the light redirection device has a depth, e.g., front of camera to back of camera dimension, which is less than the maximum length of the aperture of the outer lens in the aperture's direction of maximum extent. Multiple optical chains with non-circular outer lenses arranged in different directions may and in some embodiments are used to capture images with the captured images being combined to generate a composite image.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 17, 2019
    Assignee: LIGHT LABS INC.
    Inventor: Rajiv Laroia
  • Patent number: 10416383
    Abstract: Methods and apparatus for concentrating light into a specified focal volume and for collecting light from a specified volume. Incident light is coupled through a plurality of successive transmissive asymmetric microstructure elements. The succession of transmissive asymmetric microstructure elements may be designed by representing an electromagnetic field as a linear combination of eigenmodes of one of the succession of transmissive asymmetric microstructure elements. The asymmetric microstructure elements are represented as a plurality of mesh lattice units and eigenmode solutions to Maxwell's equations are obtained for each mesh lattice unit subject to consistent boundary conditions. S-matrix formalism is employed to calculate a field output and weighting coefficients for the eigenmodes are selected to achieve a specified set of field output characteristics.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: September 17, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Lynford Goddard, Jinlong Zhu
  • Patent number: 10416472
    Abstract: There are provided a reflecting module for optical image stabilization (OIS) and a camera module including the same. The reflecting module for OIS includes: a housing including an internal space; a movable holder supported in the internal space of the housing by an elastic member; a reflecting member disposed on the movable holder; and a driving part configured to provide driving force to the movable holder so that the movable holder is moved relative to the housing, wherein the elastic member includes a fixed frame fixed to the housing, a movable frame provided in the fixed frame, and a spring connecting the fixed frame and the movable frame to each other and, the movable frame is movable in relation to two axes perpendicular to each other.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: September 17, 2019
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Bong Won Jeong, Jae Kyung Kim, Young Bok Yoon, Hyun Kag Park
  • Patent number: 10394142
    Abstract: A scanning mirror monitoring system and method as well as a focusing and leveling system are disclosed. The scanning mirror monitoring system includes a simple harmonic motion detector unit and a signal processing unit (25). The simple harmonic motion detector unit monitors a simple harmonic motion of a scanning mirror (8) and produces a simple harmonic signal. The signal processing unit (25) receives the simple harmonic signal and instructs a scanning mirror actuator unit (27) to adjust the amplitude and/or position of the scanning mirror (8) based on a variation found in the simple harmonic signal. The signal processing unit (25) identifies the variation by monitoring an optical intensity profile.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: August 27, 2019
    Assignee: SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    Inventors: Jiming Fan, Haijiang Wang
  • Patent number: 10284118
    Abstract: A two-axis angular pointing device includes a pivot bearing configured to support a payload. A first actuator is positioned to contact the payload at a first drive point. A second actuator is positioned to contact the payload at a second drive point. The first actuator is configured to generate a first movement of the payload in a direction substantially orthogonal to a plane defined by a center of the pivot bearing, the first drive point, and the second drive point to cause the payload to rotate around a first rotation axis. The second actuator is configured to generate a second movement of the payload at the second drive point in the direction substantially orthogonal to the plane to cause the payload to rotate around a second rotation axis. A method of making a two-axis angular pointing device is also disclosed.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: May 7, 2019
    Assignee: New Scale Technologies, Inc.
    Inventors: David A. Henderson, Qin Xu
  • Patent number: 10228549
    Abstract: A flat lens system includes a wedge-shaped refractive material having a first surface and a second surface opposite to the first surface for refracting incident light beams from an object having a width of Y, from the first surface towards the second surface; a reflective material positioned at the second surface of the wedge-shaped refractive material for reflecting the refracted light beams at a first angle toward the first surface, wherein the reflected light beams are refracted from the first surface at a second angle to form an image of the object having a width of X and including chromatic aberrations; and an apparatus for processing the image of the object to reduce said chromatic aberrations.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: March 12, 2019
    Assignee: SPECTRUM OPTIX INC.
    Inventor: John Daugela
  • Patent number: 10175448
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: January 8, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Patent number: 10031156
    Abstract: The embodiments described herein provide microelectromechanical systems (MEMS) devices, such as three-axis MEMS devices that can sense acceleration in three orthogonal axes (e.g., x-axis, y-axis, and z-axis). In general, the embodiments described can provide decoupling between the sense motions of all three axes from each other. This decoupling is facilitated by the use of an inner frame, and an outer frame, and the use of rotative spring elements combined with translatory spring elements that have asymmetric stiffness. Specifically, the translatory spring elements facilitate translatory motion in two directions (e.g., the x-direction and y-direction) and have an asymmetric stiffness configured to compensate for an asymmetric mass used to sense in the third direction (e.g., the z-direction).
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: July 24, 2018
    Assignee: NXP USA, Inc.
    Inventor: Michael Naumann
  • Patent number: 9835576
    Abstract: A method of manufacturing a biosensor having a microbeam linked to a support, at least one electrode a biological molecule A grafted onto the microbeam in a different zone from the zone where the electrode is embedded, and a mechanoelectrical transducer for converting variations of the mechanical properties of the microbeam into an electrical signal, when the biological molecule A is placed in contact with a biological molecule B to be detected and/or quantified. The method includes: formation of an electrode on fluoropolymer material sheet, passivation of the electrode(s), creation of the form of the biosensor in the sheet of polymer material and separation of this form from the sheet, functionalization either of a prefunctionalized zone or of a zone of the microbeam, this zone being different from the zone wherein the electrode is embedded, and grafting of a biological molecule A onto the functionalized zone.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: December 5, 2017
    Assignee: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Jérôme Polesel Maris, Thomas Berthelot
  • Patent number: 9544573
    Abstract: A mirror micromechanical structure has a mobile mass carrying a mirror element. The mass is drivable in rotation for reflecting an incident light beam with a desired angular range. The mobile mass is suspended above a cavity obtained in a supporting body. The cavity is shaped so that the supporting body does not hinder the reflected light beam within the desired angular range. In particular, the cavity extends as far as a first side edge wall of the supporting body of the mirror micromechanical structure. The cavity is open towards, and in communication with, the outside of the mirror micromechanical structure at the first side edge wall.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: January 10, 2017
    Assignee: STMicroelectronics S.r.l.
    Inventors: Roberto Carminati, Sebastiano Conti, Sonia Costantini
  • Patent number: 9528821
    Abstract: A high speed oscillating system for non-contact optical scanning of an elongated product moving in a linear production process to determine the dimensional properties and surface profile integrity thereof. The system is designed to increase the scanning frequency and thereby the capability to measure the diameter or size of the product as well as its surface integrity and pick out flaws in the structure of the product in a manner which otherwise is not possible with present day systems on the market.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 27, 2016
    Assignee: BAE Systems plc
    Inventor: John Kyriakis
  • Patent number: 9303978
    Abstract: An apparatus measures positions of marks on a lithographic substrate. A measurement optical system comprises illumination subsystem for illuminating the mark with a spot of radiation and a detecting subsystem for detecting radiation diffracted by the mark. A tilting mirror moves the spot of radiation relative to the reference frame of the measurement optical system synchronously with a scanning motion of the mark itself, to allow more time for accurate position measurements to be acquired. The mirror tilt axis is arranged along the intersection of the mirror plane with a pupil plane of the objective lens to minimize artifacts of the scanning. The same geometrical arrangement can be used for scanning in other types of apparatus, for example a confocal microscope.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: April 5, 2016
    Assignee: ASML Netherlands B.V.
    Inventor: Arie Jeffrey Den Boef
  • Patent number: 9041990
    Abstract: A device (100) for variable deflection of light is described, encompassing a micromechanical mirror arrangement (14) having a plurality of light-reflecting mirror actuators (18, 20, 22, 24, 26), and a control unit (32) with which the mirror actuators (18, 20, 22, 24, 26) are controllable into different reflection positions in order to vary the light deflection. The device (100) has a back-reflection structure (60), systematically adapted to the mirror arrangement (14), for reflecting back onto another portion of the mirror actuators (18, 20, 22, 24, 26), in targeted fashion, the light reflected onto the back-reflection structure (60) from one portion of the mirror actuators (18, 20, 22, 24, 26).
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: May 26, 2015
    Assignee: Leica Microsystems CMS GmbH
    Inventor: Frank Schreiber
  • Patent number: 9036236
    Abstract: The invention relates to a mirror module of a Fresnel Solar Collector System with a plurality of mirror elements pivotably mounted on a carrier plate and extending in parallel, which focus the sun light upon a receiver unit mounted above the mirror module in a raised position. The mirror elements are pivotably mounted on the carrier plate at least along longitudinal sections.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 19, 2015
    Inventor: Hartmut Schneider
  • Publication number: 20150124305
    Abstract: A beam steering mirror device includes a mirror having an optical part with a reflecting or optical surface and a mirror body. The optical part is essentially thermally de-coupled from the body. A biaxial suspension of the mirror body has two rotation axes arranged essentially perpendicular with respect to each other and being located in a common plane. The suspension includes a set of four flexible pivots with a pair of pivots assigned to each rotation axis. The mirror is arranged with regard to the biaxial suspension such that its center of mass is approximately located in the intersection point of the two rotation axes. The device also includes motors for moving of the mirror body around the two rotation axes, sensors for determining the tilting angle of the mirror, and a housing for the mirror, the biaxial suspension, the motors and the sensors.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: Reiner BARHO, Manfred SCHMID, Harald LANGENBACH
  • Patent number: 9025232
    Abstract: Provided is an image-capturing apparatus including a connecting portion having an opening through which a beam coming from an observation device is incident; an optical-path switching portion that switches an optical path of the beam incident along an incident optical axis; image-capturing devices that capture an image of the beam passing along the switched optical path. A first image-capturing device is provided so as to be rotatable about an axis parallel to the central axis thereof. The optical-path switching portion is provided so as to be pivotable such that a reflecting surface thereof is disposed on or retracted from the incident optical axis. When the reflecting surface is retracted, the beam is incident on a second image-capturing device. When the reflecting surface is disposed, the beam is reflected by the reflecting surface and incident on at least the first image-capturing device.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Olympus Corporation
    Inventors: Takayuki Kono, Shinpei Tomita
  • Patent number: 8994836
    Abstract: A feed forward command aiding architecture with corresponding method, system, and computer product are provided. The feed forward command aiding architecture includes generating angle and rate commands from a received inertial data input. The angle command is feed into a proper order position loop producing an intermediate result. An angle feedback is differentiated producing a rate loop feedback. The intermediate result, rate command, and rate loop feedback are then feed into a proper order rate loop producing a torque command. The proper order rate loop is nested inside of the proper order position loop. The torque command being generated moves a beam steering element of an electro-optic sensor to deflect a line of sight of the electro-optic sensor by an angle approximating the received inertial angular input.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 31, 2015
    Assignee: Raytheon Company
    Inventors: Walter W. Norman, David E. Norman, David A. Kluver, Sr.
  • Patent number: 8988752
    Abstract: A beam control apparatus for an illumination beam includes an imaging illumination optical unit assembly for imaging an intermediate focus of the illumination beam onto an object field to be illuminated. A control component that influences a beam path of the illumination beam is displaceable in at least one degree of freedom by at least one displacement actuator. A position sensor device of the beam control apparatus detects a position of the intermediate focus. A control device of the beam control apparatus is signal-connected to the position sensor device and the displacement actuator. From an intermediate focus position signal received from the position sensor device, the control device calculates control signals for the displacement actuator and forwards the latter to the displacement actuator for controlling the position of the intermediate focus. This results in a beam control apparatus which makes well-controllable illumination possible together with a simple construction.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 24, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Marten Krebs, Gerhard Huber, Uwe Schellhorn, Joachim Stuehler
  • Patent number: 8982440
    Abstract: MEMS and fabrication techniques for positioning the center of mass of released structures in MEMS are provided. A MEMS device includes a substrate and a released structure connected to the substrate via a flexure. The released structure includes a frame rotatable with respect to the substrate, and an elongate first member having a longitudinal axis extending perpendicularly from an undersurface of the frame and a free end remote from the frame. A recess is formed in an end face of the free end. The recess has a longitudinal axis substantially parallel to the longitudinal axis of the first member and a transverse area smaller than an area of the end face.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: March 17, 2015
    Assignee: CALIENT Technologies, Inc.
    Inventor: Chris Seung Bok Lee
  • Publication number: 20150055107
    Abstract: An optical element assembly includes a base, and an element unit. The element unit includes (i) an optical element having an element central axis and an element perimeter; and (ii) an element connector assembly that couples the optical element to the base, the element connector assembly including a flexure assembly having an element flexure and a base flexure. A distal end of the element flexure is coupled to the optical element near the element perimeter, a distal end of the base flexure is coupled to the base, and a proximal end of the element flexure is coupled to a proximal end of the base flexure near the element central axis.
    Type: Application
    Filed: August 26, 2014
    Publication date: February 26, 2015
    Inventors: Shane R. Palmer, Michael Binnard
  • Patent number: 8905553
    Abstract: A method of detecting a scanning angle range of a laser beam of a laser projector is provided. First, a photo sensor is disposed between first and second positions on a projection mirror. Then, a laser beam emitted from the laser projector scans back and forth between the first and second positions, so that the photo sensor receives the laser beam sequentially at first and second scanning time points to generate first and second sensing signals, respectively. If an actual time interval between the first and second sensing signals conforms to an expected time interval, an actual scanning angle range of the laser beam is determined as normal. If the actual time interval does not conform to the expected time interval, the actual scanning angle range of the laser beam is determined as abnormal and the laser projector stops emitting the laser beam. A laser projector is also provided.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: December 9, 2014
    Assignee: Lite-On Technology Corporation
    Inventors: Chia-Tse Lin, Kai-Wen Cheng
  • Publication number: 20140355095
    Abstract: A method for protecting an optical MEMS device, including providing an optical MEMS device defining a field of view and including layers which define a main plane; and forming a protective element, constructed and operative for at least partly covering the optical MEMS device, from an optical structural material and wherein the protective element includes a planar portion tilted with respect to said main plane via which a majority of light energy directed toward said main plane must pass.
    Type: Application
    Filed: January 16, 2013
    Publication date: December 4, 2014
    Inventors: Matan Naftali, Sharon Hornstein, Adi Baram, Menashe Yehiel
  • Patent number: 8902485
    Abstract: A contrast enhancing system is provided comprising: a digital micromirror device (DMD); a light source; a first integrator that receives light from the light source, comprising lateral long and short dimensions, the lateral short dimension at a non-zero angle to the DMD tilt axis; a second integrator that receives and shapes light from the first integrator; a telecentric lens about midway between the integrators that generates fast and slow f-number directions of the light in angle space, respectively corresponding to the lateral long and short dimensions of the first integrator, the slow f-number direction correspondingly at the non-zero angle to the DMD tilt axis, thereby increasing dead-zones between adjacent ones of a DMD illumination path and DMD reflection paths for each of the on, flat and off-state positions; and, at least one optical component that focuses the light along the illumination path from the second integrator onto the DMD.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: December 2, 2014
    Assignee: Christie Digital Systems USA, Inc.
    Inventors: Mark Bird, John Domm
  • Patent number: 8873128
    Abstract: A micromechanical mirror arrangement comprising a mirror plate (1) which forms a translation mirror, which is connected via at least one holding element (2), preferably two or more holding elements, to a frame structure (3) and is movable in translation relative to this frame structure, characterized in that the connection region (4) of at least one holding element (2), preferably of all holding elements, with the mirror plate (1) is arranged inwardly offset, viewed from the outer margin (5) of the mirror plate toward to the center (6) of the mirror plate.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 28, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Technische Universitaet Dresden
    Inventors: Holger Conrad, Thomas Grasshoff, Denis Jung, Thilo Sandner
  • Patent number: 8797629
    Abstract: A method of operating by pulse width modulation a micromirror device is disclosed. In one aspect, the method includes providing a micromirror device having a micromirror element electrostatically deflectable around a rotation axis between a first and second position. The micromirror element is controllable by applying voltage signals to a first and second electrode on one side of the rotation axis and a third and fourth electrode on the other side. The method includes associating an intermediate value of intensity to the micromirror element during a time frame, the intensity being between a first value corresponding to the first position and a second value corresponding to the second position. The method includes switching the micromirror element between the first and second position. The intermediate value corresponds to the ratio of periods in the time frame in which the micromirror element is in the first or second position.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: August 5, 2014
    Assignees: IMEC, Universiteit Gent
    Inventors: Herbert De Smet, Roel Beernaert
  • Publication number: 20140211289
    Abstract: A head-mounted image display apparatus includes: a light source that emits laser light; a splitter that splits the laser light into first laser light and second laser light having a different optical intensity than the first laser light; an image drawing section that causes the first laser light to be reflected off a mirror and causes the mirror to make pivotal motion to perform image drawing; a controller that controls the pivotal motion of the mirror; and a notification section that notifies other persons by diffusing the second laser light that the image drawing section is performing image drawing.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 31, 2014
    Applicant: Seiko Epson Corporation
    Inventors: Makiko Hino, Yasushi Mizoguchi
  • Publication number: 20140198367
    Abstract: This invention relates to a beam steering mechanism with ultrahigh frequency response and high sensitivity, which is based on the translation of two mirrors. Beam steering is achieved by the translations of two mirrors in the X axial mirror group and Y axial mirror group. The two translation mirrors are located at the output ends of two PZT actuators, and are directly actuated by the two PZT actuators. The dynamic characteristics of the two translation mirrors are always exactly the same as the output characteristics of the PZT actuators. There is no mechanical translation loss in this beam steering mechanism, and so, the beam steering mechanism has an ultrahigh frequency response and high angular deflection sensitivity.
    Type: Application
    Filed: September 28, 2012
    Publication date: July 17, 2014
    Applicant: Harbin Institute of Technology
    Inventors: Jiubin Tan, Fan Zhu, Jiwen Cui
  • Publication number: 20140146377
    Abstract: A contrast enhancing system is provided comprising: a digital micromirror device (DMD); a light source; a first integrator that receives light from the light source, comprising lateral long and short dimensions, the lateral short dimension at a non-zero angle to the DMD tilt axis; a second integrator that receives and shapes light from the first integrator; a telecentric lens about midway between the integrators that generates fast and slow f-number directions of the light in angle space, respectively corresponding to the lateral long and short dimensions of the first integrator, the slow f-number direction correspondingly at the non-zero angle to the DMD tilt axis, thereby increasing dead-zones between adjacent ones of a DMD illumination path and DMD reflection paths for each of the on, flat and off-state positions; and, at least one optical component that focuses the light along the illumination path from the second integrator onto the DMD.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Inventors: Mark BIRD, John DOMM
  • Publication number: 20140078568
    Abstract: A system 120 for reflecting or redirecting incident light, microwave or sound energy includes a first substrate 144 configured to support an array of reflective elements 130 that can be angularly displaced through a range of substantially 90 degrees in response to a reflector angle control signal and a controller programmed to generate the reflector angle control signal to achieve desired incident energy beam or wavefront re-direction. The reflective elements 130 preferably comprise MEMS micro-reflector elements hingedly or movably attached to the first substrate 130 and define a reflective surface that is aimed at the source of incident light, microwave or sound energy.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 20, 2014
    Applicant: Cornell University
    Inventors: Amit Lal, Serhan M. Ardanuc
  • Patent number: 8659812
    Abstract: Provided is a wavelength selective switch, which includes: an input/output unit; a dispersive portion; a deflection portion; and an ovalization relay optical system. In the input/output unit, input/output portions are two-dimensionally arranged. The dispersive portion is capable of dispersing signal light along a first plane. The deflection portion deflects the signal light. The ovalization relay optical system condenses the signal light beams on to a first conjugate point. The ovalization relay optical system makes a beam waist forming position along a first direction coincide with the first conjugate point. The ovalization relay optical system condenses signal light, in a second direction, onto a first condensing point. The ovalization relay optical system makes the first condensing point conjugate to the first conjugate point. The ovalization relay optical system ovalizes the beam shape of the signal light beams incident on the deflection element.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: February 25, 2014
    Assignee: JDS Uniphase Corporation
    Inventor: Koji Matsumoto
  • Publication number: 20140043665
    Abstract: An illumination system of a microlithographic projection exposure apparatus comprises an optical raster plate having a light entrance surface. An irradiance distribution on the light entrance surface determines an angular light distribution of projection light when it impinges on a mask to be illuminated. The illumination system further comprises a control unit and a spatial light modulator which produces on the light entrance surface of the optical raster plate a plurality of light spots whose positions can be varied. At least some of the light spots have, along a reference direction (X), a spatial irradiance distribution comprising a portion in which the irradiance varies periodically with a spatial period P.
    Type: Application
    Filed: October 2, 2013
    Publication date: February 13, 2014
    Inventor: Markus Deguenther
  • Patent number: 8582189
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 12, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Patent number: 8531752
    Abstract: A tiltable MEMS device is disclosed having an asymmetric, electrostatically actuated tiltable platform and a reflector mounted on the platform so that the platform is hidden below the reflector, except for a portion of long side of the platform extending from under the reflector. An electrostatic stator actuator is mounted on the substrate under the long side of the tiltable platform. The range of a unidirectional tilt is increased by providing a recess in the substrate under the extended portion of the platform to accommodate the increased range of movement of the tiltable platform.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 10, 2013
    Assignee: JDS Uniphase Corporation
    Inventor: Abdul Jaleel K. Moidu
  • Patent number: 8525070
    Abstract: A laser irradiation apparatus is provided with a laser oscillator, an articulated beam propagator in which a plurality of pipes are connected to each other in an articulated portion, and a course change means of a laser beam in the articulated portion. At least one pipe of the plurality of pipes includes a transfer lens for suppressing stagger of a laser beam in a traveling direction, in each pipe. The articulated portion produces degree of freedom in disposition of a laser oscillator, and the transfer lens enables suppression of change in beam profile.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Yoshiaki Yamamoto
  • Patent number: 8498037
    Abstract: A method for processing workpieces includes performing a laser processing operation in which a laser beam is directed at a first mirror face and at a second mirror face of a redirecting mirror. The second mirror face is at least partially surrounded by the first mirror face. During the laser processing operation, the second mirror face performs a pendulum movement relative to the first mirror face.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 30, 2013
    Assignee: Trumpf Laser—und Systemtechnik GmbH
    Inventors: Wolfgang Andreasch, Stefan Boeckmann
  • Publication number: 20130155479
    Abstract: Provided is an image-capturing apparatus including a connecting portion having an opening through which a beam coming from an observation device is incident; an optical-path switching portion that switches an optical path of the beam incident along an incident optical axis; image-capturing devices that capture an image of the beam passing along the switched optical path. A first image-capturing device is provided so as to be rotatable about an axis parallel to the central axis thereof. The optical-path switching portion is provided so as to be pivotable such that a reflecting surface thereof is disposed on or retracted from the incident optical axis. When the reflecting surface is retracted, the beam is incident on a second image-capturing device. When the reflecting surface is disposed, the beam is reflected by the reflecting surface and incident on at least the first image-capturing device.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 20, 2013
    Applicant: OLYMPUS CORPORATION
    Inventor: OLYMPUS CORPORATION
  • Patent number: 8462410
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 11, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Publication number: 20130120820
    Abstract: A beam control apparatus for an illumination beam includes an imaging illumination optical unit assembly for imaging an intermediate focus of the illumination beam onto an object field to be illuminated. A control component that influences a beam path of the illumination beam is displaceable in at least one degree of freedom by at least one displacement actuator. A position sensor device of the beam control apparatus detects a position of the intermediate focus. A control device of the beam control apparatus is signal-connected to the position sensor device and the displacement actuator. From an intermediate focus position signal received from the position sensor device, the control device calculates control signals for the displacement actuator and forwards the latter to the displacement actuator for controlling the position of the intermediate focus. This results in a beam control apparatus which makes well-controllable illumination possible together with a simple construction.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 16, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventor: Carl Zeiss SMT GmbH
  • Publication number: 20130083383
    Abstract: The invention relates to a mirror module of a Fresnel Solar Collector System with a plurality of mirror elements pivotably mounted on a carrier plate and extending in parallel, which focus the sun light upon a receiver unit mounted above the mirror module in a raised position. The mirror elements are pivotably mounted on the carrier plate at least along longitudinal sections.
    Type: Application
    Filed: August 4, 2011
    Publication date: April 4, 2013
    Inventor: Hartmut Schneider
  • Patent number: 8400697
    Abstract: A disclosed optical scanner apparatus can include a member having spaced apart proximal and distal portions. An optical scanning device can be configured to direct optical radiation, which is moveably coupled to the proximal portion of the member and can be configured to rotate in a plane of movement to a first position to direct the optical radiation along a first path and can be configured to rotate in the plane of movement to a second position to direct the optical radiation along a second path. A MicroElectroMechanical Systems (MEMS) actuator can be coupled to the optical scanning device, where the MEMS actuator can be configured to move in a first direction to move the optical scanning device to the first position and can be configured to move in a second direction to move the optical scanning device to the second position.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: March 19, 2013
    Assignees: Duke University, University of North Carolina at Charlotte
    Inventors: Stephen W. Smith, Kenneth L. Gentry, Jason Zara, Stephen M. Bobbio
  • Publication number: 20130038917
    Abstract: Provided is a wavelength selective switch which includes: at least one input port; a dispersive portion for dispersing wavelength-multiplexed light input from the input port into wavelength-demultiplexed lights; a condenser element for condensing the wavelength-demultiplexed lights dispersed by the dispersive portion; a deflection portion having deflection elements for deflecting, for each wavelength-demultiplexed light condensed by the condenser element; at least one output port for outputting the wavelength-demultiplexed lights deflected by the deflection portion. A light-condensing position shift compensating element is disposed in an optical path between the input port and the dispersive portion or in the dispersive portion, for compensating light-condensing position shift of the wavelength-demultiplexed lights relative to the deflection element, light-condensing position shift being generated based on the arrangement of the input ports.
    Type: Application
    Filed: January 30, 2012
    Publication date: February 14, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Satoshi Watanabe, Koji Matsumoto, Toshiro Okamura, Takeshi Yamazaki
  • Publication number: 20130033734
    Abstract: A device (100) for variable deflection of light is described, encompassing a micromechanical mirror arrangement (14) having a plurality of light-reflecting mirror actuators (18, 20, 22, 24, 26), and a control unit (32) with which the mirror actuators (18, 20, 22, 24, 26) are controllable into different reflection positions in order to vary the light deflection. The device (100) has a back-reflection structure (60), systematically adapted to the mirror arrangement (14), for reflecting back onto another portion of the mirror actuators (18, 20, 22, 24, 26), in targeted fashion, the light reflected onto the back-reflection structure (60) from one portion of the mirror actuators (18, 20, 22, 24, 26).
    Type: Application
    Filed: July 26, 2012
    Publication date: February 7, 2013
    Applicant: LEICA MICROSYSTEMS CMS GMBH
    Inventor: Frank Schreiber
  • Patent number: 8351104
    Abstract: A mirror system comprising: a mirror; at least one piezoelectric motor having a coupling surface for coupling the motor to a moveable body; at least one spherical contact surface coupled to the mirror; and a motor mounting frame that holds a piezoelectric motor of the at least one piezoelectric motor and presses the piezoelectric motor coupling surface to a contact surface of the spherical contact surface; wherein the motor is controllable to apply force to the contact surface that rotates the mirror.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 8, 2013
    Inventors: Silvio Zaifrani, Gal Peled, Gal Eshed, Shaul Hasson, Nir Karasikov
  • Publication number: 20120281266
    Abstract: A tiltable MEMS device is disclosed having an asymmetric, electrostatically actuated tiltable platform and a reflector mounted on the platform so that the platform is hidden below the reflector, except for a portion of long side of the platform extending from under the reflector. An electrostatic stator actuator is mounted on the substrate under the long side of the tiltable platform. The range of a unidirectional tilt is increased by providing a recess in the substrate under the extended portion of the platform to accommodate the increased range of movement of the tiltable platform.
    Type: Application
    Filed: October 26, 2011
    Publication date: November 8, 2012
    Inventor: Abdul Jaleel K. MOIDU
  • Publication number: 20120218464
    Abstract: An apparatus and system for projecting coded light and for imaging thereof, featuring a micro-mirror for pivoting and for causing each of a plurality of masks to be illuminated sequentially, each mask having a different pattern.
    Type: Application
    Filed: December 27, 2011
    Publication date: August 30, 2012
    Inventors: Sagi Ben-Moshe, Ron Kimmel, Michael Bronstein
  • Publication number: 20120212718
    Abstract: An apparatus measures positions of marks on a lithographic substrate. A measurement optical system comprises illumination subsystem for illuminating the mark with a spot of radiation and a detecting subsystem for detecting radiation diffracted by the mark. A tilting mirror moves the spot of radiation relative to the reference frame of the measurement optical system synchronously with a scanning motion of the mark itself, to allow more time for accurate position measurements to be acquired. The mirror tilt axis is arranged along the intersection of the mirror plane with a pupil plane of the objective lens to minimize artifacts of the scanning. The same geometrical arrangement can be used for scanning in other types of apparatus, for example a confocal microscope.
    Type: Application
    Filed: January 17, 2012
    Publication date: August 23, 2012
    Applicant: ASML Netherlands B.V.
    Inventor: Arie Jeffrey Den Boef
  • Patent number: 8238007
    Abstract: A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: August 7, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly Bruland, Mark Unrath, Stephen Swaringen, Ho Wai Lo, Clint Vandergiessen, Keith Grant
  • Patent number: 8238018
    Abstract: A micro-electro-mechanical-system (MEMS) micromirror array has an array of micromirrors on a support structure. Each micromirror is pivotally attached to the support structure by a resilient structure. The resilient structure defines a pivot axis. There is an array of electrostatic actuators for pivotally driving the array of micromirrors about the pivot axis. Each electrostatic actuator comprises a first part carried by the support structure, and a second part carried by the corresponding micromirror. An electrostatic sink is mounted to the support structure that shields at least one micromirror from spurious electrostatic actuation.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 7, 2012
    Inventor: Tiansheng Zhou