By Reflection Patents (Class 359/318)
-
Patent number: 12222228Abstract: An optical encoder comprises an emitter; a receiver; a reflector; and a code carrier, wherein the emitter emits electromagnetic radiation along an emission axis in the direction of the reflector and the reflector deflects the electromagnetic radiation along a reception axis in the direction of the receiver. The code carrier is movably supported and has a sequence of code sections to interrupt or to give way for the emitted electromagnetic radiation to impinge on the detector in dependence on the position of the code carrier, wherein the emission axis and the reception axis extend at an alignment angle with respect to one another that has a value in the range from 30 degrees to 150 degrees.Type: GrantFiled: April 6, 2020Date of Patent: February 11, 2025Assignee: VISHAY SEMICONDUCTOR GMBHInventors: Daniel Burger, Sascha Kuhn, Peter Mühleck, Christina Schaff
-
Patent number: 12197091Abstract: A liquid crystal spatial light modulator and a three-dimensional display device are provided. The liquid crystal spatial light modulator includes a base substrate and a plurality of pixel units arranged in an array. Each pixel unit includes one pixel electrode, and the pixel electrode is located on the base substrate. Each pixel unit includes a light shielding structure, and the light shielding structure is configured to divide the each pixel unit into a plurality of pixel regions.Type: GrantFiled: September 7, 2020Date of Patent: January 14, 2025Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Gaolei Xue, Wei Wang, Xiaochuan Chen
-
Patent number: 12135415Abstract: A system includes a hinge structure. The hinge structure includes four support posts and four hinges, each hinge coupled to an edge of a support post and to a plate of the hinge structure, where each hinge includes two 90° turns. The system also includes a mirror coupled to the hinge structure and an electrode structure coupled to the hinge structure.Type: GrantFiled: August 10, 2021Date of Patent: November 5, 2024Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: William Craig McDonald, James Norman Hall, Kelly Jay Taylor, Song Zheng
-
Patent number: 11754843Abstract: This invention is augmented reality eyewear with a radial, honeycomb, or nested-ring array of selectively-movable reflective elements. These reflective elements can each be moved from a first configuration which is parallel to a line of sight from an eye to a second configuration which is perpendicular to this line of sight. The second configuration reflects light displaying a virtual image to the eye and blocks environmental light in the area of the virtual image. Since light from the environment does not shine through the virtual object, the virtual object appears solid instead of “ghost like.Type: GrantFiled: April 17, 2022Date of Patent: September 12, 2023Assignee: Holovisions LLCInventor: Robert A. Connor
-
Patent number: 10955725Abstract: A beam steering device is provided and includes: a first layer including a plurality of reflection regions; a second layer on the first layer and including a plurality of refractive-index-variable regions, each having a refractive index that is controlled by an applied voltage; an antenna layer on the second layer and including a plurality of nano-structures; and a driving circuit layer on a lower side of the first layer and comprising a plurality of circuit units, each respectively configured to control a voltage applied to one of the refractive-index-variable regions. The antenna layer is divided into a first region configured to control a travelling direction of incident light and a second region that is not configured to control the travelling direction of the incident light.Type: GrantFiled: October 12, 2018Date of Patent: March 23, 2021Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Sunil Kim, Junghyun Park
-
Patent number: 10852592Abstract: A liquid crystal display device is disclosed. The liquid crystal display device includes a first substrate, and a plurality of grooves periodically spaced apart from each other over the first substrate. The liquid crystal display device also includes a pixel electrode and a common electrode spaced apart from each other over the first substrate, and a liquid crystal layer including a plurality of liquid crystal capsules on the grooves.Type: GrantFiled: August 22, 2018Date of Patent: December 1, 2020Assignee: LG Display Co., Ltd.Inventors: Jung-Im Hwang, Hyun-Sook Jeon
-
Patent number: 9594263Abstract: The effective focal length of an optical system can be electronically controlled using switchable wave plates in conjunction with polarized light.Type: GrantFiled: December 28, 2015Date of Patent: March 14, 2017Assignee: Fakespace Labs, Inc.Inventors: Ian E. McDowall, Mark Bolas
-
Patent number: 9110316Abstract: A method of amplifying a magneto-optical Kerr effect by using photon crystal structures, and a photon crystal having an amplified magneto-optical Kerr effect, and a method of fabricating the photon crystal. The method of amplifying a magneto-optical Kerr effect by using photon crystal structures includes amplifying the magneto-optical Kerr effect by fabricating a magnetic photon crystal including a crystal magnet and using a periodically-structured surface of the crystal magnet.Type: GrantFiled: November 30, 2012Date of Patent: August 18, 2015Assignees: SAMSUNG ELECTRONICS CO., LTD., FACTORY OF NEW MATERIALS LLCInventors: Andrey Anatolevich Eliseev, Nina Aleksandrovna Sapoletova, Kirill Sergeevich Napolskiy, Andrey Anatolevich Grunin, Andrey Anatolevich Fedyanin
-
Patent number: 9110318Abstract: A driving device of a display apparatus, and a method of manufacturing the driving device. The driving device may have a specific structure, and be manufactured in such a manner, because a first electrode of a micro optical switch device may be formed simultaneously with the formation of at least a source region and a drain region, or a gate electrode of an active device and a capacitor electrode.Type: GrantFiled: November 13, 2013Date of Patent: August 18, 2015Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Dong-sik Shim, Woon-bae Kim, Hyung Choi
-
Publication number: 20150138628Abstract: The invention relates to a glazing used as projection screen operating in reflection, comprising a front face, onto which the image is projected, and a rear face. The glazing comprises a variable light scattering system comprising a functional film capable of switching between a transparent state and a scattering state and a coating comprising at least one mirror layer, said coating being separated from the front face at least by the functional film. The invention also relates to the use of a glazing as projection screen, to a projection system and to a projection method using said glazing.Type: ApplicationFiled: June 4, 2013Publication date: May 21, 2015Inventors: Pierrick Guiset, Patrick Gayout
-
Patent number: 9036243Abstract: On/off digital drive signals are used to create arbitrary spatial and temporal ribbon movement patterns in MEMS ribbon arrays.Type: GrantFiled: September 20, 2013Date of Patent: May 19, 2015Assignee: Alces Technology, Inc.Inventors: David M Bloom, Matthew A Leone
-
Patent number: 9001412Abstract: A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.Type: GrantFiled: October 10, 2012Date of Patent: April 7, 2015Assignee: QUALCOMM MEMS Technologies, Inc.Inventors: Clarence Chui, William Cummings, Brian James Gally, Lior Kogut, Ming-Hau Tung, Yeh-Jiun Tung, Chih-Wei Chiang, Denis Endisch
-
Patent number: 8995040Abstract: An exterior mirror assembly with an optical display is suggested, whereby a light opening (2) is provided on the exterior mirror assembly for the passage of light of a warning display. The optical display comprieses of a display housing (4), into which an active illuminated display element (10) is mounted as a light source.Type: GrantFiled: December 9, 2011Date of Patent: March 31, 2015Assignee: SMR Patents S.a.r.l.Inventor: Daniel Fritz
-
Patent number: 8982449Abstract: A light modulation layer of a full-color reflective display (112), the light modulation layer including an addressing layer (404); a mirror (406) positioned above the addressing layer (404), the mirror (406) configured to reflect light of a predetermined wavelength band; and an electro-optic layer (416) positioned above the mirror (406), the electro-optic layer (416) configured to absorb light of a predetermined wavelength band in response to a signal received from a switching device (204) of the addressing layer (404).Type: GrantFiled: April 29, 2010Date of Patent: March 17, 2015Assignee: Hewlett-Packard Development Company, L.P.Inventors: John Christopher Rudin, Stephen Kitson, Adrian Geisow
-
Patent number: 8864316Abstract: Optical MEMS scanning micro-mirror comprising: —a movable scanning micro-mirror (101) pivotally connected to a MEMS body (102) substantially surrounding the lateral sides of the micro-mirror; —an transparent prism (500, 600) substantially covering the reflection side of the micro-mirror; —wherein said prism has its outer face non-parallel to the micro-mirror neutral plane N-N, thereby providing a dual anti-speckle and anti-reflection effect, namely against parasitic light. The invention also provides the corresponding micro-projection system and method for reducing speckle.Type: GrantFiled: April 28, 2010Date of Patent: October 21, 2014Assignee: Lemoptix SAInventors: Lucio Kilcher, Nicolas Abele, Faouzi Khechana
-
Patent number: 8835804Abstract: A system for homogenizing the intensity profile of light includes a plurality of fiber coupled light sources for emitting fiber output beams from fiber output ends, and a light pipe optically coupled to the fiber output beams for producing a uniform light pipe output beam, an interleaver that transmits a first set of fiber output beams and reflects a second set of fiber output beams so that the principal rays of the fiber output beams propagate in a common plane, a first optical element for converging the principal rays, and a second optical element for telecentrically imaging the beams into the light pipe such that the principal rays of the beams propagate parallel to each other and the beams are focused in the light pipe in a focal plane transverse to the direction of propagation.Type: GrantFiled: January 4, 2011Date of Patent: September 16, 2014Assignee: nLIGHT Photonics CorporationInventors: Jason Farmer, Scott Karlsen, Rob Martinsen
-
Patent number: 8797638Abstract: A wavelength selective optical switch device includes an incidence and exit part where a signal beam made of light of a multiplicity of wavelengths enters and a signal beam of a selected wavelength exits, a wavelength dispersion element that spatially disperses a signal beam according to the wavelength thereof and multiplexes reflected light, a condensing element that condenses the light dispersed by the wavelength dispersion element onto a two-dimensional plane, and a wavelength selection element that uses a multilevel optical phased array arranged in a position to receive incident light developed on an xy-plane made of an x-axis direction and a y-axis direction perpendicular thereto developed according to a wavelength, having a multiplicity of pixels arrayed in a lattice on the xy-plane, and that cyclically changes the phase shift amount in the y-axis direction to a sawtooth wave pattern for each pixel on the x-axis.Type: GrantFiled: October 1, 2012Date of Patent: August 5, 2014Assignee: Santec CorporationInventor: Yuji Hotta
-
Patent number: 8767284Abstract: The effective focal length of an optical system can be electronically controlled using switchable wave plates in conjunction with polarized light.Type: GrantFiled: August 30, 2011Date of Patent: July 1, 2014Assignee: Fakespace Labs, Inc.Inventors: Ian McDowall, Mark Bolas
-
Patent number: 8754859Abstract: An electro-optic display comprises, in order, a light-transmissive electrically-conductive layer; a layer of a solid electro-optic material; and a backplane (162) bearing a plurality of pixel electrodes. A peripheral portion of the backplane extends outwardly beyond the layer of solid electro-optic material and bears a plurality of radiation generators (166) and a plurality of radiation detectors (168), the radiation generators and detectors together being arranged to act as a touch screen.Type: GrantFiled: October 28, 2010Date of Patent: June 17, 2014Assignee: E Ink CorporationInventors: Holly G. Gates, Robert W. Zehner, Russell J. Wilcox, Matthew J. Aprea
-
Patent number: 8755104Abstract: Embodiments of the present disclosure provide an electrowetting display panel and the manufacturing method thereof The electrowetting display panel comprises: a first glass substrate; a second glass substrate provided opposite to the first glass substrate; a cavity provided between the first glass substrate and the second glass substrate; a colored conductive liquid filled into the cavity; and a reflecting conductive element provided on the surface of the first glass substrate facing away from the second glass substrate, and corresponding to the cavity, wherein the reflecting conductive element is used for controlling the light transmissivity of the colored conductive liquid within the cavity according to the voltage applied to the reflecting conductive element and reflecting the light passing through the colored conductive liquid toward the second glass substrate.Type: GrantFiled: October 16, 2012Date of Patent: June 17, 2014Assignee: BOE Technology Group Co., Ltd.Inventors: Qi Yao, Jianshe Xue, Zhanfeng Cao, Tianming Dai, Feng Zhang
-
Patent number: 8743452Abstract: Metal nanovoids are grown on a stretchable plastic film. The fabrication proceeds by assembling the template of a single layer of close packed silica spheres on a conducting substrate. A conducting layer is then electrochemically grown on top to form a master. An elastomeric precursor is then coated on the master (e.g. by spinning) and is cured before removal. The resulting plastic film is then coated with a thin (e.g. 20 nm) layer of noble metal (e.g. Au, Ag or Cu), to produce a flexible film. Applications for such tuneable structural color would be coating of injection molded artifacts, such as mobile phone covers, car bodies to form an iridescent skin, wall and fascia decorations, loudspeaker coatings, architectural tent coverings, and clothing.Type: GrantFiled: May 22, 2008Date of Patent: June 3, 2014Assignee: Cambridge Enterprise Limited of the Old SchoolsInventors: Jeremy John Baumberg, Phillip Nigel Bartlett, Sumeet Mahajan, Robin Cole
-
Patent number: 8659816Abstract: This disclosure provides mechanical layers and methods of forming the same. In one aspect, a method of forming a pixel includes depositing a black mask on a substrate, depositing an optical stack over the black mask, and forming a mechanical layer over the optical stack. The black mask is disposed along at least a portion of a side of the pixel, and the mechanical layer defines a cavity between the mechanical layer and the optical stack. The mechanical layer includes a reflective layer, a dielectric layer, and a cap layer, and the dielectric layer is disposed between the reflective layer and the cap layer. The method further includes forming a notch in the dielectric layer of the mechanical layer along the side of the pixel so as to reduce the overlap of the dielectric layer with the black mask along the side of the pixel.Type: GrantFiled: April 25, 2011Date of Patent: February 25, 2014Assignee: Qualcomm Mems Technologies, Inc.Inventors: Yi Tao, Hojin Lee, Fan Zhong
-
Patent number: 8634129Abstract: Provided is a wavelength selective switch which includes: at least one input port; a dispersive portion for dispersing wavelength-multiplexed light input from the input port into wavelength-demultiplexed lights; a condenser element for condensing the wavelength-demultiplexed lights dispersed by the dispersive portion; a deflection portion having deflection elements for deflecting, for each wavelength-demultiplexed light condensed by the condenser element; at least one output port for outputting the wavelength-demultiplexed lights deflected by the deflection portion. A light-condensing position shift compensating element is disposed in an optical path between the input port and the dispersive portion or in the dispersive portion, for compensating light-condensing position shift of the wavelength-demultiplexed lights relative to the deflection element, light-condensing position shift being generated based on the arrangement of the input ports.Type: GrantFiled: January 30, 2012Date of Patent: January 21, 2014Assignee: Olympus CorporationInventors: Satoshi Watanabe, Koji Matsumoto, Toshiro Okamura, Takeshi Yamazaki
-
Publication number: 20140002512Abstract: A micro-electro-mechanical (MEM) display module including a MEM display panel and a light-emitting apparatus is provided. The MEM display panel includes a plurality of first light-shielding units, a plurality of second light-shielding units, a light-shielding pattern layer and a reflective pattern layer. Each first light-shielding unit includes a first movable light-shielding device having at least one first opening. Each second light-shielding unit includes a second movable light-shielding device having at least one second opening. The light-shielding pattern layer has a plurality of third openings. In a display mode, the first opening of at least one first movable light-shielding device overlaps at least one third opening, and each second movable light-shielding device covers the reflective pattern layer.Type: ApplicationFiled: June 28, 2012Publication date: January 2, 2014Applicant: HTC CORPORATIONInventors: Weng-Chang Shen, Hsu-Hsiang Tseng
-
Publication number: 20130300999Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and a waveguide (1401). The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) at an input of the waveguide.Type: ApplicationFiled: May 8, 2012Publication date: November 14, 2013Applicant: MICROVISION, INC.Inventors: Christian Dean DeJong, Joshua M. Hudman
-
Patent number: 8531755Abstract: The present invention describes a micro-mechanical light modulator including a two-dimensional array of modulating elements, in which small modulating elements are organized into larger modulating areas. Using smaller elements organized into larger areas increases the resonant frequency of the modulators and the modulation speed. In some implementations, multiple modulating elements are driven by shared signals, allowing the number of elements driven and the resulting area to increase without increasing the data traffic. In some implementations, an anamorphic optical path is used that leaves individual modulating elements of the micro-mechanical light modulator that are operated as a single area unresolved at an image plane of the workpiece being patterned. Devices and methods are described.Type: GrantFiled: February 16, 2010Date of Patent: September 10, 2013Assignee: Micronic Laser Systems ABInventors: Torbjörn Sandström, Per Askebjer
-
Patent number: 8526093Abstract: An electrically programmable reticle is made using at least one electrochromatic layer that changes its optical transmissibility in response to applied voltages. Transparent conductor layers are configured to the desired patterns. The electrically programmable reticles are either patterned in continuous forms that have separately applied voltages or in a matrix of rows and columns that are addressed by row and column selects such that desired patterns are formed with the application of a first voltage level and reset with the application of a second voltage level.Type: GrantFiled: May 24, 2010Date of Patent: September 3, 2013Assignee: Advanced Micro DevicesInventor: Keith Randolph Miller
-
Patent number: 8520291Abstract: An illumination optical system which illuminates an irradiated plane with illumination light provided from a light source includes a spatial light modulator which is arranged in an optical path of the illumination optical system and cooperates with part of the illumination optical system to form a desired light intensity distribution at a pupil position of the illumination optical system or a position optically conjugated with the pupil position. A detection unit detects the light intensity distribution of the illumination light at a position in an optical path extending from the light source to the spatial light modulator. The detection unit includes a light receiving surface which receives some of the illumination light. A control unit controls the spatial light modulator based on the light intensity distribution detected by the detection unit.Type: GrantFiled: October 15, 2008Date of Patent: August 27, 2013Assignee: Nikon CorporationInventor: Hirohisa Tanaka
-
Patent number: 8492863Abstract: Optical modulator having wide bandwidth based on Fabry-Perot resonant reflection is disclosed. The optical modulator includes: a bottom Distributed Bragg Reflector (DBR) layer; a top DBR layer including at least one layer, and a modified layer; and an active layer disposed between bottom and top DBR layers, wherein the at least one layer includes at least one pair of a first refractive index layer having a first refractive index and a second refractive index layer having a second refractive index, the modified layer includes at least one pair of a third refractive index layer having a third refractive index and a fourth refractive index layer having a fourth refractive index, the third and the fourth refractive indexes being different, and at least one of the third and the fourth refractive index layers has a second optical thickness that is not ?/4 or that is not an odd multiple thereof.Type: GrantFiled: November 2, 2010Date of Patent: July 23, 2013Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and TechnologyInventors: Yong-chul Cho, Yong-tak Lee, Yong-hwa Park, Byung-hoon Na, Kwang-mo Park, Chang-soo Park
-
Patent number: 8480243Abstract: The invention relates to an adaptive mirror based on a ceramic substrate having a corresponding reflector and piezoelectric actuators, a cooling device being integrated in the substrate. The invention likewise relates to a method for the production of such mirrors. The mirrors according to the invention are used for the modulation or deformation of a laser wavefront of high power.Type: GrantFiled: March 17, 2009Date of Patent: July 9, 2013Assignees: Fraunhofer-Gesellschaft zur Foerferung der Angewandten E.V., Friedrich-Schiller-Universitaet JenaInventors: Claudia Bruchmann, Erik Beckert, Thomas Peschel, Christoph Damm
-
Patent number: 8447145Abstract: The present invention discloses an ultra-compact optical modulator comprising at least one resonator on a semiconductor chip. The EO modulator modulates incoming light having a certain wavelength range and comprises a waveguide layer accommodating at least one resonator having a periodic complex refraction index distribution structure defining a periodic defect band-edge and a cladding layer; and at least one electrode; the waveguide layer, the cladding layer and the electrode forming a capacitor structure; such that when an external voltage is applied to the capacitor structure the free carrier concentration in the waveguide layer is controlled, enabling a modulation of the resonator's refractive index; wherein the periodic defect band-edge is selected to be within the wavelength range, enabling a slow-light propagation of the incoming light within the waveguide layer.Type: GrantFiled: June 1, 2012Date of Patent: May 21, 2013Assignee: Ramot at Tel-Aviv University Ltd.Inventors: Damian Goldring, David Mendlovic
-
Patent number: 8432599Abstract: An optical image modulator and a method of manufacturing the same. The optical image modulator includes a substrate, an N electrode contact layer formed on the substrate, a lower distributed Bragg reflection (DBR) layer, a quantum well layer, an upper DBR layer, and a P electrode contact layer sequentially stacked on the N electrode contact layer, a P electrode formed on the P electrode contact layer, and an N electrode formed on the N electrode contact layer. The N electrode is a frame that surrounds the lower DBR layer.Type: GrantFiled: June 23, 2011Date of Patent: April 30, 2013Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and TechnologyInventors: Yong-Chul Cho, Yong-Tak Lee, Yong-Hwa Park, Byung-Hoon Na, Bong-Kyu Jeong
-
Patent number: 8432597Abstract: According to one embodiment of the present invention a digital micro-mirror device is taught that includes a pixel occupying an area of the device and a hinge coupled to the pixel and positioned such that at least a portion of the hinge falls outside the area of the pixel.Type: GrantFiled: May 8, 2006Date of Patent: April 30, 2013Assignee: Texas Instruments IncorporatedInventor: Richard L. Knipe
-
Patent number: 8427736Abstract: An illumination device is provided and has a light guide plate, a light source and a light modulator, wherein the light modulator has a pair of transparent substrates a pair of electrodes and a light modulator layer. The light modulator layer includes a first region being changed between a transparent state and a scatterable state depending on intensity of an electric field, and a second region being more transparent than the first region in a scatterable state at an electric field having a certain intensity, the electric field being applied when the first region is changed between the transparent state and the scatterable state, and an occupancy rate of the first region in the light modulator layer is increased with increase in distance from the light source.Type: GrantFiled: May 18, 2011Date of Patent: April 23, 2013Assignee: Sony CorporationInventors: Kentaro Okuyama, Harumi Sato
-
Patent number: 8422108Abstract: An interferometric modulator (Imod) cavity has a reflector and an induced absorber. A direct view reflective flat panel display may include an array of the modulators. Adjacent spacers of different thicknesses are fabricated on a substrate by a lift-off technique used to pattern the spacers which are deposited separately, each deposition providing a different thickness of spacer. Or a patterned photoresist may be used to allow for an etching process to selectively etch back the thickness of a spacer which was deposited in a single deposition. A full-color static graphical image may be formed of combined patterns of interferometric modulator cavities. Each cavity includes a reflector, and an induced absorber, the induced absorber including a spacer having a thickness that defines a color associated with the cavity.Type: GrantFiled: December 18, 2009Date of Patent: April 16, 2013Assignee: QUALCOMM MEMS Technologies, Inc.Inventor: Mark W. Miles
-
Patent number: 8412050Abstract: Example embodiments may include a coaxial Free Space Optical (FSO) telescope providing a simplified and more precise structure. Example embodiment telescopes include a prism structure having at least two parallel surfaces associated with a filter and mirror. The filter may reflect or transmit optical signals based on their electromagnetic characteristics. Example embodiment systems include example embodiment coaxial FSO telescopes and transmitters and receivers for receiving and transmitting optical signals. A V-groove and/or lens array may be included in example embodiment FSO systems.Type: GrantFiled: October 23, 2008Date of Patent: April 2, 2013Assignee: Alcatel LucentInventor: Gerald Nykolak
-
Publication number: 20130050808Abstract: A light modulation layer of a full-color reflective display (112), the light modulation layer including an addressing layer (404); a mirror (406) positioned above the addressing layer (404), the mirror (406) configured to reflect light of a predetermined wavelength band; and an electro-optic layer (416) positioned above the mirror (406), the electro-optic layer (416) configured to absorb light of a predetermined wavelength band in response to a signal received from a switching device (204) of the addressing layer (404).Type: ApplicationFiled: April 29, 2010Publication date: February 28, 2013Inventors: John Christopher Rudin, Stephen Kitson, Adrian Geisow
-
Patent number: 8366275Abstract: Image display apparatus (102) comprising projector means (112), a light source (104), at least one primary modulator (106) for modulating light, an auxiliary modulator (110) for modulating the light modulated by the primary modulator (106), optical means (108) for relaying the light modulated by the primary modulator (106) to the auxiliary modulator (110), and control means (118, 120) for controlling the primary modulator (106) and the auxiliary modulator (110), characterized in that: the primary modulator (106) comprises a first array of pixels, and the auxiliary modulator (110) comprises a second array of pixels; each pixel in the first array of pixels of the primary modulator (106) is controlled by the control means (118, 120) as a function of video input data for each pixel in the first array of pixels; and each pixel in the second array of pixels of the auxiliary modulator (110) is controlled by control means (118, 120) as a function of video input data for each equivalent pixel in the second array of piType: GrantFiled: September 19, 2008Date of Patent: February 5, 2013Assignee: Rockwell Collins UK LimitedInventors: John Robert Harding, Geoffrey Howard Blackham, Phillip John Scarfield
-
Publication number: 20130003166Abstract: Projection optics for a lithographic projection system is provided that comprises a spatial light modulator (SLM) from which radiation is reflected and directed to a projection lens that projects the radiation to a substrate. The SLM is illuminated by non telecentric off axis illumination (e.g. from laser radiation that has a spectral bandwidth of the order of 1 picometer, and the projection optics is configured for significant reduction (e.g. at least 10× reduction, 20× reduction, or 50× reduction).Type: ApplicationFiled: June 29, 2012Publication date: January 3, 2013Applicant: Nikon CorporationInventor: David Michael Williamson
-
Publication number: 20120313906Abstract: A semi-transmissive display apparatus includes: a reflective electrode provided for each pixel, wherein the semi-transmissive display apparatus performs reflective display operation by using the reflective electrodes and transmissive display operation by using spaces between the reflective electrodes of the pixels.Type: ApplicationFiled: June 2, 2012Publication date: December 13, 2012Applicant: SONY CORPORATIONInventors: Masaya Tamaki, Kazuyuki Maeda
-
Patent number: 8320036Abstract: The present invention provides an apparatus that includes a waveguide and one or more pixels deployed adjacent the top surface of the waveguide which contains TIR light therein. Each pixel includes a deformable active layer having a first conductor and a driver electronics layer having a second conductor. The driver electronics layer is deployed in spaced-apart relation to the active layer and opposite the waveguide. In a quiescent state of a pixel, the active layer is in contact or near contact with the top surface of the waveguide so as to optically couple light out via FTIR (i.e., pixel's ON state). To actuate the pixel, the electronics layer is configured to selectively apply an electrical potential difference to the second conductor thereby causing the active layer to move away from the top surface so as to prevent the optical coupling of light out of the waveguide (i.e., pixel's OFF state).Type: GrantFiled: August 24, 2009Date of Patent: November 27, 2012Assignee: Rambus Inc.Inventors: Kevin J. Derichs, Carey King, Daniel K. Van Ostrand, Berry Tod Cox, Reed J. Killion
-
Patent number: 8305676Abstract: An optical deflector includes multiple voltage-dependent refractive boundaries. Light passes through the refractive boundaries and accumulates a deflection angle. An electrode placed to apply a voltage to the boundaries may be non-uniform to modulate a wavefront as it passes. A scanning laser projector includes the optical deflector to modulate laser light.Type: GrantFiled: December 18, 2009Date of Patent: November 6, 2012Assignee: Microvision, Inc.Inventor: Bin Xue
-
Patent number: 8295710Abstract: The invention describes a modulator for the quadrature modulation of an optical carrier signal with an I- and a Q-portion, where a first optical multimode interferometer (MMI) splits the optical carrier signal into four branches and that in pairs of branches the I-portion and the Q-portion respectively is modulated with a Mach-Zehnder-Structure and a second optical multimode interferometer (MMI) combines the modulated I-portion and Q-portion again to one quadrature modulated optical output signal (OS).Type: GrantFiled: July 6, 2009Date of Patent: October 23, 2012Assignee: Nokia Siemens Networks OyInventor: Winter Marcus
-
Patent number: 8294972Abstract: A display device may include a substrate, a thin film layer formed on the substrate and/or having a light absorptance that varies according to an electric field applied to the thin film layer, and/or electrodes disposed to apply the electric field to the thin film layer and/or configured to change the electric field applied to the thin film layer.Type: GrantFiled: December 8, 2009Date of Patent: October 23, 2012Assignee: Samsung Electronics Co, Ltd.Inventor: Hyun-jong Chung
-
Patent number: 8289613Abstract: A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.Type: GrantFiled: April 13, 2011Date of Patent: October 16, 2012Assignee: Qualcomm Mems Technologies, Inc.Inventors: Clarence Chui, William Cummings, Brian Gally, Lior Kogut, Ming-Hau Tung, Yeh-Jiun Tung, Chih-Wei Chiang, Denis Endisch
-
Patent number: 8285089Abstract: A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.Type: GrantFiled: February 9, 2012Date of Patent: October 9, 2012Assignee: Qualcomm MEMS Technologies, Inc.Inventor: Clarence Chui
-
Publication number: 20120218498Abstract: An optically controlled deformable reflective/refractive assembly includes a deformable membrane structure (10) having a reflecting/refractive, electrically conductive surface (10?), which is associated with a rigid photoconductive substrate (14) having an electrically conductive layer (14?) on one side. An electric biasing arrangement applies a potential difference (V0) across the membrane structure (10). A controlling light source (20) illuminates the photoconductive substrate (14) in correspondence of an active region, wherein the light source is arranged for selectively illuminating the substrate (14) by emitting at least an optical beam (B) adapted to generate in an area of the substrate (14) a local electrical charge density proportional to the spatial light intensity of the beam (B) and responsible for a local deformation of the membrane structure (10).Type: ApplicationFiled: October 30, 2009Publication date: August 30, 2012Applicant: Consiglio Nazionale Delle RicercheInventors: Stefano Bonora, Stefania Residori, Umberto Bortolozzo
-
Patent number: 8238021Abstract: The present invention relates to a process for manufacturing a brightness enhancement structure comprising micro-reflectors. The process comprises forming an array of micro-structures by embossing; and depositing a metal layer over the surface of the micro-structures. The present invention also relates to a process for manufacturing a display device comprising micro-reflectors. The present invention further relates to a display device comprising micro-reflectors and color filters.Type: GrantFiled: November 3, 2010Date of Patent: August 7, 2012Assignee: Sipix Imaging, Inc.Inventors: Robert A. Sprague, Yi-Shung Chaug, HongMei Zang, Xiaojia Wang, Gary Kang
-
Patent number: 8228595Abstract: A spatial light modulator driven with binary pulse-width-modulation requires very high data transfer rate to achieve high grayscale. This invention enables to reduce substantially the data transfer rate using non-sequential order of binary bits, wherein the combination of the sequences of binary bits is selected from the combinations which avoid simultaneous writing of multiple rows. The possible number of such combinations is astronomically large and mathematical programs were developed to find right combinations. These results were proposed.Type: GrantFiled: November 6, 2009Date of Patent: July 24, 2012Assignee: Silicon Quest Kabushiki-KaishaInventors: Fusao Ishii, YiQing Liu
-
Patent number: 8228594Abstract: The present invention provides image projection system implemented with a spatial light modulator, for modulating an illumination light projected from a light source wherein said spatial light modulator comprising an image projection system implemented with a spatial light modulator for modulating an illumination light projected from a light source wherein said spatial light modulator comprising: at least two electrically conductive layers functioning as two different electrical wirings and said conductive layers having respectively a first and a second longitudinal directions overlapping and crossing each other; and a fixed electric potential layer electrically connected to a fixed electric potential, wherein the two different conductive layers and fixed electric potential layer overlapping one another and disposed at a location along a light path of the illumination light emitted from the light source to block said illumination light.Type: GrantFiled: October 9, 2009Date of Patent: July 24, 2012Assignees: Silicon Quest Kabushiki-Kaisha, Olympus CorporationInventors: Akira Shirai, Yoshihiro Maeda, Fusao Ishii