Concave, Convex Combination Patents (Class 359/366)
  • Patent number: 9395526
    Abstract: A quadric reflector can have an approximately conical shape. The shape can tapers from a wide base to an apex. The apex can include an aperture, a mirror, and a set of one or more optical elements. A mirror can be positioned within an overhang enclosure of the device in a plane approximately parallel to a circular cross section of the conical shape. The mirror can reflect environmental light that is reflected by the quadric reflector into the aperture or reflect light emitting from the aperture onto the quadric reflector. The overhang enclosure can have a substantially conical shape which eliminates secondary reflection resulting from the environmental light reaching the aperture twice. Using the overhang enclosure to absorb the secondary reflection eliminates or minimizes banding.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 19, 2016
    Inventors: Julio Abdala, Patricio Durazo, Gary Peterson, Claudio Ribeiro, William H. Robertson, Jr.
  • Patent number: 9366874
    Abstract: A beam combining device includes a plurality of separate input beam paths and an output beam path for combining a plurality of input beams to an output beam. One or a plurality of Risley prism pairs are assigned to each input beam path of the beam combining device. The prism pairs deflect the input beam in an adjustable direction. A device for deflecting a light beam includes a Risley prism pair that includes two prisms arranged one behind the other in the light beam path. At least one of the two prisms is mounted in a rotatable manner. An electromotive drive brings about a rotary movement of the rotatable prism. The electromotive drive is a piezoelectric vibration drive having a mechanical resonator and a piezoelectric element coupled thereto. The resonator bears against a friction wheel connected to the rotatable prism.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: June 14, 2016
    Assignee: TOPTICA Photonics AG
    Inventor: Marco Schneider
  • Patent number: 9268121
    Abstract: A sensor device and a method for a double telecentric optical system includes a single focusing element, such as a lens. The device and method further include a mirror element arranged at a focal point of the single focusing element to reflect incoming light rays back to the single focusing element. The incoming and reflected light rays pass through different parts of the single focusing element to allow for a spatially separated arrangement of an object and its image.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jacobus Maria Antonius Van Den Eerenbeemd, Jacobus Hermanus Maria Neijzen
  • Patent number: 9244257
    Abstract: A projection optical system comprises an image forming unit that forms an image; a refractive optical system including a plurality of lenses that enlarges and projects the image on a screen; and a reflecting surface, wherein an intermediate image is formed between the refractive optical system and the reflecting surface, and the projection optical system satisfies conditions of “0.6<D/Did<0.8” and “2.5<Did/F<6”, where “Did” represents a maximum paraxial image height of the intermediate image in a focusing state in which a projection image is maximum, “D” represents a maximum value of a distance between an optical axis and an intersection of a paraxial image surface and a light beam passing center of an aperture stop of the refractive optical system, and “F” represents a focal length of the refractive optical system in a focusing state in which the projection image is maximum.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: January 26, 2016
    Assignee: RICOH COMPANY, LIMITED
    Inventor: Yohei Takano
  • Patent number: 9239521
    Abstract: A projection optics for microlithography, which images an object field in an object plane into an image field in an image plane, where the projection optics include at least one curved mirror and including at least one refractive subunit, as well as related systems, components, methods and products prepared by such methods, are disclosed.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: January 19, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Patent number: 9228895
    Abstract: A multi-wavelength optical imaging system and method. In one example, an optical imaging system includes an integrated dewar assembly housing a staring detector that includes a plurality of focal plane array sensors spatially distributed over a common focal plane and aligned relative to one another, each of the plurality of focal plane array sensors being configured for a different waveband. The optical imaging system further includes foreoptics, such as a telescope, optically coupled to the integrated dewar assembly and configured to direct and focus light from an entrance pupil of the optical imaging system into an optical beam incident on at least one of the plurality of focal plane array sensors.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 5, 2016
    Assignee: RAYTHEON COMPANY
    Inventors: Brian K. McComas, Kent P. Pfibsen
  • Patent number: 9166686
    Abstract: A laser communications terminal configured for simultaneous two-way stabilized communications links to multiple ground sites. One example of such a laser communications terminal includes a plurality of laser channels, each including a channel transceiver configured to transmit and receive an optical signal, an afocal telescope optically coupled to each of the channel transceivers, a coelostat mirror pair optically coupled to the afocal telescope, and a plurality of beam steering mirrors, at least one beam steering mirror associated with each channel of the plurality of laser channels and configured to independently steer the corresponding optical signal within a field of view of the afocal telescope.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: October 20, 2015
    Assignee: RAYTHEON COMPANY
    Inventor: Lacy G. Cook
  • Patent number: 9110274
    Abstract: A catadioptric optical system of the present invention includes a catadioptric unit configured to condense light fluxes from an object and to form an intermediate image of the object, a field lens disposed at a position where the intermediate image are formed, and a dioptric unit configured to form the intermediate image on an image surface, and when ?cat denotes a smallest Abbe number in Abbe numbers of materials of the first and second optical elements configuring the catadioptric unit and ?dio denotes a smallest Abbe number in Abbe numbers of materials of a plurality of dioptric optical elements configuring the dioptric unit, ?dio<?cat is satisfied.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 18, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kazuhiko Kajiyama, Masayuki Suzuki, Yuji Katashiba
  • Patent number: 8989584
    Abstract: An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: March 24, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Anthony J. Ruggiero, Hsueh-yuan Pao, Paul Sargis
  • Patent number: 8970819
    Abstract: A microlithography projection optical system is disclosed. The system can include a plurality of optical elements arranged to image radiation having a wavelength ? from an object field in an object plane to an image field in an image plane. The plurality of optical elements can have an entrance pupil located more than 2.8 m from the object plane. A path of radiation through the optical system can be characterized by chief rays having an angle of 3° or more with respect to the normal to the object plane. This can allow the use of phase shifting masks as objects to be imaged, in particular for EUV wavelengths.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich
  • Patent number: 8965193
    Abstract: Systems and methods are provided for a solid filled mirrored lens system capable of wider fields of view and wider spectra than current lens systems. The mirrored lens is used to focus light incident upon a right circular cylindrical central body comprising a substantially planar first surface and a substantially planar second surface. A primary reflecting surface is located on the second surface of the central body and shaped as an annulus with a void in the central region of the second surface. Further, a secondary reflecting surface is located in a central region of the first surface facing the primary reflecting surface.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: February 24, 2015
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Christopher B. Svec, Alan R. Greenland, Hao C. Tran
  • Patent number: 8947675
    Abstract: The method for measuring profile of an aspheric surface projects an illumination light onto the aspheric surface and introduces a reflected light reflected by the aspheric surface to a sensor through an optical system. The method provides, to a wavefront of the illumination light, a curvature bringing an absolute value of an angle of the reflected light to a smaller value than a maximum value of absolute values of angles of optical system side peripheral rays, locates an exit pupil such that the absolute value of the reflected light angle is smaller than the maximum value, provides, to a sensor conjugate surface, a curvature and a position causing rays of the reflected light not to intersect on the sensor conjugate surface. The sensor conjugate surface, the wavefront of the illumination light and the aspheric surface have a same one of convex and concave surfaces toward a same direction.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoshiki Maeda
  • Patent number: 8947774
    Abstract: A catadioptric optical system includes a first imaging optical system that includes a catadioptric part that collects a light beam from an object to form an intermediate image of the object, and a second imaging optical system that includes a refractive part that images the intermediate image on an image plane. The first imaging optical system includes a first optical element, a second optical element, and a negative lens in an optical path between the first and second optical elements, and the first and second optical elements are disposed so that reflection parts of the first and second optical element face each other. A power ?n of the negative lens, radii of curvature R1n and R2n of lens surfaces of the negative lens at an object side and an image side, respectively, and a power ?1 of the first imaging optical system are appropriately set.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masatsugu Nakano
  • Patent number: 8947778
    Abstract: New families of two mirror unobscured telescopes with compact Schiefspiegler, eccentric pupil Cassegrain geometries, incorporating aspheres, tilted and decentered secondaries, and tilted decentered focal surfaces. These variables allow control of focal surface tilt. All embodiments, from f/5 to f/16, are totally reflecting, fully baffled systems, with wide diffraction limited FOVs and unobscured aperture MTFs. Systems optimized with the focal plane normal to the gut ray are well suited for visual and general use. They can incorporate a variable iris for f/number control and allow focusing along the gut ray with minimal field tilt. Systems optimized with a fixed focal plane tilt are well suited for high resolution, wide field collimators and IR scene generators. Any light reflected at focus can be trapped, eliminating Narcissus or “cats eye” effects. Additionally, this reflection can be used to provide a uniform “background” irradiance field.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 3, 2015
    Inventor: Richard F. Horton
  • Patent number: 8947775
    Abstract: A catadioptric optical system includes, in order from an object side to an image side and arranged along an optical axis, a first catadioptric unit, a second catadioptric unit disposed in axial alignment with the first catadioptric unit and with a space therebetween; and a lens group disposed in axial alignment with the first and second catadioptric optical units. Light rays arriving from an object plane undergo a first reflection at the image-side surface of the first catadioptric optical unit, a second reflection at the object-side surface of the first catadioptric optical unit, a third reflection at the image-side surface of the second catadioptric optical unit, and a fourth reflection at the object-side surface of the second catadioptric optical unit. Advantageously, the sum the outward Petzval curvatures is cancelled out by the sum of inward Petzval curvatures.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 3, 2015
    Assignees: The Arizona Board of Regents on Behalf of the University of Arizona, Canon Kabushiki Kaisha
    Inventors: Jose Manuel Sasian-Alvarado, Masatsugu Nakano
  • Patent number: 8946743
    Abstract: Disclosed is a light emitting apparatus. The light emitting apparatus includes a package body; first and second electrodes; a light emitting device electrically connected to the first and second electrodes and including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers; and a lens supported on the package body and at least a part of the lens including a reflective structure. The package body includes a first cavity, one ends of the first and second electrodes are exposed in the first cavity and other ends of the first and second electrodes are exposed at lateral sides of the package body, and a second cavity is formed at a predetermined portion of the first electrode exposed in the first cavity.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 3, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bong Kul Min
  • Patent number: 8913316
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 16, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Patent number: 8896938
    Abstract: A catadioptric lens system includes, in order of light travel: a first lens group that includes a concave mirror and a convex mirror and has a positive refractive power; a second lens group that is positioned on the image side of the concave mirror and has a negative refractive power; and a third lens group that has a positive refractive power, wherein the first lens group has a plurality of lenses on the image side of the concave mirror, and some lenses of the plurality of lenses are formed as a vibration-proof group so as to be movable in a direction perpendicular to an optical axis.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 25, 2014
    Assignee: Sony Corporation
    Inventor: Takeshi Hatakeyama
  • Patent number: 8837041
    Abstract: A magnifying imaging optical system is disclosed that has precisely three mirrors, which image an object field in an object plane into an image field in an image plane. A ratio between a transverse dimension of the image field and a transverse dimension measured in the same direction of a useful face of the last mirror before the image field is greater than 3. In a further aspect, the magnifying imaging optical system is disclosed that has at least three mirrors, which image an object field in an object plane in an image field in an image plane. A first mirror in the beam path after the object field is concave, a second mirror is also concave and a third mirror is convex. An angle of incidence of imaging beams on the last mirror before the image field is less than 15°.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 16, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Heiko Feldmann
  • Publication number: 20140254003
    Abstract: A reflective optical system includes: a telescope section which includes a concave primary mirror and a concave secondary mirror; and a collimator section which includes at least one concave mirror disposed in a tilted manner with respect to an optical axis of the telescope section and at least one convex mirror disposed in a tilted manner with respect to the optical axis of the telescope section and on which converged light flux is incident, the collimator section receiving light flux from the telescope section.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Inventors: Yuji Katashiba, Toru Matsuda
  • Publication number: 20140240820
    Abstract: An afocal telescope configured for back-scanned imagery including a three mirror anastigmat and an optical element positioned proximate an intermediate image plane of the three mirror anastigmat and configured to adjust distortion characteristics of the afocal telescope to control image wander on a focal plane array. The optical element may be a field correcting lens or mirror, for example.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: RAYTHEON COMPANY
    Inventor: David N. Sitter, JR.
  • Patent number: 8810903
    Abstract: The disclosure generally relates to imaging optical systems that include a plurality of mirrors, which image an object field lying in an object plane in an image field lying in an image plane, where at least one of the mirrors has a through-hole for imaging light to pass through. The disclosure also generally relates to projection exposure installations that include such imaging optical systems, methods of using such projection exposure installations, and components made by such methods.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: August 19, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Patent number: 8786943
    Abstract: An imaging system having reduced susceptibility to thermally-induced stress birefringence comprising relay optics and projection optics. One of either the relay optics or the projection optics is a reflective optical system that includes reflective optical elements, and the other is a refractive optical system having a negligible or low susceptibility to thermal stress birefringence. The refractive optical system includes: a first group of refractive lens elements located upstream from an aperture stop, and a second group of refractive lens elements located downstream from the aperture stop. The refractive lens elements in the first and second groups that are immediately adjacent to the aperture stop are fabricated using optical materials having a negligible susceptibility to thermal stress birefringence, and the other refractive lens elements in the first and second groups are fabricated using optical materials having at most a moderate susceptibility to thermal stress birefringence.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 22, 2014
    Assignee: Eastman Kodak Company
    Inventors: Barry David Silverstein, Joseph Raymond Bietry, Andrew F. Kurtz, Robert J. Metzger
  • Patent number: 8767318
    Abstract: A catadioptric lens system includes, in order of light travel: a first lens group that includes a concave mirror and a convex mirror and has a positive refractive power; a second lens group that is positioned on the image side of the concave mirror and has a negative refractive power; and a third lens group that has a positive refractive power, wherein a close-range object is brought into focus by moving the second lens group in a direction parallel with the optical axis, and wherein the following conditional expression is satisfied 0<f/f12??(0) where f is a focal length of the whole system in a state where the focus is at infinity, and f12 is a composite focal length of the first lens group and the second lens group in a state where the focus is at infinity.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: July 1, 2014
    Assignee: Sony Corporation
    Inventor: Takeshi Hatakeyama
  • Patent number: 8724216
    Abstract: A continuous zoom lens arrangement can image MWIR and LWIR spectral bands to a common image plane. Such an exemplary optical system comprises eight infrared imaging lenses that all transmit over the wavelengths 3.5-11.0 microns and form a collocated image plane for the MWIR and LWIR spectral bands. The lens has six stationary lenses, and two lenses that move in an axial fashion. A cold stop inside the dewar can act as the aperture stop of the system and control the stray light from reaching the FPA. The pupil is reimaged from the cold stop to near the first lens of the system to minimize the size of the lens.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 13, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Jay N. Vizgaitis
  • Patent number: 8717481
    Abstract: A head-mounted display (HMD) that enables a wearer to favorably view and recognize images even in a very bright environment, has a HMD in which image display light emitted from a display element is guided to an eye of an observer via a visor, whereby a virtual image of an observed subject is formed in front of the observer. In the HMD, light source devices are a first light source, outputting light of a high intensity, and a second light source, outputting light of a. low intensity. The light source devices have a switch to switch between the first and second light sources. The display element, the visor and the second light source are attached to a mount, worn on the head of the observer. The first light source is installed in a moveable body with the observer, and is connected to the mount via light transmission paths.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: May 6, 2014
    Assignee: Shimadzu Corporation
    Inventor: Naohiro Kamiya
  • Publication number: 20140118819
    Abstract: An optical device is described herein which is a four mirror objective with a large numerical aperture and a small central obscuration. The four mirror objective places two Schwarzschild-like objectives in series with respect to one another. This allows a large numerical aperture, a long working distance, and small central obscuration. Each objective has a primary and secondary mirror. An imaging device and method for imaging a specimen are also described herein.
    Type: Application
    Filed: October 15, 2013
    Publication date: May 1, 2014
    Applicant: CORNING INCORPORATED
    Inventor: MARK C. SANSON
  • Patent number: 8712246
    Abstract: An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 29, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Anthony J. Ruggiero, Hsueh-yuan Pao, Paul Sargis
  • Patent number: 8675276
    Abstract: A system and method for inspection is disclosed. The design includes an objective employed for use with light energy having a wavelength in various ranges, including approximately 266 to 1000 nm, 157 nm through infrared, and other ranges. The objective includes a focusing lens group having at least one focusing lens configured to receive light, a field lens oriented to receive focused light energy from said focusing lens group and provide intermediate light energy, and a Mangin mirror arrangement positioned to receive the intermediate light energy from the field lens and form controlled light energy. Each focusing lens has a reduced diameter, such as a diameter of less than approximately 100 mm, and a maximum corrected field size of approximately 0.15 mm. An immersion substance, such as oil, water, or silicone gel, may be employed prior to passing controlled light energy to the specimen inspected.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: March 18, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, J. Joseph Armstrong
  • Patent number: 8659823
    Abstract: Ring-field, catoptric and catadioptric, unit-magnification, projection optical systems having non-concentric optical surfaces are disclosed. Each system has a system axis with object and image planes on opposite sides of the system axis. The non-concentric surfaces allow for working distances of the object and image planes in excess of 100 millimeters to be achieved, with a ring-field width sufficient to allow a rectangular object-field having a long dimension in excess of 100 mm to be projected.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Coherent, Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 8643762
    Abstract: An optical element according to an embodiment includes: a lens array including a plurality of convex shaped lenses provided on a first surface thereof and taking a flat shape at a second surface which is opposite from the first surface; a lens holder comprising concave portions formed to correspond to respective lenses in the lens array, at a surface opposed to the lens array, each of the concave portions having a size which makes it possible for one of the convex shaped lenses corresponding to the concave portion to fit therein; and a drive unit configured to drive at least one of the lens array and the lens holder to bring the convex shaped lenses in the lens array and the concave portions in the lens holder into an isolation state or a contact state.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Suzuki, Risako Ueno, Hideyuki Funaki
  • Publication number: 20130342821
    Abstract: The disclosure generally relates to imaging optical systems that include a plurality of mirrors, which image an object field lying in an object plane in an image field lying in an image plane, where at least one of the mirrors has a through-hole for imaging light to pass through. The disclosure also generally relates to projection exposure installations that include such imaging optical systems, methods of using such projection exposure installations, and components made by such methods.
    Type: Application
    Filed: August 29, 2013
    Publication date: December 26, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Publication number: 20130329283
    Abstract: A catadioptric optical system includes, in order from an object side to an image side and arranged along an optical axis, a first catadioptric unit, a second catadioptric unit disposed in axial alignment with the first catadioptric unit and with a space therebetween; and a lens group disposed in axial alignment with the first and second catadioptric optical units. Light rays arriving from an object plane undergo a first reflection at the image-side surface of the first catadioptric optical unit, a second reflection at the object-side surface of the first catadioptric optical unit, a third reflection at the image-side surface of the second catadioptric optical unit, and a fourth reflection at the object-side surface of the second catadioptric optical unit. Advantageously, the sum the outward Petzval curvatures is cancelled out by the sum of inward Petzval curvatures.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicants: The Arizona Board of Regents on behalf of the University of Arizona, CANON KABUSHIKI KAISHA
    Inventors: Masatsugu Nakano, Jose Manuel Sasian-Alvarado
  • Patent number: 8553321
    Abstract: The disclosure generally relates to imaging optical systems that include a plurality of mirrors, which image an object field lying in an object plane in an image field lying in an image plane, where at least one of the mirrors has a through-hole for imaging light to pass through. The disclosure also generally relates to projection exposure installations that include such imaging optical systems, methods of using such projection exposure installations, and components made by such methods.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: October 8, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Patent number: 8520127
    Abstract: In order that an image pickup lens, an image pickup module, a method for manufacturing an image pickup lens, and a method for manufacturing an image pickup module may be realized each of which makes it possible to realize a higher resolution of a periphery of a formed image, an image pickup lens of the present invention satisfies the following formulas (1) and (2): 0.080<d1/d2<0.22??(1); and d1?/d1<1.00??(2) where: d1 is a center thickness of the single lens; d1? is a thickness of a lateral side of the single lens; and d2 is a length in air between the image surface and a center of that surface of the single lens which faces the image surface.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 27, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Norimichi Shigemitsu, Hiroyuki Hanato
  • Patent number: 8503074
    Abstract: A multi-wavelength band imaging system including a beam splitter is provided, allowing image capturing means adapted to specific wavelength bands to be used such as from visible to near infrared, intermediate infrared and far infrared. The system may have a field of view of substantially (360) degrees about an optical axis of the system and may fit into a golf ball sized housing. The imaging system includes a first convex mirror and a second concave mirror. Some embodiments for imaging single or close wavelength bands and not requiring a beam splitter are equally provided. Also provided is a self-righting housing for an imaging system, for example as described above, which self-rights under the action of gravity, thereby disposing the imaging system in an appropriate orientation.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: August 6, 2013
    Assignee: DSAM London LLP
    Inventors: David W. Samuelson, Iain A. Neil
  • Patent number: 8451318
    Abstract: A system and method for obtaining images having an ultra-wide field of view angle. A panoramic camera includes two subsystems: an optical subsystem and an image sensor. The optical subsystem includes at least a three-aspheric mirrors for producing an image of objects in the ultra-wide field of view. The produced images are correctable by a standard optical element to produce on an image plane an image having an optical resolution approximately equal or exceeding the Nyquist sampling criterion for the image sensor. A first mirror provides a sharp, compressed, virtual image using a convex paraboloidal or hyperboloidal mirror. Second and third mirrors redirect light onto the correction element through a folded optical path. The standard optical element projects a virtual image onto the image sensor. Image processing software can be used to decompress and unwrap the ultra-wide angle image captured by the image sensor.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 28, 2013
    Assignee: Remotereality Corporation
    Inventors: Sergey Trubko, Venkat Peri
  • Publication number: 20130120728
    Abstract: A catadioptric projection objective for imaging an off-axis object field arranged in an object surface of the projection objective onto an off-axis image field arranged in an image surface of the projection objective has a front lens group, a mirror group comprising four mirrors and having an object side mirror group entry, an image side mirror group exit, and a mirror group plane aligned transversely to the optical axis and arranged geometrically between the mirror group entry and the mirror group exit; and a rear lens group.
    Type: Application
    Filed: December 17, 2012
    Publication date: May 16, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventor: Carl Zeiss SMT GmbH
  • Patent number: 8427744
    Abstract: An optical system includes a primary mirror of a positive-powered concave substantially paraboloidal configuration configured to reflect light incident thereupon; a secondary mirror of a negative-powered convex hyperboloidal configuration facing the primary mirror configured to receive the light reflected from the primary mirror and redirect the light reflected from the primary mirror; a positive-powered tertiary mirror configured to substantially reimage and reflect divergent light rays incident from the secondary mirror; and a powered quaternary mirror configured to receive the reimaged light rays from the tertiary mirror, and to relay the received reimaged light rays to a focal point.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: April 23, 2013
    Assignee: Raytheon Company
    Inventor: Lacy G. Cook
  • Publication number: 20130088701
    Abstract: An imaging optical system has a plurality of mirrors which image an object field in an object plane into an image field in an image plane. The imaging optical system has a pupil obscuration. The last mirror in the beam path of the imaging light between the object field and the image field has a through-opening for the passage of the imaging light. A penultimate mirror of the imaging optical system in the beam path of the imaging light between the object field and the image field has no through-opening for the passage of the imaging light. The imaging optical system has precisely eight mirrors. The result is an imaging optical system which exhibits a favorable combination of small imaging errors, manageable production and good throughput.
    Type: Application
    Filed: December 3, 2012
    Publication date: April 11, 2013
    Applicant: CARL ZEISS SMT GMBH
    Inventor: CARL ZEISS SMT GMBH
  • Patent number: 8398249
    Abstract: A projector for projecting an image includes: a light source for generating a light bundle; a pivotable deflection unit for deflecting the light bundle generated by the light source onto a projection surface; and an imaging device for imaging an aperture of the deflection unit onto the projection surface. The imaging device includes a mirror objective having at least two mirror elements. A method for projecting an image is also provided.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 19, 2013
    Assignee: Osram Gesellschaft mit beschraenkter Haftung
    Inventor: Henning Rehn
  • Patent number: 8363315
    Abstract: A catadioptric projection objective for imaging an off-axis object field arranged in an object surface of the projection objective onto an off-axis image field arranged in an image surface of the projection objective has a front lens group, a mirror group comprising four mirrors and having an object side mirror group entry, an image side mirror group exit, and a mirror group plane aligned transversely to the optical axis and arranged geometrically between the mirror group entry and the mirror group exit; and a rear lens group. The mirrors of the mirror group are arranged such that at least one intermediate image is positioned inside the mirror group between mirror group entry and mirror group exit, and that radiation coming from the mirror group entry passes at least four times through the mirror group plane and is reflected at least twice on a concave mirror surface of the mirror group prior to exiting the mirror group at the mirror group exit.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 29, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Wilhelm Ulrich, Aurelian Dodoc, Hans-Juergen Mann, David Shafer
  • Publication number: 20120320261
    Abstract: Disclosed is an imaging lens by which astigmatism and field curvature are satisfactorily corrected by arranging on a first surface a concave surface having an appropriate radius of curvature. Condition (1) defines the radius of curvature of the concave surface arranged on the object-side surface of a bonded compound lens. By fulfilling condition (1), a lens can be obtained in which astigmatism and field curvature are satisfactorily corrected. Condition (1): ?1.5<rL11/f<?5.0, wherein rL11 is the local curvature radius of the object-side surface of the first lens calculated by the equation below; f is the focus distance of the entire system. rL11={(h1)2+(s1)2}/(2s1); h1 is 1/10 of the effective radius of the object-side surface of the first lens; and s1 is the displacement amount in a direction parallel to the optical axis from the surface apex point at a lens surface height h1.
    Type: Application
    Filed: February 17, 2011
    Publication date: December 20, 2012
    Inventors: Kazuki Matsui, Yasunari Fukuta
  • Publication number: 20120274917
    Abstract: An imaging optics is provided for lithographic projection exposure for guiding a bundle of imaging light with a wavelength shorter than 193 nm via a plurality of mirrors for beam-splitter-free imaging of a reflective object in an object field in an object plane into an image field in an image plane. An object field point has a central ray angle which is smaller than 3°. At least one of the mirrors is a near-field mirror. The imaging optics which can allow for high-quality imaging of a reflective object.
    Type: Application
    Filed: May 29, 2012
    Publication date: November 1, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Hans-Juergen Mann, Martin Endres, David Shafer, Berndt Warm, Alois Herkommer
  • Publication number: 20120218630
    Abstract: A wide angle catoptric telescope comprises five successive off-axis mirrors. The first mirror or entrance mirror of the five mirrors is concave. The entrance pupil of the telescope is real and situated in front of this said first mirror. The second and the fourth mirror are convex. The third and the fifth mirror are concave. The optical combination is telecentric, and the image field is plane.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 30, 2012
    Applicant: THALES
    Inventor: Philippe MARTIN
  • Patent number: 8248693
    Abstract: An all-reflecting, non-relayed optical system having an aperture stop and an optical axis and configured to provide images of objects. The system includes a positive power primary mirror configured to receive radiation from the objects, a negative power secondary mirror configured to receive the radiation reflected from the primary mirror and a positive power tertiary mirror configured to receive the radiation reflected from the secondary mirror. The system further includes a focal plane configured to receive the radiation reflected from the tertiary mirror and to form an image of the objects. The aperture stop of the optical system is located between the tertiary mirror and the image plane. Accordingly, the image plane may be cold shielded to prevent or reduce radiation reflected from the optical elements that interferes with the desired image.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: August 21, 2012
    Assignee: Raytheon Company
    Inventor: Lacy Cook
  • Publication number: 20120200914
    Abstract: New families of two mirror unobscured telescopes with compact Schiefspiegler, eccentric pupil Cassegrain geometries, incorporating aspheres, tilted and decentered secondaries, and tilted decentered focal surfaces. These variables allow control of focal surface tilt. All embodiments, from f/5 to f/16, are totally reflecting, fully baffled systems, with wide diffraction limited FOVs and unobscured aperture MTFs. Systems optimized with the focal plane normal to the gut ray are well suited for visual and general use. They can incorporate a variable iris for f/number control and allow focusing along the gut ray with minimal field tilt. Systems optimized with a fixed focal plane tilt are well suited for high resolution, wide field collimators and IR scene generators. Any light reflected at focus can be trapped, eliminating Narcissus or “cats eye” effects. Additionally, this reflection can be used to provide a uniform “background” irradiance field.
    Type: Application
    Filed: May 27, 2011
    Publication date: August 9, 2012
    Inventor: Richard F. Horton
  • Patent number: 8208200
    Abstract: The disclosure generally relates to imaging optical systems that include a plurality of mirrors, which image an object field lying in an object plane in an image field lying in an image plane, where at least one of the mirrors has a through-hole for imaging light to pass through. The disclosure also generally relates to projection exposure installations that include such imaging optical systems, methods of using such projection exposure installations, and components made by such methods.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: June 26, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Patent number: 8203596
    Abstract: A panoramic imaging system that uses a second imager, in addition to a full field imager, that provides zoom capabilities with minimal moving parts. The second imager provides the ability to focus on and identify objects of interest that are detected by the full field imager. A steerable beam splitter can be provided to direct images to the full field imager and the zoom imager. The panoramic imaging system can be used in a number of different areas, for example surveillance or reconnaissance systems or in a sense and avoid type of collision avoidance system for aircraft including unmanned aerial vehicles.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 19, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Wade W. Brown
  • Publication number: 20120127566
    Abstract: A magnifying imaging optical system is disclosed that has precisely three mirrors, which image an object field in an object plane into an image field in an image plane. A ratio between a transverse dimension of the image field and a transverse dimension measured in the same direction of a useful face of the last mirror before the image field is greater than 3. In a further aspect, the magnifying imaging optical system is disclosed that has at least three mirrors, which image an object field in an object plane in an image field in an image plane. A first mirror in the beam path after the object field is concave, a second mirror is also concave and a third mirror is convex. An angle of incidence of imaging beams on the last mirror before the image field is less than 15°.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 24, 2012
    Inventors: Hans-Juergen Mann, Heiko Feldmann