Plural Lenticular Plates Patents (Class 359/621)
  • Patent number: 10443812
    Abstract: A laser navigational system for a vehicle having a lighting assembly configured for emission of light. A lens array assembly receives incoming light from the lighting assembly and changes the direction of the incoming light received from the lighting assembly such that the outgoing light emanating from the lens array assembly is collimated in a first direction but diverges along a different, second direction. A scanning unit aligns with the lighting assembly to direct the collimated beam in two orthogonal directions. The lighting assembly, the lens array assembly and the scanning unit are configured to direct the light to form a visual beacon that guides navigation of the vehicle to a location.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 15, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Mark Marshall Meyers, Loucas Tsakalakos
  • Patent number: 10375327
    Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 6, 2019
    Assignee: Rebellion Photonics, Inc.
    Inventor: Robert Timothy Kester
  • Patent number: 10312303
    Abstract: A display device includes a base substrate, a plurality of pixels disposed on the base substrate, a light collecting member disposed on the plurality of pixels, and an encapsulation member disposed on the light collecting member and facing the base substrate to cover the plurality of pixels, where the light collecting member includes a light collecting layer including a protrusion pattern disposed on an upper surface of the light collecting layer and the protrusion pattern is protruded in one direction to change an optical path of a light passing through the light collecting layer.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: June 4, 2019
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jaejoong Kwon, Hayoung Lee, Seunghwan Chung
  • Patent number: 10308294
    Abstract: The present invention provides a variable aerodynamic system for a vehicle. The system includes an active air skirt, an active rear spoiler, and an active rear bumper spoiler of which one or more are selected and deployed by a controller, while a vehicle is running, when the controller receives information obtained by a detector, and determines that the obtained information satisfies conditions inputted in advance by comparing the obtained information with the conditions inputted in advance. The height from an end of a front bumper to a front wheel center is within a predetermined value.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 4, 2019
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Jin Young Yoon, Hyun Gyung Kim, Keon Soo Jin, Ki Hong Lee, Dong Eun Cha
  • Patent number: 10222475
    Abstract: Embodiments describe optical imagers that include one or more micro-optic components. Some imagers can be passive imagers that include a light detection system for receiving ambient light from a field. Some imagers can be active imagers that include a light emission system in addition to the light detection system. The light emission system can be configured to emit light into the field such that emitted light is reflected off surfaces of an object in the field and received by the light detection system. In some embodiments, the light detection system and/or the light emission system includes micro-optic components for improving operational performance.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: March 5, 2019
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl, Eric Younge
  • Patent number: 10162114
    Abstract: A beam-shaping optical system suitable for use with optical coherence tomography includes a beam-shaping body having a beam-shaping element and an alignment feature. An optical fiber is coupled to the alignment feature. The fiber has a fiber end configured to emit an electromagnetic beam. The fiber and the body are configured to direct the beam into the beam-shaping element such that the beam is shaped solely by reflection into an image spot.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: December 25, 2018
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Patent number: 10096644
    Abstract: A method for manufacturing one or more optical devices, each comprising a first member and a second member, and a spacer arranged between the first and second members. The method includes manufacturing a spacer wafer including a multitude of the spacers. Manufacturing the spacer wafer includes providing a replication tool having spacer replication sections; bringing the replication tool in contact with a first surface of another wafer; bringing a vacuum sealing chuck into contact with a second surface of the other wafer while the other wafer remains in contact with the replication tool; and injecting a liquid, viscous or plastically deformable material through an inlet of the vacuum sealing chuck so as to substantially fill the spacer replication sections.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 9, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Alexander Bietsch, Hartmut Rudmann, Markus Rossi, Simon Gubser
  • Patent number: 10086576
    Abstract: An apparatus for fabricating a lens includes an injection port to inject a source material, a molding frame filled with the source material and including a plurality of forming molds adjacent to each other, and a light source or a heat source to cure the source material filled in the forming molds. The forming molds include at least four connection passages connected to the forming molds. A method for fabricating a lens includes injecting a source material through an injection port of a molding frame which includes a plurality of forming molds adjacent to each other and at least four connection passages connected to the forming molds, filling the source material in the forming molds and discharging the source material out of the forming molds through the connection passages, applying a pressure to the source material, and curing the source material.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: October 2, 2018
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Myoung Jin An, Seung Man Jeong
  • Patent number: 10048473
    Abstract: Certain aspects relate to systems and techniques for submicron alignment in wafer optics. One disclosed method of alignment between wafers to produce an integrated lens stack employs a beam splitter (that is, a 50% transparent mirror) that reflects the alignment mark of the top wafer when the microscope objective is focused on the alignment mark of the bottom wafer. Another disclosed method of alignment between wafers to produce an integrated lens stack implements complementary patterns that can produce a Moiré effect when misaligned in order to aid in visually determining proper alignment between the wafers. In some embodiments, the methods can be combined to increase precision.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: August 14, 2018
    Assignee: QUALCOMM Incorporated
    Inventor: Todor Georgiev Georgiev
  • Patent number: 9917989
    Abstract: A method and apparatus for simultaneous spatial light modulator beam steering and system aberration correction. The apparatus includes a spatial light modulator, a wide-field optical system, the wide-field optical system including at least one optical system aberration; and a camera. The wide-field optical system collimates a light beam toward the camera. The camera communicates with the spatial light modulator via a feedback loop that pre-corrects for the at least one optical system aberration.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: March 13, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Abbie T. Watnik, Vincent A. Cassella
  • Patent number: 9880325
    Abstract: A method for displaying a near-eye light field display (NELD) image is disclosed. The method comprises determining a pre-filtered image to be displayed, wherein the pre-filtered image corresponds to a target image. It further comprises displaying the pre-filtered image on a display. Subsequently, it comprises producing a near-eye light field after the pre-filtered image travels through a microlens array adjacent to the display, wherein the near-eye light field is operable to simulate a light field corresponding to the target image. Finally, it comprises altering the near-eye light field using at least one converging lens, wherein the altering allows a user to focus on the target image at an increased depth of field at an increased distance from an eye of the user and wherein the altering increases spatial resolution of said target image.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: January 30, 2018
    Assignee: NVIDIA CORPORATION
    Inventors: Douglas Lanman, David Luebke
  • Patent number: 9804373
    Abstract: The first optical element 10 and the second optical element 20 are spaced away from each other in an effective area through which a light beam passes, and satisfy the following condition (1): 0<DMAX/f?0.3??(1) where DMAX is the maximum value of a distance as measured in the effective area through which the light beam passes on a section including a center chief ray of the light beam in a direction parallel with the center chief ray between the second surface 12 of the first optical element 10 and the first surface 21 of the second optical element 20, and f is the focal length of the decentered optical system 1.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: October 31, 2017
    Assignee: OLYMPUS CORPORATION
    Inventor: Koichi Takahashi
  • Patent number: 9753298
    Abstract: A despeckle optical system for an image projector includes a diffuser, an in-plane vibrator, a microlens array, and a vibrator driver. The in-plane vibrator is coupled to vibrate the diffuser along a vibration plane. The vibrator driver is coupled to drive the in-plane vibrator and configured to drive the in-plane vibrator at different vibration amplitudes for averaging the intensity of speckle in display light that propagates through the diffuser via the microlens array.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: September 5, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventor: Yi-Wei Liu
  • Patent number: 9714745
    Abstract: An illumination device or method of generating illumination using an illumination device is described with two light sources with different spectral distribution a number of displaceable light collectors collecting light from the light sources where in one mixing position receiving light from both light sources where at least one of the light sources has two independently controllable light emitting areas and in one mixing position the collecting area collects light form the first light emitting area and substantially not from the second light emitting area. Further an unrelated illumination device with at least one Light Emitting Diode, LED and a current spreader connected to and covering a first area of a first side of the lead, spreading current in an irregular pattern and a current controller controlling current flowing through the first current spreader. The current spreader can be patterned to produce a round beam illumination or illumination in a form of a static picture or logo.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 25, 2017
    Assignee: MARTIN PROFESSIONAL APS
    Inventor: Dennis Jørgensen
  • Patent number: 9634051
    Abstract: Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises —one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; —at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and —one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 25, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Alexander Bietsch, Hartmut Rudmann, Markus Rossi, Simon Gubser
  • Patent number: 9441797
    Abstract: A lens device and a light source module using the same are provided. The lens device comprises a lens and a patterned light shielding layer. The lens has a middle light emitting surface and a periphery light emitting surface surrounding the middle light emitting surface. The patterned light shielding layer is formed on the periphery light emitting surface of the lens.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: September 13, 2016
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Chih-Min Huang, Kuang-Neng Yang, Kun-Hua Wu
  • Patent number: 9418193
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Paulo E. X. Silvieri, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Gary L. Duerksen
  • Patent number: 9417447
    Abstract: A rod lens array includes a plurality of columnar rod lenses each having a refractive index distribution in which a refractive index continuously decreases from a central axis thereof to an outer periphery, and arranged in at least one row to align the central axes in parallel to each other. Each of the plurality of columnar rod lenses includes an emission-side end portion region, an incident-side end portion region, and an intermediate region between the emission-side end portion region and the incident-side end portion region, each having a central refractive index. The central refractive index of the incident-side end portion is equal to that of the emission-side end portion region in an optical axis direction, and the central refractive index at the intermediate region is higher than those of the emission-side and incident-side end portion regions.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: August 16, 2016
    Assignee: NISCA CORPORATION
    Inventors: Yuichi Kagami, Kouji Ogino
  • Patent number: 9411077
    Abstract: Provided are a lenticular lens sheet capable of simultaneously achieving an improvement in visibility due to improving bonding accuracy, and low cost due to shape stabilization during processing the lens, a display apparatus and an electronic equipment including the same. The lenticular lens sheet includes a plurality of cylindrical lenses which extend in a direction parallel to each other; and an alignment mark which has two cylindrical lenses among the plurality of cylindrical lenses, a flat part disposed between the two cylindrical lenses, and a structure which is disposed on the flat part and extends between the two cylindrical lenses.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: August 9, 2016
    Assignee: NLT TECHNOLOGIES, LTD.
    Inventors: Jin Matsushima, Koji Shigemura
  • Patent number: 9354360
    Abstract: An erecting equal-magnification lens array unit includes a first lens array and a second lens array. The first lens array includes a plurality of first lenses. The second lens array includes a plurality of second lenses. The optical axes of the second lenses overlap with the optical axes of the first lenses. Each first lens and second lens with overlapping optical axes form a unit optical system. Each unit optical system is an erecting equal-magnification optical system. Each unit optical system is substantially telecentric on at least the object side. The imaging position, by each first lens, of an object is positioned between the first lens array and the second lens array.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 31, 2016
    Assignee: KYOCERA CORPORATION
    Inventor: Tomoya Sugita
  • Patent number: 9300868
    Abstract: An image processing device includes a pixel array including multiple unit pixels each configured to generate multiple color signals in response to incident light, and a data processing unit configured to generate output image data by processing the color signals in parallel in a first operating mode, and further configured to generate two image signals for each unit pixel based on the color signals and to generate the output image data by processing the two image signals in parallel in a second operating mode.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 29, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Joon Baek, Dong-Jae Lee, Tae-Chan Kim
  • Patent number: 9042424
    Abstract: A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a silicon-based base portion having a first primary surface and a silicon-based support structure. The silicon-based support structure includes a mounting end and a distal end opposite the mounting end with the mounting end received by the base portion such that the support structure extends from the first primary surface of the base portion. The support structure includes a recess defined therein to receive the edge-emitting laser diode. The support structure further includes a slit connecting the distal end and the recess to expose at least a portion of a light-emitting edge of the edge-emitting laser diode when the edge-emitting laser diode is received in the support structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Inventors: Gerald Ho Kim, Jay Eunjae Kim
  • Patent number: 9008147
    Abstract: A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a base portion and a support portion. The base portion is made of silicon and includes a first primary surface. The first primary surface includes at least first and second V-notch grooves thereon. The support portion is made of silicon and includes at least first and second edges that are interlockingly received in the first and second V-notch grooves when the support portion is mounted on the base portion.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: April 14, 2015
    Inventors: Gerald Ho Kim, Jay Eunjae Kim
  • Patent number: 8964297
    Abstract: A high definition thin lens dimensional image display device and methods of manufacturing the same. The thin lens dimensional image display device generally includes a lens array on a first surface of a film, such as a lenticular lens array or a fly's eye lens array, with a printed imaged either printed directly on a second planar surface of the film, or on a separate substrate that is laminated thereto. The resulting display device offers a lower cost display device having greater flexibility for a wider variety of applications than traditional image display devices, without compromising image quality. Processes for manufacturing the display device include printing on a pre-fabricated thin lens web, inline printing of an image and patterning of the lens array, and inline printing of a substrate and application of a coating to the substrate which is subsequently patterned or embossed.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: February 24, 2015
    Assignee: Travel Tags, Inc.
    Inventors: Anthony L. Hoffman, John Tomczyk, Lee A. Timmerman, Lane H. Gravley, Chad M. Ratcliff
  • Patent number: 8922894
    Abstract: A lens unit includes a first lens plate including first lenses arranged in a first direction and configured to form an intermediate image being an inverted reduced image of an object, a second lens plate including second lenses arranged in the first direction and configured to form an inverted enlarged image of the intermediate image on a light reception surface, and a positioning portion being in contact with both a butting portion formed on the first lens plate and a butting portion formed on the second lens plate.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: December 30, 2014
    Assignee: Oki Data Corporation
    Inventor: Akihiro Yamamura
  • Patent number: 8913323
    Abstract: A combined use of a pervasively textured anilox supply roll and a customized, locally patterned flexographic roll is provided for forming a lenticular product. The customized, locally patterned flexographic roll includes an intermittent raised and recessed surface pattern analogous to a type used in a “spot” ink application. In the present case, however, the applied material is transparent and preferably matched in its refractive index to the lenticular sheet. Relevant aspects of the invention also register the selectively coated areas with graphic features on the planar reverse side of the lenticular sheet.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: December 16, 2014
    Assignee: Tracer Imaging LLC
    Inventor: Steven M. Spiro
  • Patent number: 8885257
    Abstract: Optical imaging apparatuses are provided having desired focal properties. An optical imaging apparatus can include at least one wafer level optical element, a spacer, a second wafer comprising a focus compensation standoff, and an electro-optical element. For some apparatuses, the focus compensation standoff may include an electro-optical element mounting surface having a roughness different from at least one other surface of the focus compensation standoff. Also described are methods of producing a plurality of optical imaging apparatuses. Some methods include providing an optical wafer having a first and second optical element, determining a first and second focal point of a first and second optical die; providing a second wafer having a first and second focus compensation standoff; and adjusting the heights of the first and second focus compensation standoffs to position a first and second electro-optical element at or near a first and second focal point, respectively.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: November 11, 2014
    Assignee: FLIR Systems Trading Belgium BVBA
    Inventors: David Ovrutsky, Hagit Gershtenman-Avsian, Alan Kathman, Jennifer Plyler
  • Patent number: 8817378
    Abstract: An erecting equal-magnification lens array plate includes: a first lens array plate provided with a plurality of first lenses systematically arranged on a first surface and a plurality of second lenses systematically arranged on a second surface opposite to the first surface; and a second lens array plate provided with a plurality of third lenses systematically arranged on a third surface and a plurality of fourth lenses systematically arranged on a fourth surface opposite to the third surface. The first lens array plate and the second lens array plate form a stack such that the second surface and the third surface face each other to ensure that a combination of the lenses aligned with each other form a coaxial lens system. A plurality of V grooves are formed in an area between adjacent second lenses on the second surface in the erecting equal-magnification lens array plate.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: August 26, 2014
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Hideshi Nagata, Katsuhide Shimmo, Shiro Sato
  • Patent number: 8810912
    Abstract: An erecting equal-magnification lens array plate includes a first lens array plate and a second lens array plate provided opposite to each other, each of the first and second lens array plates being formed with a plurality of lenses on both sides thereof. The first lens array plate is provided with a first lens-to-lens distance determining part. The second lens array plate is provided with a second lens-to-lens distance determining part. The distance between opposite lenses is determined by the contact between the first lens-to-lens distance determining part and the second lens-to-lens distance determining part.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 19, 2014
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Katsuhide Shimmo, Shiro Sato, Yuji Hiranuma, Kazuto Kase
  • Patent number: 8804255
    Abstract: A variety of optical arrangements and methods of modifying or enhancing the optical characteristics and functionality of these optical arrangements are provided. The optical arrangements being specifically designed to operate with camera arrays that incorporate an imaging device that is formed of a plurality of imagers that each include a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 12, 2014
    Assignee: Pelican Imaging Corporation
    Inventor: Jacques Duparre
  • Patent number: 8797651
    Abstract: A lens array includes: at least one lens including a first lens surface and a second lens surface. The first lens surface is formed to tilt at a predetermined tilt angle with respect to the second lens surface. The first lens surface is formed to be eccentric by an eccentric distance in such a direction that the optical axis of the second lens surface and an optical axis of the first lens surface intersect on a side of the first lens surface.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: August 5, 2014
    Assignee: Oki Data Corporation
    Inventor: Akihiro Yamamura
  • Patent number: 8786952
    Abstract: Provided are methods for making a product having a three-dimensional surface. The method includes providing a base material, providing an adhesive layer and positioning the adhesive layer relative to the base material. The method includes providing a three-dimensional sheet having a top surface and a bottom surface, the top surface having a convex lens layer. The three-dimensional sheet is positioned relative to the base material based on a registration of an image on the three-dimensional sheet and is secured to the base material using the adhesive layer. Securing the three-dimensional sheet to the base material can include applying pressure to the three-dimensional sheet in successive steps of increasing pressure. Also provided is a product having a three-dimensional surface that includes a base material, a three-dimensional sheet, and an adhesive layer disposed between the base material and three-dimensional sheet and configured to secure the three-dimensional sheet to the base material.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 22, 2014
    Assignee: aviDDD, LLC
    Inventors: Andrew B. Sacks, John Lee, Hyunin Chung
  • Patent number: 8736966
    Abstract: A light source device includes a light source main unit made of a combination of a plurality of semiconductor laser devices, a plurality of collimator lens respectively capable of converting light beams emitted by the respective semiconductor laser devices of the light source main unit to respective approximately parallel light beam fluxes, and a condenser lens capable of condensing light beam fluxes emitted by the plurality of collimator lenses. The light source main unit has the plurality of semiconductor laser devices arranged, when viewed from the condenser lens, so that the stems of the adjacent semiconductor laser devices are seemingly continuous in a first direction perpendicular to the optical axis of the condenser lens, and the stems of the adjacent semiconductor laser devices are overlapped in a second direction perpendicular to both the direction of optical axis and the first direction.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Nichia Corporation
    Inventors: Takashi Sasamuro, Yukitoshi Marutani
  • Patent number: 8724222
    Abstract: A Compact Interdependent Optical Laser System and Method is designed for use with wavelength beam combining (WBC) systems that utilize both slow-axis and fast-axis WBC. Multiple optical elements having individual and interdependent functionality allow for the system to compact reducing the overall footprint of the system. Additional, configurations incorporating the compact system described herein allow for high-power and brightness scaling.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: May 13, 2014
    Assignee: Teradiode, Inc.
    Inventors: Bien Chann, Robin Huang
  • Patent number: 8724080
    Abstract: An optical raster element for an illumination system of a microlithographic projection exposure apparatus includes an array of refractive optical elements extending on a planar or curved surface. At least two of the optical elements are arranged side by side along a reference direction with a pitch of less than 2 mm. They have a height perpendicular to the surface of less than 50 ?m and a surface profile along the reference direction which includes a central section, two transition sections adjacent the central section and two end sections adjacent the transition sections. The curvatures in the two transition sections are greater than the curvatures in the central section and the end sections. The optical raster element is intended for being used as a first channel plate in an optical integrator (honeycomb condenser) and can reduce the maximum light intensities occurring in or behind the second channel plate.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: May 13, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Patent number: 8693101
    Abstract: A lens sheet having one or more lens arrays positioned in selected discrete areas. Each lens array includes a plurality of lenses, each having a width, a height, and a lens peak. The lens array is set below the planar surface of the lens sheet, such that lens array does not extend above the lens sheet. Furthermore, the lens array is completely bordered by or contained within planar portions of the lens sheet. One or more dimensional images are printed below each of the lens arrays, and/or one or more static images can be printed on the planar portions of the lens sheet.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: April 8, 2014
    Assignee: Travel Tags, Inc.
    Inventors: John Tomczyk, Jonathan Van Loon, David E. Corey
  • Patent number: 8675293
    Abstract: An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for a forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: March 18, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, James W. Getz, Peter S. Whitney, Mark E. Kuznetsov, Christopher C. Cook
  • Publication number: 20140071025
    Abstract: A head mounted display and a method of displaying a content using the head mounted display are disclosed. The head mounted display is disclosed which includes: a display unit displaying a content; and a first lens unit configured by a set of lens elements that refract the content displayed on the display unit in an eyeball direction.
    Type: Application
    Filed: January 18, 2013
    Publication date: March 13, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Joong Ho LEE, Ji Hyung PARK
  • Patent number: 8670180
    Abstract: A system and method for producing a multi-output laser by reconfiguring and apportioning a plurality of electromagnetic beams produced by various wavelength beam combining techniques. The reconfiguring of beams includes individual rotation and selective repositioning of one or more beams with respect to beam's original input position.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: March 11, 2014
    Assignee: Teradiode, Inc.
    Inventors: Bien Chann, Robin Huang
  • Patent number: 8665523
    Abstract: A multilayer sheeting with a 3D floating image. The sheeting includes a layer of microlenses and a multilayer material disposed adjacent the microlenses. The multilayer material includes multiple adjacent layers having X-Y planar positions and a Z-direction orthogonal to the X-Y planar positions. Individual images, which contrast with the material, are formed in the multilayer material and include connected elements at interfaces between the multiple layers and conjunction elements between connected elements. The connected elements are registered in the Z-direction at the X-Y planar positions in the interfaces between the layers. The individual images collectively form a composite 3D image that appears to the unaided eye to be three-dimensional and floating above or below the sheeting, or both.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: March 4, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Jiro Hattori, Yoichiro Mizumoto
  • Patent number: 8659830
    Abstract: Optical films used for 3D autostereoscopic displays include lenses on one surface of the optical film that are registered to prisms on the opposing surface of the optical film. The lenses may be a-cylindrical lenses or cylindrical, and the rotation of the lenses can vary with position on the surface of the optical film. The prisms may be contiguous or non-contiguous. The prisms of the optical film can have a pitch that is different from a pitch of the lenses, or the prism pitch can be substantially the same as the pitch of the lenses.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 25, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Robert L. Brott, Michael J. Sykora
  • Patent number: 8641206
    Abstract: A projector includes a light source device which emits an illumination light; an aperture disposed with a tilt with respect to a plane perpendicular to a center axis of the illumination light, provided with an opening section which transmits a part of the illumination light, and block a rest of the illumination light; a pair of first and second lens arrays which divides the illumination light from the light source device into a plurality of partial light; and an overlapping lens which overlaps the illumination light transmitted through the first and second lens arrays, wherein the aperture is disposed on a light path between the light source device and the overlapping lens.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: February 4, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Kiyotaka Nakano, Masakazu Kawamura, Tomoharu Masuda
  • Patent number: 8611013
    Abstract: An optical integrator is able to keep down a light-quantity loss in modified illumination with an illumination optical apparatus. An optical integrator of a wavefront division type according to the present invention has a plurality of refracting surface regions which refract incident light, and a plurality of deflecting surface regions provided corresponding to the plurality of refracting surface regions and adapted for changing a traveling direction of the incident light. The plurality of refracting surface regions include a plurality of first refracting surface regions includes an arcuate contour with the center projecting in a first direction, and a plurality of second refracting surface regions includes an arcuate contour with the center projecting in a second direction.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 17, 2013
    Assignee: Nikon Corporation
    Inventor: Osamu Tanitsu
  • Patent number: 8611026
    Abstract: An optical device includes a substrate. a non-planar transparent structure on a first surface of the substrate, the non-planar transparent structure being made of a first material, and a molded refractive surface on the first surface of the substrate adjacent the non-planar transparent structure, the molded refractive surface being made of a second material, different from the first material.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 17, 2013
    Assignee: Digitaloptics Corporation
    Inventors: Hongtao Han, Alan Kathman, Rong Huang, Michael Feldman, Robert D. TeKolste, Jeremy Huddleston, James Carriere, Michael Magoon, Jack Schmidt
  • Publication number: 20130314680
    Abstract: A lens unit includes a first lens plate including first lenses arranged in a first direction and configured to form an intermediate image being an inverted reduced image of an object, a second lens plate including second lenses arranged in the first direction and configured to form an inverted enlarged image of the intermediate image on a light reception surface, and a positioning portion being in contact with both a butting portion formed on the first lens plate and a butting portion formed on the second lens plate.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 28, 2013
    Applicant: Oki Data Corporation
    Inventor: Akihiro YAMAMURA
  • Publication number: 20130308197
    Abstract: Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. Lens stack arrays in accordance with many embodiments of the invention include lens elements formed on substrates separated by spacers, where the lens elements, substrates and spacers are configured to form a plurality of optical channels, at least one aperture located within each optical channel, at least one spectral filter located within each optical channel, where each spectral filter is configured to pass a specific spectral band of light, and light blocking materials located within the lens stack array to optically isolate the optical channels.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 21, 2013
    Applicant: Pelican Imaging Corporation
    Inventor: Jacques Duparre
  • Patent number: 8576489
    Abstract: A wide angle imaging system combines compound array fore-optics with single axis relay optics to generate distortion free images with an infinite depth of field. A curved first array of objective lenslets focuses multiple apertures of light through the tubes of a louver baffle terminated by field stops. A curved second array of field lenslets, positioned immediately after the field stops, passes the light beams through an array of pupil planes. A curved final array of erector lenslets refocuses the beams into a curved array of sub-images. The relay optics transform the curved array of sub-images into a flat final image that is contiguous. The fore-optics and relay optics are optimized concurrently to achieve much higher performance than is possible in either compound array optics or sequential optics. This is accomplished by varying the lenslet radii of the fore-optics in annular increments to compensate for aberrations introduced by the relay lenses.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: November 5, 2013
    Assignee: Spectral Imaging Laboratory
    Inventor: Francis Mark Reininger
  • Patent number: 8553327
    Abstract: A system and method for reconfiguring a plurality of electromagnetic beams to take advantage of various wavelength beam combining techniques. The reconfiguring of beams includes individual rotation and selective repositioning of one or more beams with respect to beam's original input position.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 8, 2013
    Assignee: Teradiode, Inc.
    Inventors: Bien Chann, Robin Huang
  • Patent number: 8537468
    Abstract: Designs of optical devices providing multiplexing or demultiplexing functions are disclosed. According to one embodiment, an optical device or an assembly employs an array of micro lenses, an array of filters and a mirror or an array of mirrors all bonded onto a substrate to provide multiplexing or demultiplexing functions. To compensate for possible errors caused by some or all of these components, one or more compensatory optical plates are provided to respectively correct these errors. Depending on implementation, the compensatory optical plates may be designed differently to correct various errors.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Xuan Wang, Andy Zhou, Yao Li, Wei-Shin Tsay
  • Patent number: 8520307
    Abstract: The disclosure relates to an optical integrator configured to produce a plurality of secondary light sources in an illumination system of a microlithographic projection exposure apparatus. The disclosure also relates to a method of manufacturing an array of elongated microlenses for use in such an illumination system. Arrays of elongated microlenses are often contained in optical integrators or scattering plates of such illumination systems.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 27, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Oliver Wolf, Heiko Siekmann, Eva Kalchbrenner, Siegfried Rennon, Johannes Wangler, Andre Bresan, Michael Gerhard, Nils Haverkamp, Axel Scholz, Ralf Scharnweber, Michael Layh, Stefan Burkart