Plural Gaps Patents (Class 360/121)
  • Patent number: 7716814
    Abstract: Components of a plurality of magnetic heads are formed on a single substrate to fabricate a magnetic head substructure in which a plurality of pre-head portions are aligned in a plurality of rows. The substructure is cut to separate the plurality of pre-head portions from one another, and the plurality of magnetic heads are thereby fabricated. The surface formed by cutting the substructure is lapped to form a lapped surface. The lapped surface is lapped so as to reach a target position of a medium facing surface. The substructure incorporates first to fourth resistor elements each of which detects the position of the lapped surface. The third and fourth detection elements are located at positions shifted from the first and second resistor elements along the direction orthogonal to the medium facing surface.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: May 18, 2010
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Kazuo Ishizaki, Ryuji Fujii, Tatsushi Shimizu
  • Patent number: 7712206
    Abstract: A method for constructing a magnetic write head for use in perpendicular magnetic recording, the write head having a write pole with a trailing shield. After forming a magnetic write pole such as by masking and ion milling a magnetic write pole layer, a thin layer of alumina is deposited. This is followed by the deposition of a thin layer of Rh. Then, a thick layer of alumina is deposited, having a thickness that is preferably at least equal to the height of the write pole layer. A chemical mechanical polish is then performed until a portion of the Rh layer over the top (trailing edge) of the write pole is exposed. A material removal process such as ion milling is then performed to remove the exposed Rh layer exposing the thin alumina layer there beneath. Since the Rh trailing gap layer is electrically conductive it can also serve as a seed layer for electroplating the magnetic trailing shield.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 11, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ming Jiang, Aron Pentek, Yi Zheng
  • Patent number: 7712207
    Abstract: A method for manufacturing a magnetic write pole and trailing wrap around magnetic shield for use in a perpendicular magnetic data recording system. The method includes the use of a hard mask structure with end point detection material embedded in a hard mask material. The novel hard mask structure provides the mill resistance of a hard mask, with the end point detection advantages of an end point detection layer.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 11, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Yi Zheng, Howard Gordon Zolla
  • Patent number: 7701665
    Abstract: A thin film magnetic recording head is provided with a tape bearing surface that has magnetically isolated channels while still providing a maximum continuous surface area with which to engage the media. This can be accomplished by providing spaces in the magnetically permeable thin film that are large enough to prevent cross-talk between the channels, but small enough to prevent significant interference with the moving media. Alternatively, magnetically impermeable thin film spacers can be provided to magnetically isolate each of the channels. The spacers are generally even with the magnetically permeable thin film so as to provide a continuous media-bearing surface.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 20, 2010
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas
  • Patent number: 7690100
    Abstract: A device and method for testing a slider of a head-gimbal assembly during disc drive manufacturing. The device includes a test disc, an actuator arm and a control module. The test disc has a first circumferential area for detecting contact between the slider and the test disc and a second circumferential area for burnishing sliders that contact the first circumferential area as the test disc rotates at or above the predetermined velocity. The head-gimbal assembly is affixed to the actuator arm such that the slider is operable to move between an inner diameter and an outer diameter of the test disc. The control module controls the movement of the actuator arm, and thus the slider, relative to the test disc. The control module monitors the slider-disc interface for contact therebetween. If contact is detected, the slider is either burnished or the head-gimbal assembly is discarded altogether.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: April 6, 2010
    Assignee: Seagate Technology LLC
    Inventors: Serge J. Fayeulle, Paul W. Smith, Gary E. Bement
  • Patent number: 7692893
    Abstract: A method and apparatus for processing sub-micron write head flare definition is provided. The method for processing a perpendicular magnetic head forms a portion of a perpendicular write head, where the portion of the write head includes a first pole layer, a coil layer, a second pole layer and a write pole, the method forms a portion of a magnetic read head adjacent to the portion of the perpendicular write head, where the portion of the read head includes a shield layer and a sensor, the method also laps the write pole concurrently with the sensor to define a flare position of the pole tip and to define a sensor height, where the flare position of the pole tip is defined in the same photo-lithography step as the back edge of the sensor.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: April 6, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Vladimir Nikitin, Samuel Wei-san Yuan
  • Patent number: 7684148
    Abstract: A magnetic head includes a wafer substrate and a conductive underlayer formed directly on the substrate. An insulating layer is formed above the conductive layer. A reader and/or writer thereof is formed above the insulating layer. Another magnetic head includes a substrate and an insulating underlayer formed above the substrate. A conductive underlayer is formed above the insulating underlayer. An insulating layer is formed above the conductive underlayer. At least one device is formed above the insulating layer, the at least one device being selected from a group consisting of readers, writers, and combinations thereof. Tape drive systems and methods for forming such heads are also presented.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventor: Robert Glenn Biskeborn
  • Patent number: 7681303
    Abstract: Embodiments of the present invention provide a method of manufacturing a magnetic head slider, the method being adapted so that throat height of a main magnetic pole piece of a perpendicular recording magnetic head can be controlled with high accuracy. According to one embodiment, a first Electrical Lapping Guide element (ELG) is disposed on the same layer as a plated underlayer of a shield of one write head in a row bar, and other ELGs are disposed on the same layer as that of a main magnetic pole piece of another write head. Front end positions (Tops) are detected from changes in resistance values of the other ELGs and an ending position of lapping is calculated. Since the front end positions (Tops) of the other ELGs are accurate, it is possible to assign a correlation to throat height “Th” of the main magnetic pole piece and the resistance value of the first ELG by detecting this resistance value existing when the front end positions (Tops) are detected.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: March 23, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Akira Kondo, Koji Tanaka, Kimitoshi Etoh, Ichiro Oodake
  • Patent number: 7656610
    Abstract: The aspects of the present invention provide a magnetic recording head, a method for manufacturing a magnetic recording head, and a magnetic recording head drive. The magnetic recording head includes a substrate and a first magnetic device connected to the substrate. The magnetic recording head also includes a second magnetic device connected to the first magnetic device. The first magnetic device is aligned with the second magnetic device. The first and second magnetic devices are supported by the same side of the substrate.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: February 2, 2010
    Assignee: Storage Technology Corporation
    Inventors: Francis Campos, Kevin Dale McKinstry
  • Patent number: 7646565
    Abstract: A magnetic head assembly according to one embodiment of the present invention includes a substrate having a tape bearing surface. A plurality of elements are coupled to the substrate and positioned towards the tape bearing surface. The elements selected from a group consisting of readers, writers, and combinations thereof. A base is coupled to the substrate. The base has an outrigger formed integrally therewith. The outrigger causes a tape passing thereacross to approach the substrate at a first wrap angle relative to a plane of the tape bearing surface of the substrate.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: January 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Jason Liang, Calvin Shyhjong Lo
  • Publication number: 20100002335
    Abstract: A thin film magnetic recording head is fabricated by forming a substrate from opposing ferrite blocks which have a ceramic member bonded between them. This structure is then diced to form a plurality of columns, wherein each column has a ferrite/ceramic combination. Each column represents a single channel in the completed head. A block of ceramic is then cut to match the columned structure and the two are bonded together. The bonded structure is then cut or ground until a head is formed, having ceramic disposed between each channel. A ferrite back-gap is then added to each channel, minimizing the reluctance of the flux path. The thin film is patterned on the head to optimize various channel configurations.
    Type: Application
    Filed: April 27, 2009
    Publication date: January 7, 2010
    Inventor: Matthew P. Dugas
  • Publication number: 20090316291
    Abstract: A magnetic head in one embodiment comprises a pole; a first write gap in the pole; a first coil for generating a magnetic flux across the first write gap; a second write gap in the pole having at least a portion thereof aligned with the first write gap in a direction parallel to a direction of media travel thereover; and a second coil for generating a magnetic flux across the second write gap, the second coil being addressable independently of the first coil. A method in one embodiment comprises forming a first write coil; forming a first write gap; forming a second write gap having at least a portion thereof aligned with the first write gap in a direction parallel to a direction of media travel thereover; forming a second coil for generating a magnetic flux across the second write gap, the second coil being addressable independently of the first coil; and forming one or more write poles, wherein a write pole region adjacent the first and second write gaps is formed concurrently.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Inventors: Robert Glenn Biskeborn, Philipp Herget
  • Patent number: 7631417
    Abstract: Methods and structures for the fabrication of perpendicular thin film heads are disclosed. Prior to the deposition of shield structures, seed layers having anti-reflective properties are utilized, eliminating the need to deposit, then remove, traditional inorganic anti-reflection coatings prior to shield plating.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: December 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hieu Lam, Patrick Rush Webb, Yi Zheng
  • Patent number: 7630173
    Abstract: A magnetic recording head according to one embodiment comprises a support having a surface with an opening in said surface; at least one head chin comprising a substrate having a plurality of magnetic recording elements, said head chip positioned to protrude through the opening in the surface of the support for read/write access to a magnetic recording tape, a tape bearing surface of the head chip being positioned above the surface of the support, wherein the at least one head chip includes two transducing surfaces separated in a direction parallel to a direction of tape travel over the at least one head chip by a gap and held in fixed relation to one another. Additional embodiments are also presented.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: December 8, 2009
    Assignee: International Business Machines Corporation
    Inventor: Robert Glenn Biskeborn
  • Patent number: 7623310
    Abstract: Disclosed is a magnetic recording medium which enables a magnetic head to be accurately positioned even if higher-density recording of magnetic recording media is reinforced. The magnetic recording medium includes at least one servo band being magnetized in one direction and including a plurality of servo patterns being formed repeatedly along a long side of the servo band. Furthermore, each of the servo patterns includes a first magnetizing area being formed across a width of the servo band at an angle from 8 to 20 degrees with respect to the width, and a second magnetizing area being formed across the width of the servo band in non-parallel with the first magnetizing area. In addition, the first and second magnetizing areas are magnetized in a direction opposite to that of the servo band.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: November 24, 2009
    Assignee: FUJIFILM Corporation
    Inventor: Toru Nakao
  • Patent number: 7610673
    Abstract: A vertical recording magnetic head and a method of manufacturing the same is provided. The magnetic head includes a main magnetic pole layer on a surface opposite to a recording medium and a pair of neck height markers which is exposed on the surface around the main magnetic pole layer and which indicates a neck height position of the main magnetic pole layer by way of inter-exposure area ratios. The neck height markers have one cross sections that increases and the other that decreases even though the cross sections in a plane parallel to the surface are oriented toward forward or backward directions in a neck height direction. The neck height markers have the same cross sections at a specific cross sectional position parallel to the surface.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 3, 2009
    Assignee: TDK Corporation
    Inventor: Toru Takahashi
  • Patent number: 7610672
    Abstract: There is provided a disk drive that includes a base, a limiting member, an actuator, and a latch. The actuator includes an actuator catch with a catch path. The latch contacts the limiting member with the latch in an open position. The latch is biased to rotate to a defeat position. An arresting portion is in the catch path with the latch in a closed position. The arresting portion is not in the catch path with the latch in the open position, and not in the catch path with the latch in the defeat position. A crash stop portion contacts the actuator with the latch in the closed position and with the actuator in a stop position. The crash stop portion does not contact the actuator with the latch in the defeat position. Also provided is a method of reworking a disk drive having the latch.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: November 3, 2009
    Assignee: Western Digital Technologies, Inc.
    Inventor: Michael K. Liebman
  • Patent number: 7610674
    Abstract: Concerns about inadequate electromigration robustness in CCP CPP GMR devices have been overcome by adding magnesium to the current confining structures that are presently in use. In one embodiment the alumina layer, in which the current carrying copper regions are embedded, is fully replaced by a magnesia layer. In other embodiments, alumina is still used but a layer of magnesium is included within the structure before it is subjected to ion assisted oxidation.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 3, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Daniel G Abels, Min Li, Yu-Hsia Chen
  • Patent number: 7587811
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording having a write pole with a very narrow track width and well controlled critical dimensions. The write pole is formed by depositing an electrically conductive seed layer over a substrate, and then depositing a photo resist layer over the seed layer. The photo resist layer is photolithographically exposed and developed to form an opening or trench in the photoreist layer, the opening defining the pattern of the write pole. A magnetic material is then plated into the opening in the photoresist layer. The photo resist layer can then be removed by a chemical lift off, and portions of the seed layer that are not covered by the write pole can be removed by ion milling.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: September 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Christian Rene Bonhote, Yimin Hsu, Aaron Neuhaus, Aron Pentek, Yi Zheng
  • Patent number: 7578049
    Abstract: A method for manufacturing a write pole for a perpendicular magnetic write head. The method includes forming a mask structure over a full film layer of magnetic write pole material. A layer of hard mask material such as conformally deposited alumina is then deposited full film over the mask and write pole material. An ion mill, such as in an Ar or CHF3 chemistry is then used to preferentially remove horizontally disposed portions of the alumina layer (hard mask layer), thereby forming vertical hard mask walls at the sides of the mask structure. An ion mill is then used to form the write pole, with the alumna side walls providing excellent masking for forming well defined write pole edges. A relatively gentle clean up process can then be performed to remove the remaining mask material and side walls.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: August 25, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yimin Hsu, Vladimir Nikitin, Aron Pentek
  • Patent number: 7576949
    Abstract: The present invention relates to direct current (“DC”) pre-erasing servo channels of a magnetic tape prior to writing servo data in a servo channel. The present invention particularly relates to those servo recordings which were written with a uni-polar current waveform. The DC pre-erase is performed using a uni-polar direct current of a polarity that is opposite to the polarity of the direct current used to write the servo data. This pre-erase may be done with one or more heads. Also, as will be described, the pre-erase of a servo channel and writing to a servo channel may be done by making two passes over a single head or by using two or more heads to perform both steps. Also, it is within the scope of the present invention to have the heads mounted on a single mount or have the heads on separate mounts and on separate tape decks.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: August 18, 2009
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Theodore A. Schwarz
  • Publication number: 20090190257
    Abstract: A magnetic head includes a magnetic pole for writing. The magnetic pole is formed by laminating a first magnetic layer and a second magnetic layer so as to sandwich a write gap on the magnetic pole end side. The second magnetic layer is formed to be laminated on the write gap in a region in which the write gap is provided. The second magnetic layer is laminated on an insulating layer via an adhesive layer in a region other than the write gap.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 30, 2009
    Applicant: FUJITSU LIMITED
    Inventor: Sigeru Yamaguchi
  • Publication number: 20090190256
    Abstract: A thin film, perpendicular write head for use with recording media with or without a soft under layer is disclosed. The present invention comprises an tapered auxiliary pole, situated below the main write pole and separated from the write pole by a lower non-magnetic gap. The auxiliary pole alleviates problems such as erasure after write, and cross track stray erasure fields, associated with operating conventionally designed perpendicular writes heads with media having no soft under layer.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Inventors: Manfred Ernst Schabes, Petrus Antonius Van Der Heijden, Xiao Z. Wu
  • Patent number: 7567409
    Abstract: The structure for a narrow pitch tape head array is disclosed. Narrow pitch is obtained by offsetting the location of the write gaps of successively stacked coplanar head arrays. A compact structure with lower fabrication cost is obtained by sharing magnetic pole layers between the stacked co-planar arrays.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: July 28, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Edward Hin Pong Lee, David John Seagle
  • Patent number: 7562437
    Abstract: A method for constructing a magnetic write head for use in perpendicular magnetic recording, the write head having a write pole with a trailing shield that wraps around the write pole. The method allows the trailing shield to be constructed with a very well controlled trailing gap thickness and also allows the write pole to be constructed with a well controlled track width and a straight, flat trailing edge. The method includes depositing a magnetic write pole over a substrate and forming a mask structure over the write pole layer. The mask structure includes an end point detection layer that can be removed by reactive ion etching. An ion mill is performed to form a write pole by removing magnetic write pole material that is not covered by the mask layer. A layer of non-magnetic material is deposited and is ion milled to expose the end point detection layer.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: July 21, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Yi Zheng
  • Patent number: 7551393
    Abstract: A tape recording head is provided comprising a multiple plane transducer row having a plurality of planes of transducer arrays fabricated on a substrate and which may be staggered or offset relative to one another in a direction perpendicular to the direction of linear motion of the recording tape over the recording head. The multiple plane recording head provides a significant advantage over a head having a single transducer plane by allowing simultaneous reading (or writing) of data tracks on a magnetic recording tape that are more closely spaced apart with respect to one another than the spacing of the read (or write) transducers in a single plane.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Leif Stefan Kirschenbaum
  • Patent number: 7549215
    Abstract: A structure and method for performing magnetic inductance testing of write heads formed on a wafer. The structure and method allows for the effective inductive testing of magnetic write heads at wafer level even if the write heads have an inductance that is too low to be effectively measured directly. A test head is constructed having a structure similar to that of the write heads, but having a significantly higher magnetic inductance. The higher magnetic inductance of the write head can be provided by extending the shaping layer to or beyond the air bearing surface plane ABS. The inductance of the test head can be further increased by increasing the width of the portion of the shaping layer that extends to the ABS (ie. shaping layer throat) and by increasing the width of the write pole throat.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 23, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Michael Ming Hsiang Yang
  • Patent number: 7548395
    Abstract: A method according to one embodiment comprises reading servo information from a tape; and positioning a head relative to the tape so that readers in an array are about aligned with selected data tracks on the tape, wherein the track width of an inner reader of the array is greater than a track width of at least some outer readers positioned on two opposite sides thereof and aligned therewith. A method according to another embodiment comprises forming an array of readers, wherein the track width of an inner reader of the array is greater than a track width of at least some outer readers positioned on two opposite sides thereof and aligned therewith.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 16, 2009
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, James Mitchell Karp
  • Patent number: 7548397
    Abstract: A magnetic head comprises a plurality of elements selected from a group consisting of readers and writers. A servo sensor is positioned towards the elements, the servo sensor being adapted for sensing a first servo track of a magnetic medium. A fence is positioned towards the servo sensor and aligned therewith in a tape travel direction. A magnetic head in another embodiment includes a substrate and a reader positioned above the substrate, the reader having a sensor and shields sandwiching the sensor. A fence is positioned towards the reader on an opposite side thereof from the substrate, the fence being aligned with the reader in a travel direction of a magnetic medium passing thereby.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: June 16, 2009
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Icko E. T. Iben, Peter VanderSalm Koeppe, Jason Liang
  • Publication number: 20090147399
    Abstract: An arbitrary gap thin film magnetic recording head is fabricated by forming a substrate based on traditional vertical planar thin film head wafer technology which is designed to produce an integrated subgap and subpole substrate structure. The wafer is then processed into row bars to reveal, in a plane parallel to the transducing direction of the medium, the subgap and subpoles at the surface of the row bar and to bring the structure to a certain coil depth or gap depth. A flat or cylindrical contour may be utilized. This thin film subgap row bar is taken through a film deposition or growth process that deposits the magnetic film on a plane perpendicular to the wafer plane, horizontal planar processing, forming a surface film recording head where an arbitrary gap structure can be made in-between the subpoles and generally directly on top of the subgap.
    Type: Application
    Filed: November 10, 2008
    Publication date: June 11, 2009
    Inventors: Matthew P. Dugas, Theodore A. Schwarz
  • Patent number: 7536777
    Abstract: Methods and structures for the fabrication of perpendicular thin film heads are disclosed. Prior to the deposition of shield structures, capped seed layers having a dual layer structure are utilized, improving photo resist adhesion and plated shield adhesion, without the need to deposit, then remove, traditional inorganic anti-reflection coatings prior to shield plating.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: May 26, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hieu Lam, Patrick Rush Webb, Yi Zheng
  • Patent number: 7536778
    Abstract: A method of fabrication is disclosed for a slider having sites for fabrication of a continuous coil having a set of front coils and a set of back coils and a center tab, where the slider includes underpass leads.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: May 26, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Tsung Yuan Chen, David Patrick Druist, Edward Hin Pong Lee
  • Patent number: 7536775
    Abstract: A method for sample preparation. The method includes mechanically polishing portions of an insulating layer over a main pole of a recording head embedded within a sample structure. The insulating layer is polished top down in planar layers perpendicular to an air bearing surface adjoining the main pole. The method also includes selectively wet etching the remaining portions of the insulating layer to expose the main pole, wherein the insulating layer surrounds the main pole. Etching is made without damaging the main pole.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 26, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Phillip J. Peterson, Monica L. Vargas
  • Patent number: 7536776
    Abstract: A fabrication method for thin film magnetic heads, comprises, forming a Current Perpendicular to a Plane (CPP) sensor film over a lower shield and a first chemical mechanical polishing (CMP) stop film over the CPP sensor film, etching the CPP sensor film and forming a track width on the CPP sensor film, and covering at least the etching section of the CPP sensor film with an insulating film. The method further comprises forming a CMP dummy film over the insulating film and a second CMP stop film over the CMP dummy film, exposing the first CMP stop film, and removing the first CMP stop film and the second CMP stop film by oxygen reactive ion etching (RIE) and the CMP dummy film by fluorine RIE, and forming an upper shield film over the insulating film and over the CPP sensor film.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 26, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Nobuo Yoshida, Taku Shintani, Hisako Takei
  • Patent number: 7530159
    Abstract: A method is presented for fabricating a write pole for a magnetic recording head, wherein a photoresist layer is formed on a wafer stack. A target P2 pole configuration is provided, and a photomask having a pattern is produced, and the pattern is transferred to the photoresist to create a patterned photoresist having at least one photoresist channel. A layer of photoresist channel shrinking film used to produce a reduced width photoresist channel in an expanded photoresist. A P2 pole tip is formed within the reduced width photoresist channel. The P2 pole tip is then compared to the target P2 pole configuration to identify distortions, which are then used to produce a distortion-corrected photomask. The distortion-corrected photomask is then used to produce a distortion-corrected expanded photoresist, which is then used to produce a distortion-corrected P2 pole tip.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: May 12, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kim Y. Lee, Jyh-Shury Lo
  • Patent number: 7525761
    Abstract: A thin film magnetic recording head is fabricated by forming a substrate from opposing ferrite blocks which have a ceramic member bonded between them. This structure is then diced to form a plurality of columns, wherein each column has a ferrite/ceramic combination. Each column represents a single channel in the completed head. A block of ceramic is then cut to match the columned structure and the two are bonded together. The bonded structure is then cut or ground until a head is formed, having ceramic disposed between each channel. A ferrite back-gap is then added to each channel, minimizing the reluctance of the flux path. The thin film is patterned on the head to optimize various channel configurations.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: April 28, 2009
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas
  • Patent number: 7523550
    Abstract: A method for forming a via in an alumina protective layer on a structure such as a magnetic write head for use in perpendicular magnetic recording. A structure such as a magnetic pole, and or magnetic trailing shield, is formed over a substrate and is covered with a thick layer of alumina. The alumina layer can then be planarized by a chemical mechanical polishing process (CMP) and then a mask structure, such as a photoresist mask, is formed over the alumina layer. The mask structure is formed with an opening disposed over the contact pad. A reactive ion mill is then performed to remove portions of the alumina layer that are exposed at the opening in the mask, thereby forming a via in the alumina layer.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: April 28, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Hamid Balamane, Michael Feldbaum, Ming Jiang, Aron Pentek
  • Patent number: 7523543
    Abstract: A magnetic memory device may include a digit line on a substrate, a first insulating layer on the digit line, and a magnetic tunnel junction memory cell on the first insulating layer so that the first insulating layer is between the digit line and the magnetic tunnel junction memory cell. A second insulating layer may be provided on the magnetic tunnel junction memory cell, wherein the second insulating layer has a hole therein exposing portions of the magnetic tunnel junction memory cell. A bit line may be provided on the second insulating layer and on portions of the magnetic tunnel junction memory cell exposed by the hole in the second insulating layer, and ferromagnetic spacers may be provided on sidewalls of at least one of the digit line and/or the bit line. Related methods are also discussed.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: April 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Rae Byun, Sung-Lae Cho
  • Patent number: 7520048
    Abstract: A giant magnetoresistive (GMR) head is formed to include a recess in an overcoat layer that reduces stress on the poles. The process includes depositing a seed layer over the overcoat layer prior to plating a metal mask layer with an opening where the recess is to be formed, wet chemical etching the seed layer through the opening in the mask layer and performing an ion milling process to remove any remaining traces of the seed layer. With the seed layer completely removed, a trench having smooth sidewalls and bottom is etched in the overcast layer by a reactive ion etch (RIE) process. The saw that is used to separate the head elements in the wafer can be passed through the clean trench without contacting the overcoat layer, thereby avoiding the chipping and cracking that might otherwise result from the use of a silicon dioxide or silicon nitride overcoat layer.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 21, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yunxiao Gao, Aron Pentek, Alan J. Tam, Sue Siyang Zhang
  • Patent number: 7511907
    Abstract: The present invention relates to apparatuses and methods used in manufacturing magnetic tape. More specifically, the present invention relates to a method of writing a servo pattern on magnetic tape so as to minimize errors in the servo pattern, the heads used to write such servo data, and the magnetic tape manufactured with such heads. Errors in the servo pattern may be minimized by synthesizing the slanted transitions in a time based servo pattern using servo write gaps that are perpendicular to the tape motion. In so minimizing errors, distortion in the reading and/or writing of the data tracks can be prevented.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: March 31, 2009
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Theodore A. Schwarz
  • Patent number: 7509729
    Abstract: A method for making a write pole in a perpendicular magnetic recording write head uses a metal mask to pattern the primary resist and only ion milling during the subsequent patterning steps. A layer of primary resist is deposited over the magnetic write pole material and a metal mask layer is deposited on the primary resist layer. An imaging resist layer is formed on the metal mask layer and lithographically patterned generally in the desired shape of the write pole. Ion milling without a reactive gas is then performed over the imaging resist pattern to pattern the underlying metal mask layer, which is then used as the mask to define the shape of the primary resist pattern. Ion milling with oxygen is then performed over the metal mask pattern to pattern the underlying primary resist. Ion milling without a reactive gas is then performed over the primary resist pattern to form the underlying write pole.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: March 31, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Amanda Baer, Michael Feldbaum, Hung-Chin Guthrie, Aron Pentek
  • Patent number: 7506430
    Abstract: The problem of increased edge sensitivity associated with the reduction of the spacing between bias magnets in a CPP head has been solved by limiting the width of the bias cancellation layer and by adding an extra layer of insulation to ensure that current through the device flows only through its central area, thereby minimizing its edge reading sensitivity.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Jei-Wei Chang, Koichi Terunuma, Youfeng Zheng, Kochan Ju
  • Patent number: 7508619
    Abstract: Embodiments in accordance with present invention provide a magnetic head and a magnetic disc drive capable of preventing a side erase while providing excellent recording characteristics. According to one embodiment, in order to prevent the side erase in an increased skew angle state, a first magnetic pole surface is formed in such a shape that the projection area of the first magnetic pole surface follows a track edge positioned on the boundary side in the track in the state where the first magnetic pole surface is positioned on the track at the innermost periphery thereof included in a first region. Likewise, to prevent the side erase in the increased skew angle state, a second magnetic pole surface is formed in such a shape that the projection area of the second magnetic pole surface follows a track edge positioned on the boundary side with respect to a track in the state where the second magnetic pole surface is positioned on the track at the outermost periphery thereof included in a second region.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: March 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hisao Okamoto, Hideki Zaitsu
  • Patent number: 7506432
    Abstract: A lower shield layer is formed by being embedded in a first recess formed in an under layer. Accordingly, the distance between the lower shield layer and a slider can be reduced. Also, a second metal layer is formed from above a gap layer covering an electrode extracting layer over above the under layer hindwards therefrom. Accordingly, the second metal layer can be brought closer to the slider side than an upper shield layer. Consequently, the thermal dissipation effects of the thin-film magnetic head can be improved.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 24, 2009
    Assignee: TDK Corporation
    Inventors: Kiyoshi Sato, Hideki Gochou, Hisayuki Yazawa
  • Patent number: 7506431
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method allows the write head to be formed with a write pole having a concave trailing edge. The method further allows the amount of concavity of the trailing edge to be accurately and carefully controlled both within a wafer and between wafers. A write pole is formed using a mask that includes a hard mask, a RIEable layer and an endpoint detection layer. A layer of non-magnetic material (ALD layer) is deposited, and then, an ion milling process is used to remove a portion of the ALD layer disposed over the write pole and mask. A reactive ion etch process is performed to remove the RIEable layer leaving the ALD layer to form non-magnetic side walls with upper portions that extend above the write pole.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: March 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Yimin Hsu, Vladimir Nikitin, Aron Pentek, Yi Zheng
  • Patent number: 7505221
    Abstract: Data tracks are written across a width of a tape by positioning a first head section across the tape and writing a first subset of data tracks onto the tape with a first plurality of write elements on the first head section. A second head section is positioned across the tape separately from the first head. A second subset of data tracks is written onto the tape with a second plurality of write elements on the second head section so that the second subset is interleaved with the first subset. A third head section is positioned across the tape separately from the first head and the second head. The first subset and second subsets are read with a plurality of read elements on the third head section to verify that data was correctly written onto the tape.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: March 17, 2009
    Assignee: Sun Microsystems, Inc.
    Inventor: Mark L. Watson
  • Publication number: 20090067088
    Abstract: A device for recording on and/or reading from a magnetic medium with magnetic tracks, including plural magnetic heads each including a pair of polar parts separated by an amagnetic head gap with a given azimuth angle. The pairs of polar parts are distributed on fixed supports, the head gaps of the pairs of polar parts on a particular support all having the same azimuth angle. At least two supports include pairs of polar parts with different azimuth angles, each support having a given tilt angle from the magnetic tracks.
    Type: Application
    Filed: November 2, 2005
    Publication date: March 12, 2009
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Jean-Baptiste Albertini, Pierre Gaud
  • Patent number: 7497009
    Abstract: A main pole forming method is provided. The main pole forming method includes etching an exposed side face of a main pole layer, and the plated foundation film, thereby defining a recording track width. The method also includes etching the nonmagnetic insulating layer, and reattaching a material repelled from the nonmagnetic insulating layer to the side face of the main pole layer and a side face of the plated foundation film.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 3, 2009
    Assignee: TDK Corporation
    Inventor: Kiyoshi Kobayashi
  • Patent number: 7497006
    Abstract: A method for mounting a head slider of the type having terminal pads to a wireless disk drive head suspension flexure including a slider mounting region, lead contact pads, and a deflectable and resilient slider engagement member for releasably mounting a head slider to the slider mounting region. The method includes engaging and deflecting the slider engagement member and positioning the head slider onto the slider mounting region and between the lead contact pads and the slider engagement member while the slider engagement member is deflected. The method further includes disengaging the slider engagement member and causing the slider engagement member to force the head slider into frictional engagement with the lead contact pads and the slider engagement member with the lead contact pads in mechanical and electrical contact with the head slider terminal pads.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: March 3, 2009
    Assignee: Hutchinson Technology Incorporated
    Inventors: Michael W. Davis, Galen D. Houk, Ajay Sharma, Kia Moh Teo
  • Patent number: 7486475
    Abstract: A magnetic data system according to one embodiment includes at least one reader formed above a substrate, the at least one reader further comprising a shield and a magnetoresistive (MR) sensor. A first circuit sets a voltage (Vsub) of the substrate to about a voltage (Vshield) of the shield of the at least one reader.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventor: Robert Glenn Biskeborn