Time Interval Measurement Patents (Class 367/27)
  • Patent number: 10329899
    Abstract: Method and system of estimating a shape of a borehole include receiving data points associated with a standoff measurement for the borehole, wherein each data point includes a radial distance value and an azimuthal value corresponding to the radial distance value. The method and system determine point-to-point angles for the data points based on at least the azimuthal value associated with each data point, wherein each point-to-point angle spans between two adjacent data points. The method and system select a geometric shape from a plurality of geometric shapes to fit to the data points based on the point-to-point angles, the plurality of geometric shapes including a circle and an ellipse. A shape of the borehole is estimated at a location of the standoff measurement based on the selected geometric shape.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: June 25, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yibing Zheng, Taher Kortam, Clint K. Bates
  • Patent number: 10310127
    Abstract: Embodiments of a method for detecting well integrity failure are disclosed herein. In general, embodiments of the method utilize seismic signals for detection. In particular, embodiments of the method may use recording of passive or active seismic signals. Further details and advantages of various embodiments of the method are described in more detail in the application.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: June 4, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gary Michael Hoversten, Thomas M. Daley, Valeri A. Korneev
  • Patent number: 10295696
    Abstract: The processing of multicomponent induction (“MCI”) data in non-circular, or elliptical, boreholes is achieved through the use of borehole formation models generated using elliptical borehole characteristics.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 21, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventor: Junsheng Hou
  • Patent number: 10288757
    Abstract: In some embodiments, an apparatus, method, and a system may operate to include an AEM sensor configured to generate an electromagnetic wave into a geologic formation. The AEM sensor is further configured to receive a reflected electromagnetic wave from the formation. The reflected electromagnetic wave is representative of a velocity of an acoustic wave traveling through the geologic formation.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: May 14, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Wei Hsuan Huang
  • Patent number: 10281607
    Abstract: A downhole tool for real-time caliper measurements is provided. The downhole tool comprises multiple acoustic transducers mounted at different positions of the tool, and a control system. The control system drives the multiple transducers, receives pressure echo signals from the transducers, records the pressure echo signals in the memory, extracts data of two-way transit time and echo amplitude from the echo signals, and computes at least one of a borehole diameter, a tool center position, and an acoustic slowness or velocity of downhole fluid, based on the data of transit time and echo amplitude.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: May 7, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hiroshi Hori, Yoshino Matsumoto, Kojiro Nishimiya, Kiyomitsu Hikida, Jean-Christophe Auchere
  • Patent number: 10031250
    Abstract: The present invention proposes a method and apparatus of determining stiffness coefficients of formation, wherein the method comprising: setting up a relation of stiffness coefficients of formation C11 and C33, C44, C66 based on stiffness coefficients of a formation core sample; computing clay content of formation along depth continuously based on formation logging information; computing the stiffness coefficient of formation C33 along depth continuously based on a P-wave velocity and a volume density of the formation; computing the stiffness coefficient of formation C44 along depth continuously based on a S-wave velocity and a volume density of the formation; and then computing the stiffness coefficients of formation C11 and C66 along depth continuously based on the calculations above, the relation of stiffness coefficients of formation C11 and C33, C44, C66, and a relation of an anisotropy coefficient of the P-wave of the formation and its clay content or a relation of an anisotropy coefficient of the S-wav
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 24, 2018
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Zhonghua Liu, Lianteng Song, Cancan Zhou, Chaoliu Li, Jixin Deng, Changxi Li, Xiangzhi Cheng, Xia Li, Chao Yuan, Qiangfu Kong, Song Hu, Hongjun Xu, Baoyin Xue, Peiyuan Zhang
  • Patent number: 10024992
    Abstract: An acoustic tool for evaluating a geologic formation includes a housing member disposed between transmitter and receiver sections of the acoustic tool. The housing member defines a change in direction in an acoustic path extending therethrough such that acoustic signals traveling through the housing member are delayed and disrupted. The delay and disruption may isolate the acoustic signals traveling through the housing member from acoustic signals traveling through the geologic formation. Thus, the acoustic tool may facilitate identification and evaluation of acoustic signals traveling through the geologic formation.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 17, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Chung Chang, Muralidhar Seshadri, Jean G. Saint Germain, Paul Junghans, Gary Kainer
  • Patent number: 9959339
    Abstract: Embodiments relate to calculating a journey time for a planned journey between a chosen origin and a chosen destination over a network of roads in a region. A first journey time for the journey is estimated using a route scheduling algorithm and a second journey time for the journey is estimated using selected historical journeys characterized by journey origins and destinations. The historical journeys are selected based on their vicinity to the planned journey. An error in the second journey time is calculated based on the standard deviation in the selected historical journeys. The second journey time is selected as the estimated journey time from the planned journey if this error is below a defined threshold, otherwise the first journey time is selected as the estimated journey time for the planned journey.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 1, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jean S. Ashton, Thomas Baudel, Sebastien Blandin
  • Patent number: 9835746
    Abstract: A method can include receiving data that characterizes anisotropy of a formation; receiving a model that models one or more planes of weakness in an anisotropic formation; and, based at least in part on the model and the data, outputting information germane to stability of a bore in an anisotropic formation.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: December 5, 2017
    Assignee: Schlumberger Technology Corporation
    Inventors: Gong Rui Yan, Florian Karpfinger, Romain Charles Andre Prioul, Denis Heliot, Alexander Ramirez, Chang Liu, Thomas Berard, Walid Ben-Ismail
  • Patent number: 9823374
    Abstract: A wellbore tool string includes a combination of acoustic inspection tool(s) and electro-mechanical inspection tool(s). The tool string is configured to combine acoustic with electro-mechanic wellbore inspection to circumvent limitations that both technologies may be subject to in wellbore environments. Anomalous data from one or more acoustic tools can be correlated with data acquired by an electro-mechanical tool incorporated into the same tool string to determine wellbore conditions that may have adversely affected the operation of the acoustic tool(s).
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 21, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Shawn Patrick McCafferty, Adewumi Ehinmoro, Ivo Foianini
  • Patent number: 9766363
    Abstract: Apparatus having a focused transducer and methods of operating a focused transducer downhole in a well can provide high resolution downhole imaging. In various embodiments, a focused transducer is used for imaging downhole in a well in which the imaging is based on a seismoelectric effect. In various embodiments, a focused transducer is used for imaging downhole in a well in which the imaging is based on an electroacoustic effect. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 19, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC
    Inventor: Marian Morys
  • Patent number: 9494704
    Abstract: Maximum and minimum horizontal stresses are estimated using radial profiles of shear moduli for a deviated borehole. Inversion enables estimation of maximum and minimum horizontal stresses using radial profiles of three shear moduli associated with an orthogonal set of axis defined by the deviated borehole azimuth from the North and the deviation of the longitudinal axis of the borehole from the vertical.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: November 15, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Bikash K. Sinha
  • Patent number: 9268059
    Abstract: A downhole measurement apparatus includes a tool body supporting a logging tool. The logging tool includes a detector outsert coupled into and exposed through an exterior pocket of the tool body to position the outer surface of the outsert adjacent or in close proximity to the outer diameter of the tool body. A stabilizer or off-center stabilizer may be provided to further deflect the outsert portion of the logging tool toward an earth formation to increase detector proximity to the formation. Radial and axial distances can be calibrated and maintained across multiple different tool collars.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: February 23, 2016
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ricardo Ortiz, Michael Dewayne Finke, Kristopher V. Sherrill
  • Patent number: 9140816
    Abstract: A method of generating an axial shear wave in a formation surrounding a wellbore comprising urging a clamp pad into contact with a wall of the wellbore, and applying an axial force to the clamp pad to impart a shear force into the wall of the wellbore to generate a shear wave in the formation.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: September 22, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jennifer Market, Paul F. Rodney
  • Patent number: 9047689
    Abstract: A method for visualizing parametric logging data includes interpreting logging data sets, each logging data set corresponding to a distinct value of a progression parameter, calculating a geometric image including a representation of data from each of the logging data sets corresponding to a wellbore measured depth, and displaying the geometric image(s) at a position along a well trajectory corresponding to the wellbore measured depth. The progression parameter includes time, a resistivity measurement depth, differing tool modes that are sampling different volumes of investigation, and/or sampling different physical properties. The geometric images include a number of parallel lines having lengths determined according to the logging data and/or an azimuthal projection of the logging data, a number of concentric axial projections, and/or shapelets determined from parallel lines and/or concentric axial projections.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: June 2, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Christian Stolte, John C. Rasmus, Koji Ito, Shahzad A. Asif, Denis Heliot
  • Patent number: 9041547
    Abstract: A method of processing downhole measurement data includes: receiving formation measurement data generated by a downhole tool during a logging-while drilling operation over a selected time period; receiving a measured depth corresponding to the selected time period based on data taken at a surface location; receiving tool rotation data generated by measurements of a rotational rate of the downhole tool taken by a downhole sensor during the selected time period; calculating a new depth of the tool as a function of time over the selected time period based on a relationship between the tool rotation data and the measured depth; and correcting an original depth of the measurement data with the new depth.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 26, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: Andreas Hartmann
  • Patent number: 9019115
    Abstract: There is provided a radar system that includes an emitter system (e.g., an antenna), configured to emit electromagnetic pulses and detect electromagnetic pulses, and a reflection target, placed opposite the emitter system. The emitter system and the reflection target define an area of interest. A controller is configured to identify a reflection from the reflection target and, if the reflection is not identified, to stop sending a radar check signal. The radar system may be part of a warning horn control system, where the radar check signal is used as a control input for activating a warning horn.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventor: Forrest H. Ballinger
  • Patent number: 9007231
    Abstract: A system and method to synchronize distributed measurements in a borehole are described. The system includes a plurality of wired segments coupled together by couplers and a plurality of nodes configured to measure, process, or relay information obtained in the borehole to a surface processing system, each of the plurality of nodes comprising a local clock and being disposed at one of the couplers or between couplers. The system also includes a surface processing system coupled to a master clock and configured to determine a time offset between the master clock and the local clock of an nth node among the plurality of nodes based on a downhole generated synchronization signal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 14, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: John D. Macpherson
  • Patent number: 8995224
    Abstract: Techniques for estimating velocity ahead of a drill bit include generating seismic waves at a surface from at least two different source positions in the vicinity of a borehole, receiving seismic waves reflected from a reflector ahead of the drill bit at one or more locations in the borehole, determining travel times of the seismic waves received at the one or more locations in the borehole, and inverting the travel times to determine a velocity of a formation ahead of the drill bit. One embodiment includes transforming the velocity into pore pressure of the formation.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: March 31, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Cengiz Esmersoy, Brian Clark
  • Patent number: 8947975
    Abstract: An apparatus for use in a wellbore is provided that in one embodiment may include at least one transmitter configured to generate acoustic signals in the wellbore, at least one receiver configured to receive acoustic signals from a formation surrounding the wellbore in response to the transmitted acoustic signal and also configured to provide electrical signals representative of the received acoustic signals, a circuit configured to apply a time-variable gain to the electrical signals to amplify the electrical signals, and a processor configured to process the amplified electrical signals and provide a property of interest.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: February 3, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: James Domnanish, Paul Lowson
  • Patent number: 8947974
    Abstract: A downhole tool starts recording seismic energy. During the recording time, a surface seismic source is activated a specified number of times with a nominally defined separation between successive. The downhole sensor receives seismic waves resulting from the activation, but the time of the shooting sequence is not known downhole. The recorded data stream is processed and converted in real-time into seismic traces. A predefined number of traces are stacked and the quality of this sliding stack is used to detect time of the shooting sequence. The method could be used to detect one or several shooting sequences during a measurement window.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: February 3, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Radu Coman, Michael Neubert, Holger Mathiszik, Michael Koppe
  • Patent number: 8913460
    Abstract: A disclosed example method includes providing, in a borehole, a transmitter (Tx) and receivers (Rxs) spaced linearly from Tx at known distances, measuring linear propagation times (LPts) for a signal to propagate from Tx to each of Rxs, determining an inline velocity (VINL) based on LPts, measuring reflection times (Rts) for a signal to propagate from Tx to each of the Rxs via a boundary, for each of Rts, providing a time-distance anisotropic velocity (TDAV) relationship depending on an effective signal velocity (ESV) in an anisotropic formation adjacent the boundary as a function of reflection angle for the reflection time signal to the boundary, VINL and orthogonal velocity, performing semblance processing to combine the TDAV relationships with VINL for a best-fit calculation of the ESVs for the different reflection angles of the reflection time signals, and calculating a distance for the corresponding receiver to the boundary on the calculation.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: December 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Vivian Pistre, Jakob Brandt Utne Haldorsen
  • Patent number: 8902408
    Abstract: A method for measuring three-dimensional coordinates of a probe center includes: providing a spherically mounted retroreflector; providing a probe assembly; providing an orientation sensor; providing a coordinate measurement device; placing the spherically mounted retroreflector on the probe head; directing the first beam of light from the coordinate measurement device to the spherically mounted retroreflector; measuring the first distance; measuring the first angle of rotation; measuring the second angle of rotation; measuring the three orientational degrees of freedom based at least in part on information provided by the orientation sensor; calculating the three-dimensional coordinates of the probe center based at least in part on the first distance, the first angle of rotation, the second angle of rotation, and the three orientational degrees of freedom; and storing the three-dimensional coordinates of the probe center.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: December 2, 2014
    Assignee: Faro Technologies Inc.
    Inventor: Robert E. Bridges
  • Publication number: 20140334260
    Abstract: Systems, apparatuses and methods for neural network signal processing of microseismic events. A series of sensors are disposable in at least one first well positioned about a second well disposed in a subterranean formation. The series of sensors obtain a data signal measurement including noise events and microseismic acoustic emission events. A processor includes a first neural network. The processor may remove the noise events from the data signal measurement and determine with the first neural network an arrival time for each microseismic acoustic emission event. An interface can output the arrival time for each microseismic acoustic emission event.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 13, 2014
    Applicant: Schlumberger Technology Corporation
    Inventors: Chung Chang, Henri-Pierre Valero, Richard T. Coates
  • Publication number: 20140071790
    Abstract: An ultrasonic imaging method is provided. A wideband acoustic pulse is fired at a wall. A wideband response signal is received. The wideband response signal is processed to select an impedance measurement frequency. A wavelet having a characteristic frequency approximately equal to the impedance measurement frequency is fired. A wavelet response signal is received. A reflection coefficient is determined from the wavelet response signal. An impedance measurement is calculated from the reflection coefficient. Related tools and systems are also disclosed.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 13, 2014
    Inventors: Batakrishna Mandal, Clovis Bonavides
  • Publication number: 20140036627
    Abstract: A method for determining relative location of an acoustic event along a channel such as a wellbore includes obtaining two acoustic signals at are obtained at two different and known depths in the wellbore, dividing the acoustic signals into windows, and determining the relative loudnesses of pairs of the windows. The power of the acoustic signals may be used as a proxy for the loudness of the acoustic event, and this determination can be made in the time or frequency domains. The relative depth of the acoustic event can then be determined relative to the two known depths from the relative loudnesses. The acoustic event may be, for example, casing vent flow, gas migration, a leak along a pipeline, or sounds observed in an observation well from a nearby well in which fracking is being performed.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 6, 2014
    Applicant: HiFi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian, Philip Cheuk
  • Publication number: 20140029382
    Abstract: A system and method for measuring a formation property in a wellbore is disclosed. In the method, an acoustic measurement tool is introduced into a wellbore. The acoustic measurement tool may include a transmitter and a plurality of sensors. At least one of the plurality of sensors may be positioned in a non-uniform spacing configuration. The transmitter may transmit energy into the formation. The plurality of sensors may measure energy received from the formation. Additionally, a time semblance of the formation may be determined using at least one time semblance algorithm generalized for non-uniform sensor spacing.
    Type: Application
    Filed: August 9, 2011
    Publication date: January 30, 2014
    Inventors: Burkay Donderici, Baris Guner
  • Patent number: 8611183
    Abstract: Refracted ultrasonic waves are utilized to calculate tool standoff. An ultrasonic transmitter sends a wave toward (and into) the borehole wall at a critical incidence angle for refracted waves. The refracted wave travels along the borehole wall and continuously radiates energy back into the borehole at the critical angle. The refracted wave is detected by a receiver, and the travel time of the refracted acoustic wave from transmitter to receiver is measured and used to calculate standoff. By making repeated measurements at various azimuths (for instance, as the tool rotates), one or more caliper measurements can be made. The caliper measurements can be combined to yield two-dimensional geometry of the borehole. Measurements made at different azimuths and depths yield three-dimensional borehole geometry. Arrays of transmitter-receiver pairs can be used to obviate the need for varying azimuth.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: December 17, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Kenneth William Winkler, Lawrence E. McGowan, Ralph Michael D'Angelo
  • Patent number: 8457898
    Abstract: An illustrative embodiment of a method is disclosed for assessing image quality of a down hole formation image, the method comprising collecting acquisition system data from a plurality of sensors down hole; applying a set of rules to the acquisition system data to obtain an acquisition quality indicator; and presenting the acquisition quality indicator at a surface location. A system is disclosed for performing the method.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 4, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Andreas Hartmann, Oleg N. Akimov, Ansgar Baule, Christian Fulda
  • Publication number: 20130128693
    Abstract: Disclosed are various embodiments of methods for determining the velocity of seismic energy in geologic layers using Seismic Emission Tomography (SET) imaging of drill bit noise, by recording microseismic data during a drilling operation, recording the time and the position of a drill bit in a well bore during the drilling operation, processing the microseismic data using SET software to image microseismic events proximate a known time and position of the drill bit using an estimated velocity model, computing the difference between the known time and position of the drill bit and the time and position of the microseismic event determined from the SET data, varying the estimated velocity model to minimize the difference between the known time and position of the drill bit and the time and time and position of the microseismic event determined from the SET data.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: Global Microseismic Services, Inc.
    Inventor: Peter Anderson Geiser
  • Publication number: 20130128694
    Abstract: Disclosed are various embodiments of methods for identifying faults and fractures, and other permeable features, within geologic layers during a drilling operation comprising; recording microseismic data during a drilling operation; recording times and positions of a drill bit in a well bore during the drilling operation; processing microseismic data at a plurality of selected times and locations to image microseismic events and identifying faults and fractures, and other permeable features, from corresponding images of microseismic events.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 23, 2013
    Applicant: Global Microseismic Services, Inc.
    Inventors: Alfred Lacazette, Peter Anderson Geiser
  • Patent number: 8408355
    Abstract: A downhole tool for subsurface disposal is provided. The tool comprises an elongated tool body, an enclosure attached to an exterior surface of the tool body. The enclosure comprises at least one transducer disposed at an angle with respect to a longitudinal axis of the enclosure, and an electronics board coupled to and disposed adjacent to the at least one transducer. The enclosure also defines an internal cavity, and the internal cavity contains a fluid for insulating the at least one transducer from a downhole environment. The fluid is in direct contact with the at least one transducer and the electronics board.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 2, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Miguel F. Pabon, Fernando Garcia Osuna, David B. Ayers
  • Patent number: 8407007
    Abstract: A walkaway VSP survey is carried out using a receiver array. Using a vertical VSP survey and arrival times of surface multiples on the walkaway VSP, vertical interval velocities and the anisotropy parameters ? and ? are estimated. This may then be used to process surface seismic data to do a prestack depth migration of surface seismic data and used for interpretation. For multi-azimuthal walkaway or 3D VSP data, we determine two VTI parameters ? and ? for multi-azimuth vertical planes. Then we determine five anisotropic interval parameters that describe P-wave kinematics for orthorhombic layers. These orthorhombic parameters may then be used to process surface seismic data to give a stacked image in true depth and for the interpretation purposes.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 26, 2013
    Assignee: Baker Hughes Incorporated
    Inventor: Emanouil Blias
  • Publication number: 20120307592
    Abstract: A disclosed example method includes providing, in a borehole, a transmitter (Tx) and receivers (Rxs) spaced linearly from Tx at known distances, measuring linear propagation times (LPts) for a signal to propagate from Tx to each of Rxs, determining an inline velocity (VINL) based on LPts, measuring reflection times (Rts) for a signal to propagate from Tx to each of the Rxs via a boundary, for each of Rts, providing a time-distance anisotropic velocity (TDAV) relationship depending on an effective signal velocity (ESV) in an anisotropic formation adjacent the boundary as a function of reflection angle for the reflection time signal to the boundary, VINL and orthogonal velocity, performing semblance processing to combine the TDAV relationships with VINL for a best-fit calculation of the ESVs for the different reflection angles of the reflection time signals, and calculating a distance for the corresponding receiver to the boundary on the calculation.
    Type: Application
    Filed: August 17, 2012
    Publication date: December 6, 2012
    Inventors: Vivian Pistre, Jakob Brandt Utne Haldorsen
  • Patent number: 8256565
    Abstract: An enclosure for housing a transducer and electronics for disposal on a downhole tool. A transducer is disposed at an angle with respect to a longitudinal axis of the enclosure, wherein the enclosure contains a fluid surrounding the transducer. Enclosures also include transducers linked to motor means for selective rotation of the transducers within the enclosure. Enclosures with transducer arrays for phased or targeted signal transmission/detection.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: September 4, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Miguel F. Pabon, Fernando Garcia Osuna, David B. Ayers
  • Patent number: 8219319
    Abstract: A computer-implemented method of characterizing elastic properties of a subsurface formation at various fluid saturation conditions is disclosed.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: July 10, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventor: Christopher Skelt
  • Publication number: 20120170405
    Abstract: The method of a mud cake thickness determination provides sending short high-frequency signals into a formation from at least two positions located at different distances from the mud cake and recording arrival times of reflected echo signals. The mud cake thickness is determined based on the time measured.
    Type: Application
    Filed: December 6, 2011
    Publication date: July 5, 2012
    Inventors: Timur Zharnikov, Masafumi Fukuhara, Alexander F. Zazovsky, Fernando Garcia-Osuna
  • Publication number: 20120120763
    Abstract: A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 17, 2012
    Applicants: Los Alamos National Security, Chevron U.S.A. Inc.
    Inventors: Cung Khac VU, Kurt NIHEI, Paul A. JOHNSON, Robert GUYER, James A. TEN CATE, Pierre-Yves LE BAS, Carène S. LARMAT
  • Publication number: 20120120765
    Abstract: A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency—a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 17, 2012
    Applicants: Los Alamos National Security, Chevron U.S.A. Inc.
    Inventors: Cung Khac VU, Christopher Skelt, Kurt Nihei, Paul A. Johnson, Robert Guyer, James A. Ten Cate, Pierre-Yves Le Bas, Carène S. Larmat
  • Publication number: 20120120764
    Abstract: A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 17, 2012
    Applicants: LOS ALAMOS NATIONAL SECURITY, CHEVRON U.S.A. INC.
    Inventors: CUNG KHAC VU, CHRISTOPHER SKELT, KURT NIHEI, PAUL A. JOHNSON, ROBERT GUYER, JAMES A. TEN CATE, PIERRE-YVES LE BAS, CARÈNE S. LARMAT
  • Publication number: 20120106292
    Abstract: A method and system includes determining a subsurface fluid seismic attribute comprising recording a signal at a wellhead related to pumping fracture stimulation fluid to obtain a pressure pulse pump signal. A deconvolution operator is determined from the obtained pressure pulse pump signal. Seismic data are acquired from a plurality of sensors. Travel time differences are computed for the seismic data between the plurality of sensor locations and the subsurface position. Seismic data are deconvolved with the deconvolution operator to obtain a plurality of deconvolution coefficients associated with the subsurface position. The computed travel time differences are used to sum the plurality of deconvolution coefficients associated with the subsurface position to obtain a subsurface fluid seismic attribute at the subsurface position.
    Type: Application
    Filed: June 10, 2011
    Publication date: May 3, 2012
    Applicant: HIPOINT RESERVOIR IMAGING, LLC
    Inventors: Brian Fuller, John Marcus Sterling, Les G. Engelbrecht
  • Patent number: 8073623
    Abstract: An illustrative embodiment of a method is disclosed for assessing image quality of a down hole formation image, the method comprising collecting acquisition system data from a plurality of sensors down hole; applying a set of rules to the acquisition system data to obtain an acquisition quality indicator; and presenting the acquisition quality indicator at a surface location. A system is disclosed for performing the method.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: December 6, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Andreas Hartmann, Oleg N. Akimov, Ansgar Baule, Christian Fulda
  • Patent number: 8009510
    Abstract: Methods and related systems are described making seismic measurements. Seismic energy is transmitted into the earth using a surface seismic source. The seismic energy is received with one or more downhole receivers located in a borehole. In response to the received seismic energy from the surface seismic source, seismic energy is transmitted into the earth using a downhole seismic source. The seismic energy from the downhole seismic source is then received with one or more surface receivers located on the surface of the earth. A delay interval is measured downhole between the first arrival of the seismic energy from the surface seismic source and the transmission from the downhole seismic source. A surface interval is measured between the transmitting of seismic energy from the surface seismic source and first arrival of the seismic energy from the downhole seismic source using the one or more surface receivers. Travel time can be calculated by subtracting the delay interval from the surface interval.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 30, 2011
    Assignee: Schlumberger Technology Corporation
    Inventor: Chung Chang
  • Publication number: 20110203849
    Abstract: An expandable reamer apparatus for drilling a subterranean formation includes a tubular body, one or more blades, each blade positionally coupled to a sloped track of the tubular body, a push sleeve and a drilling fluid flow path extending through an inner bore of the tubular body for conducting drilling fluid therethrough. Each of the one or more blades includes at least one cutting element configured to remove material from a subterranean formation during reaming. The push sleeve is disposed in the inner bore of the tubular body and coupled to each of the one or more blades so as effect axial movement thereof along the track to an extended position responsive to exposure to a force or pressure of drilling fluid in the flow path of the inner bore. The apparatus is provided with a caliper for measuring the actual borehole size. Remedial action may be taken based on a comparison of the actual borehole size and the intended size.
    Type: Application
    Filed: March 2, 2011
    Publication date: August 25, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Steven R. Radford, Anton F. Zahradnik
  • Publication number: 20110188344
    Abstract: This disclosure relates in general to a method and system for acoustic monitoring using a fibre optic cable. More specifically, but not by way of limitation, embodiments of the present invention provide for using an optical fiber as a distributed interferometer that may be used to monitor a conduit, wellbore or reservoir. In certain aspects, the distributed interferometric monitoring provides for accurate detection of acoustic occurrences along the fibre optic cable and these acoustic occurrences may include fluid flow in a pipeline or wellbore, processes taking place in a wellbore or pipeline, fracturing, gravel packing, production logging and/or the like.
    Type: Application
    Filed: April 13, 2011
    Publication date: August 4, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Arthur H. Hartog, J. Ernest Brown, John Mervyn Cook, Jonathan Elphick, Paul S. Hammond, Ashley Bernard Johnson
  • Patent number: 7913806
    Abstract: A measurement package for disposal on an apparatus such as a downhole tool or a tool like device. The measurement package including an enclosure, a first acoustic transducer housed within the enclosure, a second acoustic transducer housed within the enclosure and electronics housed within the enclosure that is in communication with the first and second transducers. Further, an acoustic transmitter and receivers can be disposed at an angle with respect to a longitudinal axis of the enclosure. The enclosure can contain attenuative material surrounding the transmitter and receivers, and electronics for controlling the transmitter and receivers and communicating with the downhole tool.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: March 29, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Miguel F. Pabon, Fernando Garcia Osuna, David B. Ayers
  • Patent number: 7889596
    Abstract: A method and a system for determining the position of a drill bit are presented. The method comprises determining positions of seismic wave detectors, recording seismic waves generated at the drill bit, identifying events at the drill bit, determining a plurality of relative positions of the drill bit, and determining, based at least partly on a starting position and a sum of the relative positions, an absolute position of the drill bit. The method further comprises determining a position of the drill bit at a second event in relation to a position of the drill bit at a first event, and determining a second seismic wave propagation velocity between the drill bit and at least one of the detectors, based at least partly on the determined position of the drill bit at the second event.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: February 15, 2011
    Assignee: Guideline AB
    Inventor: Jan Hjorth
  • Publication number: 20100322030
    Abstract: A downhole tool starts recording seismic energy. During the recording time, a surface seismic source is activated a specified number of times with a nominally defined separation between successive. The downhole sensor receives seismic waves resulting from the activation, but the time of the shooting sequence is not known downhole. The recorded data stream is processed and converted in real-time into seismic traces. A predefined number of traces are stacked and the quality of this sliding stack is used to detect time of the shooting sequence. The method could be used to detect one or several shooting sequences during a measurement window.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 23, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: Radu Coman, Michael Neubert, Holger Mathiszik, Michael Koppe
  • Publication number: 20100315900
    Abstract: An apparatus for estimating an influx of a formation fluid into a borehole fluid, the apparatus having: a carrier; an acoustic transducer disposed at the carrier; a first reflector disposed a first distance from the acoustic transducer and defining a first round trip distance; a second reflector disposed a second distance from the acoustic transducer and defining a second round trip distance; and a processor in communication with the acoustic transducer and configured to measure a difference between a first travel time for the acoustic signal traveling the first round trip distance and a second travel time for the acoustic signal traveling the second round trip distance to estimate the influx of the formation fluid; wherein the acoustic transducer, the first reflector, and the second reflector are disposed in the borehole fluid that is in the borehole.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 16, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Rocco DiFoggio, Eric B. Molz, Anjani R. Achanta
  • Publication number: 20100290312
    Abstract: An apparatus for use in a wellbore is provided that in one embodiment may include at least one transmitter configured to generate acoustic signals in the wellbore, at least one receiver configured to receive acoustic signals from a formation surrounding the wellbore in response to the transmitted acoustic signal and also configured to provide electrical signals representative of the received acoustic signals, a circuit configured to apply a time-variable gain to the electrical signals to amplify the electrical signals, and a processor configured to process the amplified electrical signals and provide a property of interest.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: James Domnanish, Paul Lowson