Time Interval Measurement Patents (Class 367/27)
  • Publication number: 20020093879
    Abstract: A system and method is provided for characterizing earth formations. In one embodiment, the method includes passing a logging tool through a borehole and repeatedly: (a) triggering an acoustic wave generator; (b) recording acoustic waveforms received by receivers in the logging tool; (c) determining a time semblance of the recorded acoustic waveforms; and (d) smoothing the time semblance. In a different embodiment, a phase semblance of the recorded acoustic waveforms is determined and smoothed. The smoothing may be performed using an adaptive wavelet denoising technique or an adaptive moving average filter technique. In each case the average time or frequency spacing between semblance peaks is preferably determined and used to adapt the smoothing operation in a manner that varies with the slowness value s.
    Type: Application
    Filed: May 18, 2001
    Publication date: July 18, 2002
    Inventor: Batakrishna Mandal
  • Publication number: 20020044498
    Abstract: A method and apparatus for reliable and low-cost acquisition of offset checkshot survey data using tube wave conversion. An acoustic receiver is deployed in a fluid-filled well, preferably at or near the top thereof. At least one tube-wave conversion point is used, such as an interface between two immiscible fluids, a change in casing geometry or a wellbore constriction. The traveltime of a tube wave from the tube-wave conversion point to the acoustic receiver is determined. Then, a seismic signal is generated at a laterally offset location. The total seismic signal traveltime along a raypath from the source location to the tube-wave conversion point and then upwardly through the fluid-filled well to the acoustic receiver is measured. The previously determined tube-wave traveltime from the conversion point to the acoustic receiver is then subtracted from the total traveltime to obtain the seismic signal traveltime from the source location to the tube-wave conversion point.
    Type: Application
    Filed: September 24, 2001
    Publication date: April 18, 2002
    Inventors: Jerome R. Krebs, Sen-Tsuen Chen
  • Patent number: 6366531
    Abstract: The invention is a method and apparatus for acoustic logging including one or more acoustic transmitters and one or more acoustic receivers. One or more of the elements of a set made up of the acoustic receivers and acoustic transmitters are spaced radially apart from one or more of the remaining elements of the set. The acoustic receivers and acoustic transmitters are configured along with electronics and software incorporated in the tool to allow the acoustic receivers and acoustic transmitters to act as multi-pole receivers and multi-pole transmitters, respectively. The tool is configured to compute one or more acoustic velocities and to provide storage for unprocessed and processed, compressed and error correction coded data. The tool is configured to provide the data for transmission to the surface.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: April 2, 2002
    Assignee: Dresser Industries, Inc.
    Inventors: Georgios L. Varsamis, Laurence T. Wisniewski, Abbas Arian
  • Patent number: 6351991
    Abstract: A method for determining unknown stress parameters in earth formation measures velocities in four sonic transmissions modes (compression, fast shear, slow shear and Stoneley) at a series of depths. Relationships between measured velocities and other measured values, two independent linear constants, and three nonlinear constants associated with equations of motion for pre-stressed isotropic materials are expressed in a set of four or five velocity difference equations derived from non-linear continuum mechanics. The velocity difference equations are solved using inversion for useful stress parameters, including maximum horizontal stress, minimum horizontal stress, pore pressure, and change in pore pressure over time.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: March 5, 2002
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha
  • Patent number: 6002339
    Abstract: A system for synchronizing a seismic system having multiple subsystems. A control system transmits a message to selected subsystems and an internal subsystem counter is zeroed to a selected epoch. Depending on the message or on an internal instruction code, each subsystem initiates an event or sequence of events synchronized to the selected epoch. The system is based on the relative occurrence of cyclic events and does not depend on the transmission of an absolute time signal. The system is self rectifying, reduces systemic errors, and reduces the data transmission required for system control and operation. The system permits autonomous, asynchronous operation by a subsystem without continuous control by a central controller as a function of time, and can interactively respond to events without intervention from the central controller.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: December 14, 1999
    Assignee: Western Atlas International, Inc.
    Inventor: Michael W. Norris
  • Patent number: 5995447
    Abstract: A system for acoustically imaging a target region behind an acoustically reflective layer includes a transducer configuration for acquiring acoustic image data from the reflective layer and target region, wherein the reflective layer and target region are divided into voxels circumferentially disposed about a central point. The system includes a mechanism for processing the data comprising a transmitting transducer for transmitting a first acoustic pulse, a receiving transducer for detecting a first arrival of a first acoustic reflection signal associated with the first acoustic pulse, and a mechanism for suppressing multiple reflected signals from the acoustic reflection signal associated with the first acoustic pulse, wherein the suppressing mechanism facilitates the acquisition of image data from the target region.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: November 30, 1999
    Assignee: Gas Research Institute
    Inventors: Batakrishna Mandal, James R. Birchak, James E. Masino, John W. Minear, Thomas E. Ritter
  • Patent number: 5886255
    Abstract: Long-term changes in the distribution of a mineral in a subsurface deposit, due to commercial production of the mineral, are monitored by suitable instrumentation. The monitoring instrumentation is installed in combination with commercial mineral production equipment but the monitoring instrumentation is transparent to production. The monitoring instrumentation measures long-term changes in selected petrophysical attributes that are due to re-distribution of the mineral within the deposit in response to production.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: March 23, 1999
    Assignee: Western Atlas International, Inc.
    Inventor: Peter Sheffield Aronstam
  • Patent number: 5737277
    Abstract: A method for using geometrical data to determine characteristics of a wellbore penetrating a subterranean formation is disclosed. The method involves converting data obtained from acoustic well logging into cartesian coordinates and solving a general quadratic equation by a least squares fit to an elliptical or circular model. More specific information, such as tensor strain and formation compaction along the wellbore may then be obtained from the geometrical data.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: April 7, 1998
    Assignee: Western Atlas International, Inc.
    Inventor: John F. Priest
  • Patent number: 5691475
    Abstract: Method for measuring the propagation velocities of ultrasonic acoustic waves through rock fragments which includes the steps of (a) introducing the fragment in a coupling fluid between a pair of piezoelectric transducers capable of generating highly damped ultrasonic acoustic waves; (b) passing highly damped ultrasonic acoustic waves through the fragment, said waves being generated by a pulse generator with a pulse width varying from 0.1 .mu.s to 20 .mu.s; (c) visualizing the obtained electric signals by an oscilloscope with a resolution of at least 10.sup.-2 .mu.s; and (d) measuring the transit time of the waves themselves. The ultrasonic acoustic waves may be compressional or shear waves. In one embodiment the coupling fluid has a viscosity varying be 200 and 800 poises.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: November 25, 1997
    Assignee: Agip S.p.A.
    Inventors: Alberto Marsala, Fabrizio Zausa, Santarelli Frederic
  • Patent number: 5648937
    Abstract: A method and apparatus for adjusting the results of a seismic survey according to well log data obtained from wells within the survey region is disclosed. The disclosed method operates on one seismic horizon at a time, and first applies well log data, arranged by location of the wells in the survey region, to the seismic survey. Deviation values are calculated for each well location, as a signed difference between the actual depth data for the geological interface and a deduced horizon depth from the seismic survey. A difference function is evaluated for each survey point to be adjusted in the survey region (ranging from a single point to all survey points), preferably as a weighted average of the deviations at the wells, where the weighting is inversely related to the distance of the well from the survey point under adjustment.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: July 15, 1997
    Assignee: Atlantic Richfield Company
    Inventor: Bruce S. Campbell
  • Patent number: 5644550
    Abstract: A method for logging a subterranean formation from within a well that has been cased and cemented is disclosed. An acoustic signal is transmitted into the formation from a pulse-echo transducer placed within the wellbore and the first casing echo and the first formation echo are detected. The amplitude and the arrival times of these two echoes, combined with some known information about the wellbore, the casing, and the cement enable several parameters to be calculated. These parameters in turn may be used to image the formation around the well.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: July 1, 1997
    Assignee: Western Atlas International, Inc.
    Inventor: John F. Priest
  • Patent number: 5638337
    Abstract: A method for using geometrical data to determine characteristics of a wellbore penetrating a subterranean formation is disclosed. The method involves converting data obtained form acoustic well logging into cartesian coordinates and solving a general quadratic equation by a least squares fit to an elliptical or circular model. More specific information, such as tensor strain and formation compaction along the wellbore may then be obtained from the geometrical data.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: June 10, 1997
    Assignee: Western Atlas International, Inc.
    Inventor: John F. Priest
  • Patent number: 5619475
    Abstract: A method for determining whether a formation is subject to incipient failure are disclosed. The method comprises determining in situ a nonlinear parameter of a formation, and determining whether the nonlinear parameter and/or a derivative of that nonlinear parameter as a function of stress has a relatively large negative value in order to determine whether the formation is subject to incipient failure. In a preferred embodiment, the nonlinear parameter of the formation is a derivative of the square of the shear or compressional velocity with respect to formation stress. The nonlinear parameter of the derivative of the square of the shear velocity with respect to stress is considered to have a large negative value when it is .ltoreq.-0.1 (km/sec).sup.2/ MPa, while the nonlinear parameter of the derivative of the square of the compressional velocity with respect to stress is considered to have a large negative value when it is .ltoreq.-0.2 (km/sec).sup.2 /MPa.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: April 8, 1997
    Assignee: Schlumberger Technology Corportion
    Inventor: Kenneth W. Winkler
  • Patent number: 5544127
    Abstract: Borehole tools are provided with at least one transmitter which generates acoustic waves at a plurality of azimuthal locations about the borehole, and at least one receiver which receives and measures a characteristic (e.g., velocity) of the acoustic waves at related azimuthal locations. The direction of minimum velocity around the borehole is considered the direction of maximum uniaxial stress in the formation. From the velocity as a function of azimuth information, determinations of formation properties, and logs of the same can be made. The azimuthal direction of minimum velocity around the borehole predicts the propagation direction of artifically induced hydrofractures. The velocity variation around the borehole at a particular depth of the borehole is taken as an indication of susceptibility to failure, with higher velocity variations indicative of a more poorly consolidated formation or a formation with a large uniaxial stress.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: August 6, 1996
    Assignee: Schlumberger Technology Corporation
    Inventor: Kenneth W. Winkler
  • Patent number: 5475650
    Abstract: A method of investigating a formation traversed by a borehole includes, measuring at a plurality of different static borehole pressures the acoustic Stoneley and/or flexural wave velocities of waves propagating through the borehole and formation, and generating an indication of the nonlinearity of the formation by processing the velocity measurements. The velocity measurements are processed either by determining a fractional change in the measured acoustic velocity and dividing that fractional change by the change in borehole pressure to provide frequency dependent acoustoelastic coefficients, or by determining the fractional change in the measured acoustic velocity, and subtracting from the fractional change a component generated by the borehole fluid and a component due to linear aspects of the formation to provide a nonlinear formation component. By processing the velocity measurements at a plurality of frequencies, the nonlinear formation components are used to find nonlinear parameters of the formations.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: December 12, 1995
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Sergio Kostek
  • Patent number: 5467320
    Abstract: An acoustic formation apparatus is set forth. It utilizes the drill bit on a drill stem as the acoustic source. At a common azimuth and spaced vertically along the drill stem, first and second acoustic transducers are installed. They connect to first and second amplifiers, first and second band pass filters, first and second clipping circuits, a single delay circuit and a cross correlating circuit. The signals are received, filtered, amplified, clipped, one delayed, and then cross correlation is made utilizing variable time delays. The resulting cross correlation function is analyzed using a microprocessor which removes stationary correlation peaks and ignores very short correlation delay times.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: November 14, 1995
    Assignee: Halliburton Company
    Inventor: Voldi E. Maki, Jr.
  • Patent number: 5448916
    Abstract: A measuring technique for producing a three-dimensional image and information relating to the type of sand, clay or gravel which defines a wall or walls of a deep concealed underground excavation which is filled with a stabilizing liquid, and which technique facilitates accurate and safe construction, utilizes a transducer which irradiates a surface of the excavation with ultrasonic waves and detects the waves which are reflected back thereto. The transducer scans horizontally in incremental stages which occur with a predetermined angle pitch. After each scan is completed, the transducer is vertically displaced by a predetermined amount and the horizontal scan is repeated. The time required for a wave to reach and be reflected back to the transducer is used to determine the distance of the wall from the device.
    Type: Grant
    Filed: December 13, 1993
    Date of Patent: September 12, 1995
    Assignee: Takenaka Corporation
    Inventor: Mamoru Shinozaki
  • Patent number: 5450371
    Abstract: A multi-dimensional assemblage of time/velocity functions are sampled for velocity as a function of incremental time. The samples are stored in a matrix arranged in columns along the time axis and rows across the velocity axis. The count of the number of samples resident in the respective cells of each row is indexed. A desired statistical operator is applied to the count indices in the rows to provide a family of filtered histograms in time-sequential order. The filtered histograms may be edited by delimiting acceptable velocities to lie between preselected percentiles.
    Type: Grant
    Filed: June 18, 1993
    Date of Patent: September 12, 1995
    Assignee: Western Atlas International
    Inventor: Scott W. MacKay
  • Patent number: 5398215
    Abstract: Low and high frequency flexural waves or their equivalents are generated with dipole or other source transducers. From measurements made at receiving transducers which are oriented at two orthogonal directions in a horizontal plane normal to the borehole axis, and via known processing techniques, the received signals are transformed into arrivals as a function of frequency such that the principal polarization directions and the magnitudes of the maximum and minimum wave velocities at those directions are determined at different frequencies. If the maximum velocity of the relatively low frequency flexural waves are in a first principal polarization direction, and the maximum velocity of the relatively high frequency flexural waves are in a second principal polarization direction which is substantially normal to the first principal direction, uniaxial stress in the formation is attributed to stress induced azimuthal anisotropy as opposed to an instrinsic anistropy in the formation.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: March 14, 1995
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Sergio Kostek
  • Patent number: 5343440
    Abstract: Seismic data is combined with well log data to generate a two-dimensional geopressure prediction display; this permits deviated and horizontal well planning plus lithology detection. Shale fraction analysis, compaction trend, and seismic velocity may be automatically or interactively generated on a computer work station with graphics displays to avoid anomalous results. Corrections to velocity predictions by check shots or VSP, and translation of trend curves for laterally offset areas increases accuracy of the geopressure predictions. Multiple wells' logs in a basin permits analysis fluid migrations.
    Type: Grant
    Filed: April 9, 1993
    Date of Patent: August 30, 1994
    Assignee: Atlantic Richfield Company
    Inventors: Tze-Kong Kan, Sandy M. Zucker, Matthew L. Greenberg, William J. Lamb
  • Patent number: 5233568
    Abstract: Seismic data is combined with well log data to generate a two-dimensional geopressure prediction display; this permits deviated and horizontal well planning plus lithology detection. Shale fraction analysis, compaction trend, and seismic velocity may be automatically or interactively generated on a computer work station with graphics displays to avoid anomalous results. Corrections to velocity predictions by check shots or VSP, and translation of trend curves for laterally offset areas increases accuracy of the geopressure predictions. Multiple wells' logs in a basin permits analysis fluid migrations.
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: August 3, 1993
    Assignee: Atlantic Richfield Company
    Inventors: Tze-Kong Kan, Sandy M. Zucker, Matthew L. Greenberg, William J. Lamb
  • Patent number: 5233567
    Abstract: A method is provided for determining the path of a borehole relative to a seismic section. The borehole extends through subsurface formation layers which are seismic boundaries and appear as reflectors in a seismic section. The method comprises generating seismic waves, measuring travel times of said seismic waves between a plurality of surface points and at least one point in said borehole, for which the determination of its position is required, deriving at least one diffraction curve or surface from said travel times, and then mapping said curve or surface upon said seismic section.
    Type: Grant
    Filed: July 31, 1990
    Date of Patent: August 3, 1993
    Assignee: Shell Oil Company
    Inventor: Rodney W. Calvert
  • Patent number: 5214251
    Abstract: Pulse echo apparatus and methods are disclosed for measuring characteristics of a borehole while it is being drilled. A component of a bottomhole assembly, preferably a drilling collar, is provided with one or more ultra-sonic transceivers. A pulse echo sensor of the transceiver is preferably placed in a stabilizer fin of the collar, but may also be placed in the wall of the collar, preferably close to a stabilizing fin. Electronic processing and control circuitry for the pulse-echo sensor is provided in an electronic module placed within such collar. Such pulse echo apparatus, which preferably includes two diametrically opposed transceivers, generates signals from which standoff from a borehole wall may be determined. A method and apparatus are provided for measuring standoff and borehole diameter in the presence of drilling cuttings entrained in the drilling fluid.
    Type: Grant
    Filed: November 6, 1991
    Date of Patent: May 25, 1993
    Assignee: Schlumberger Technology Corporation
    Inventors: Jacques Orban, James C. Mayes
  • Patent number: 5200928
    Abstract: A method for using mode converted P- or S- wave data to delineate the surface of an anomalous geologic structure such as a salt dome is disclosed. Seismic wavefields are propagated from near the surface, through the earth, and through the anomalous geologic unit, so that a wavefield encounters the geologic unit at a non-normal incidence angle to generate a converted S- wave. Incidence angles of the direct arrival and converted waves are then determined. The intersection point of each converted S- wave raypath with each direct arrival raypath is determined, to provide a length of the raypaths. Travel times along the raypaths are determined, and a point on the interface of the anomalous geologic unit with the surrounding earth is determined by comparing raypath travel time differences with the recorded arrival time differences.
    Type: Grant
    Filed: November 7, 1991
    Date of Patent: April 6, 1993
    Assignee: Chevron Research and Technology Company
    Inventor: Mark K. MaCleod
  • Patent number: 5130949
    Abstract: Seismic data is combined with well log data to generate a two-dimensional geopressure prediction display; this permits deviated and horizontal well planning plus lithology detection. Shale fraction analysis, compaction trend, and seismic velocity may be automatically or interactively generated on a computer work station with graphics displays to avoid anomalous results. Corrections to velocity predictions by check shots or VSP, and translation of trend curves for laterally offset areas increases accuracy of the geopressure predictions. Multiple wells' logs in a basin permits analysis fluid migrations.
    Type: Grant
    Filed: June 28, 1991
    Date of Patent: July 14, 1992
    Assignee: Atlantic Richfield Company
    Inventors: Tze-Kong Kan, Sandy M. Zucker, Matthew L. Greenberg, William J. Lamb
  • Patent number: 5103428
    Abstract: A method and apparatus for laboratory simulation of the dynamic formation of sand arches in production of oil and/or gas from unconsolidated or poorly consolidated wells is disclosed. An ultrasonic transducer is disposed opposite a perforation in a member simulating the casing of a well and the simulated well is operated at conditions approximating those of interest in the field. The acoustic transducer is moved incrementally across the perforation and measurements of the distance between the transducer and the formation are measured. These can then be used to generate a profile of the surface of the formation behind the perforation. Preferably, an ultrasonic transducer which emits a focussed beam of acoustic energy is employed.
    Type: Grant
    Filed: January 16, 1991
    Date of Patent: April 7, 1992
    Assignee: Mobil Oil Corporation
    Inventors: David P. Yale, Ibrahim S. Abou-Sayed, Christopher V. Chow
  • Patent number: 5081611
    Abstract: Methods are provided for determining the axial and radial slowness of a formation traversed by a borehole via utilization of sonic data obtained from a sonic borehole tool having a plurality of detectors. The methods utilize first arrival time information, ray tracing techniques, and backprojection techniques. The differences between the actually measured first arrival times and the theoretical first arrival times as calculated by ray tracing through an initial slowness model of the formation, are backprojected along the theoretical ray paths of first arrival in order to modify the initial slowness model of a formation. The methods utilized are preferably iterative, such that the modified slowness model is then utilized for additional ray tracing and backprojection. Secondary arrivals may also be utilized to refine slowness determinations made from first arrival information.
    Type: Grant
    Filed: March 6, 1991
    Date of Patent: January 14, 1992
    Assignee: Schlumberger Technology Corporation
    Inventor: Brian E. Hornby
  • Patent number: 5076100
    Abstract: A magnetostrictive transducer measuring system for precisely measuring the liquid level of fuel in an underground tank. The system provides for the measurement of the position of one or more transducer magnets in a tube that are positioned along a length of the transducer wire therein, with one of the magnets fixed in the tube to provide a reference position. A current pulse is applied to the transducer wire and sonic pulses are simultaneously produced through the interaction of the magnetic field of the transducer wire and the fields of the magnets. The sonic pulses are detected by a sensor and the time interval between the detected sonic pulses is determined to determine the distance between the magnets.
    Type: Grant
    Filed: October 22, 1990
    Date of Patent: December 31, 1991
    Assignee: Western Pacific Industries Inc.
    Inventors: Lawrence M. Hunter, Ambroise Printstil, Richard G. Dolson
  • Patent number: 5058078
    Abstract: A well logging system includes a digital threshold crossing data generation system (TCDG System) disposed in a well tool, adapted to be disposed in a borehole, and a digital first motion detection (DFMD) software disposed in a memory of a well truck computer. The TCDG system generates a series of threshold crossings for each analog signal received from a receiver of the well tool, the threshold crossings including a plurality of threshold crossing events for each analog signal and representing compressed versions of digitized analog waveforms. The well logging truck computer receives the threshold crossing data from the TCDG system and executes the DFMD software. When the software is executed, a first set of compressional wave first arrival times are determined from a startup routine in the software using the threshold crossing data.
    Type: Grant
    Filed: August 13, 1990
    Date of Patent: October 15, 1991
    Assignee: Schlumberger Technology Corporation
    Inventors: Kevin A. Eyl, Andrew L. Kurkjian, David J. Lineman, Edward A. Pierce, Joseph M. Steiner, Jr.
  • Patent number: 5050130
    Abstract: An apparatus (10) for providing while drilling information on a subterranean geologic formation (28) includes a drilling rig (12) and a rotary drill bit (18) attached to the drilling rig (12) for providing seismic waves as it drills in the earth (16). Geophones (20) are spaced from the rotary drill bit (18) in the earth (16) and receive indirect seismic wave paths (26) and seismic wave paths (30) reflected from the subterranean geologic formation (28) the seismic waves provided by the drill bit (18). A reference sensor (24) is located on the drilling rig (12). The seismic signals sensed by the reference sensor (24) and by the geophones (20) are cross-correlated to separate the drill bit generated signals from interference signals by combining the reference signals and the signals received by the geophones (20).
    Type: Grant
    Filed: May 9, 1990
    Date of Patent: September 17, 1991
    Assignee: Gas Research Institute
    Inventors: James Rector, Bruce Marion, Bernard Widrow, Iraj A. Salehi
  • Patent number: 4985873
    Abstract: A well logging system includes a digital threshold crossing data generation system (TCDG System) disposed in a well tool, adapted to be disposed in a borehole, and a digital first motion detection (DFMD) software disposed in a memory of a well truck computer. The TCDG system generates a series of threshold crossings for each analog signal received from a receiver of the well tool, the threshold crossings including a plurality of threshold crossing events for each analog signal and representing compressed versions of digitized analog waveforms. The well logging truck computer receives the threshold crossing data from the TCDG system and executes the DFMD software. When the software is executed, a first set of compressional wave first arrival times are determined from a startup routine in the software using the threshold crossing data.
    Type: Grant
    Filed: October 20, 1989
    Date of Patent: January 15, 1991
    Assignee: Schlumberger Technology Corporation
    Inventors: Kevin A. Eyl, Andrew L. Kurkjian, David J. Lineman, Edward A. Pierce, Joseph M. Steiner, Jr.
  • Patent number: 4982381
    Abstract: A method is disclosed for acquiring and processing logs obtained by a well-logging tool moved in a well, providing better discrimination between the discontinuities of the sub-soil oriented substantially in the same direction as the well and situated on each side thereof, and particularly in a substantially horizontal well. The method includes the displacement of the tool along the well and the provision of at least two series of signal transmission, reception and logging cycles, the position of the signal transmission and/or reception means relatively to the axis of the well being different from one series to another, so as to cause the distance from the transmission and/or reception means to the discontinuities on each side of the well to vary. Combining the logs from these series of cycles makes it possible to distinguish the reflections on the side of the well from which they come.
    Type: Grant
    Filed: November 28, 1989
    Date of Patent: January 1, 1991
    Assignee: Institut Francais du Petrole
    Inventor: Jean-Luc Mari
  • Patent number: 4964085
    Abstract: A method and apparatus for measuring the caliber of a borehole while drilling utilizes a borehole compensated downhole measuring system in both a compensated and a non-compensated manner. A transmitter of the measuring system generates a signal which is received by at least one spaced receiver with the time/phase relationship of the transmission and reception of the signal at each receiver being indicative of the borehole caliber.
    Type: Grant
    Filed: February 25, 1986
    Date of Patent: October 16, 1990
    Assignee: Baroid Technology, Inc.
    Inventors: Daniel F. Coope, John E. Fontenot
  • Patent number: 4930109
    Abstract: A method for measuring time of travel information of an acoustic return obtained from borehole logging operations avoids the phenomena of cycle skipping. The time of travel is determined from a threshold travel time and a digitization travel time. The threshold travel time is measured from the generated acoustic waveform to the detected threshold level of the acoustic return. The digitization travel time is measured from the threshold travel time to the time of the peak amplitude of the acoustic return.
    Type: Grant
    Filed: December 29, 1988
    Date of Patent: May 29, 1990
    Assignee: Atlantic Richfield Company
    Inventor: Donald G. Kyle
  • Patent number: 4918669
    Abstract: A method and apparatus are disclosed for measurement of earth formation dip utilizing sonic techniques. At least three electroacoustic devices are utilized, each having an electroacoustic transmitter and a pair of electroacoustic receivers. The electroacoustic receivers are both located on one side of the transmitter and are preferably located vertically adjacent along a line with the transmitter. Transmitted acoustic energy is detected by the receivers and the elapsed time between detection by a first receiver and detection by a second receiver is determined. A correlation of the variations in elapsed times for each of the three electroacoustic devices is then utilized to calculate the formation dip at various depths.
    Type: Grant
    Filed: July 26, 1989
    Date of Patent: April 17, 1990
    Assignee: Halliburton Logging Services, Inc.
    Inventors: Roland E. Chemali, Voldi E. Maki, Jr.
  • Patent number: 4899144
    Abstract: A method for transmitting ultrasonic amplitude and time travel information obtained from borehole logging operations over a logging cable allows accurate measurement of the time travel by surface equipment. The time travel information is transmitted by a time travel pulse, which is produced at a time interval from a synchronization pulse corresponding to the time of travel of an acoustic return. The peak amplitude of the acoustic return is transmitted by a separate amplitude pulse.
    Type: Grant
    Filed: December 29, 1988
    Date of Patent: February 6, 1990
    Assignee: Atlantic Richfield Company
    Inventor: Donald G. Kyle
  • Patent number: 4855963
    Abstract: The multipole shear wave logging device of this invention includes a logging sonde, means for generating a 2.sup.n -pole shear wave in an earth formation surrounding a borehole containing liquid where n is an integer greater than 2, and means for detecting in the liquid the refraction of the 2.sup.n -pole shear wave. In the preferred embodiment the generating means comprises six similar sectors of a hollow piezoelectric cylinder. The six sectors are polarized radially and are so connected to the sonde that they are in the form of a split cylinder coaxial with the sonde axis. Electrical pulses of similar wave forms are applied across the inner and outer cylindrical surfaces of each sector. The electrical pulses are of such polarities that adjacent sectors vibrate radially in substantially opposite phase. Circumferentially polarized sectors may also be used in the place of radially polarized sectors.
    Type: Grant
    Filed: January 6, 1988
    Date of Patent: August 8, 1989
    Assignee: Exxon Production Research Company
    Inventors: Graham A. Winbow, Sen-Tsuen Chen, James A. Rice
  • Patent number: 4853901
    Abstract: Apparatus and method for obtaining from a well drilled into the subsurface of the earth the information necessary to determine the location of the liquid surface in same. A source of pressure pulses is coupled to the well surface casing in order that the pulses are transmitted downhole where they are reflected by all surfaces present therein such as, the liquid surface, tubing collars and tubing anchors. A transient pressure transducer is provided which generates an electrical output in response to all reflections of the transmitted pulse. All of the reflections occurring in the well are recorded for a sufficient amount of time to ensure the recording of the first reflection from the liquid surface present in the well.
    Type: Grant
    Filed: October 3, 1988
    Date of Patent: August 1, 1989
    Assignee: Diagnostic Services, Inc.
    Inventor: Dennis D. Barber
  • Patent number: 4845616
    Abstract: In an acoustic well logging apparatus including one or two transmitters and having a pair of spaced apart receivers, two interval transit times are measured independently through a common zone of interest. The two independent measured values are then compared and the difference is then used in contrast with a threshold determinant based on the period of the transmitted pulses. This comparison shows a difference. If the threshold value is not exceeded by the difference value a quality indication is then obtained suggesting that the acoustic measurements did not suffer from cycle skipping. If the threshold value is exceeded by the difference value, then a possible cycle skip exists. If testing shows that a cycle skip does exist, then the error that it introduces is removed from the final log, and a quality indication is obtained suggesting that the answer is good and that a cycle skip error has been removed.
    Type: Grant
    Filed: August 10, 1987
    Date of Patent: July 4, 1989
    Assignee: Halliburton Logging Services, Inc.
    Inventor: William E. Phillips
  • Patent number: 4843598
    Abstract: The porosity of a formation surrounding a cased well is determined from a shear wave log of the formation. Shear wave velocity is derived from the log and formation porosity is identified from a predetermined correlation between core-derived porosity for the type of formation traversed by the cased well and shear wave velocity.
    Type: Grant
    Filed: May 3, 1988
    Date of Patent: June 27, 1989
    Assignee: Mobil Oil Corporation
    Inventor: W. L. Medlin
  • Patent number: 4833658
    Abstract: A method of seismic prospecting with very high resolution as applicable in particular to exploitation of a productive hydrocarbon deposit essentially consists in transmitting and receiving acoustic waves, in recording shot moments, in determining average propagation velocities of refracted and reflected waves and in establishing a depth-section in order to determine the positions of interfaces located within the geological zone traversed horizontally by a horizontal borehole.
    Type: Grant
    Filed: May 14, 1987
    Date of Patent: May 23, 1989
    Assignee: Societe Nationale Elf Aquitaine (Production)
    Inventor: Philippe Staron
  • Patent number: 4829486
    Abstract: In an acoustic logging system for providing information regarding selected parameters of the wall of a borehole in the earth, and of the rock formation which is adjacent the borehole, in which a single transmit/receive transducer system (T/RTS) mounted on a rotating assembly probes the wall of the borehole in a circular scanning pattern as a function of depth, the improvement which includes at least a second T/RTS mounted on the rotating assembly in known geometrical relation to the first T/RTS, and means to process two or more analog electrical scan signals for transmission over one or more electrical transmission channels in a logging cable. In particular, methods and means are described for the transmission of multiple scan signals, whereby more bottom hole parameters are transmitted, including composite electrical scan signals, in which the early part provides a gated high frequency scan signal and the latter part, the gated flow frequency scan signal, for greater penetration into the rock.
    Type: Grant
    Filed: August 18, 1983
    Date of Patent: May 9, 1989
    Assignee: Standard Oil Company (Indiana)
    Inventor: Robert A. Broding
  • Patent number: 4827457
    Abstract: An apparatus and method for the measuring the transverse dimensions of a hole such as in an oil well including a sonde on which an electro-acoustic transducer is mounted in an off centered position in relation to the axis of the sonde. This transducer has two opposite active faces so as to simultaneously transmit acoustic pulses in diametrically opposite directions from the sonde. When the sonde is centered in the hole, the transducer picks up the echoes retransmitted by the wall of the hole in the two directions, at different times. A recording is made of these times and preferably also of an indication of the amplitude of each of these echoes to obtain both a diameter measurement and an indication of the condition of the hole surface. Several transducers are provided, superposed and oriented along various diameters distributed around the axis of the sonde.
    Type: Grant
    Filed: October 31, 1986
    Date of Patent: May 2, 1989
    Assignee: Schlumberger Technology Corporation
    Inventors: Bronislaw Seeman, Georges L. F. Benoit
  • Patent number: 4819214
    Abstract: A sonic well logging system and apparatus for determination of seismic wave velocities from a seismic wave propagating in a subterranean formation about a wellbore. The system includes the process of imparting a seismic wave into the subterranean formation about the wellbore, and receiving the seismic wave after it has interacted with the subterranean formation at a plurality of semismic receivers positioned in the wellbore. The seismic waves are transformed at each of the seismic receivers into a seismic signal and these signals nonlinearly staked for a selected position in the wellbore to generate a velocity spectrum of seismic wave velocities. Coherency peaks are then selected from the velocity spectrum with each coherency peak having associated therewith a unique seismic wave velocity, such as P-wave, S-wave, tube wave and the like.
    Type: Grant
    Filed: October 29, 1987
    Date of Patent: April 4, 1989
    Assignee: Amoco Corporation
    Inventors: Paul R. Gutowski, Martin L. Smith, Jr., Carl H. Sondergeld
  • Patent number: 4809236
    Abstract: Techniques are described whereby measurements derived from acoustic investigations made from inside a borehole penetraing an earth formation are factorized into components with high depth resolution. In one embodiment travel times of an acoustic wave such as the compressional is factored into mud travel time and interval travel times through the earth formation. In another embodiment amplitude measurements of an acoustic wave are factored into components such as receiver gain, earth formation attenuation, and coupling effectiveness at the boundary between the borehole and the earth formation. In both embodiments an additional component can be factored out that is a function of transmitter to receiver spacings. A modified Gauss-Seidel iteration technique is described whereby iterations can rapidly converge with less sensitivity to large variations in the measurements. Factorization of receiver gains effectively enables calibration of the receivers during well logging.
    Type: Grant
    Filed: October 15, 1986
    Date of Patent: February 28, 1989
    Assignee: Schlumberger Technology Corporation
    Inventors: Kai Hsu, Ralphe Wiggins
  • Patent number: 4808996
    Abstract: For use in an acoustic logging tool, an apparatus which digitizes simultaneously obtained acoustic signals is set forth in the preferred and illustrated embodiment. The device cooperates with N acoustic receivers in a sonde. After an acoustic pulse is transmitted, data is observed at all N acoustic receivers. This apparatus comprises a multiplexer which is connected to the several receivers. The several input signals are multiplexed, thereafter input to a digital data converter forming a procession of output digital words, and the words are stored in a selected order in a digital data buffer. They are delivered to the surface through a telemetry transmitter at a slower rate than the rate at which the data is created. In addition, a transmitter monitor is included. This provides a signal alternately digitized for a specified interval to enable coordination of the data reduction from the acoustic receivers in contrast with the timing of the transmitted acoustic pulse.
    Type: Grant
    Filed: July 27, 1987
    Date of Patent: February 28, 1989
    Assignee: Halliburton Company
    Inventor: Mark D. Zimmer
  • Patent number: 4802145
    Abstract: An apparatus and method of use thereof are disclosed herein for determining cement conditions adjacent a casing set within a wellbore. At least one acoustic transmitting and receiving transducer and at least one acoustic receiving transducer are positioned into contact with the interior surface of the casing. At least one pulse of acoustic energy is transmitted into the media surrounding the wellbore from the at least one acoustic transmitting and receiving transducer. Electrical signals are generated in response to acoustic energy received by both transducers from the surrounding media. Representations of the generated electrical signals are recorded as a function of the depth within the wellbore and are indicative of the cement conditions, including the casing-cement bond, the cement-formation bond, cement thickness, and the acoustic velocity associated with the cement.
    Type: Grant
    Filed: May 26, 1988
    Date of Patent: January 31, 1989
    Assignee: Amoco Corporation
    Inventor: Houston B. Mount II
  • Patent number: 4796237
    Abstract: Disclosed herein are methods for canceling acoustic reverberations caused when acoustic energy impinges a medium. In one method, a series of positive pulses of acoustic energy are transmitted and the amplitudes of the resulting acoustic reverberations are measured. Negative pulses of acoustic energy are then transmitted having amplitudes equal to the immediately preceding received acoustic reverberation and at a time later than the positive pulses so that the acoustic reverberations are driven to a null.
    Type: Grant
    Filed: January 28, 1987
    Date of Patent: January 3, 1989
    Assignee: Amoco Corporation
    Inventors: Chriswell G. Hutchens, Steven A. Morris
  • Patent number: 4791619
    Abstract: Using waveforms or travel time acquired by multitransmitter and/or borehole sonic tools, acoustic velocity (or slowness) is computed for compressional, shear, and Stoneley waves using direct phase determination (DPD), the slowness time coherence (STC) method, and multiple shot processing (MSP). There is a nonzero difference between transmitter and receiver delta-t's (slownesses) when the sonic tool is in the vicinity of a borehole feature, such as a fracture or a borehole enlargement. The amount of the difference, T/R delta-t, for compressional, shear and Stoneley waves depends on the size and nature of the fracture(s). It is possible to determine the height, width, and dip angle of the fracture when the T/R delta-t's are used in conjunction with other model data. It is also possible to distinguish between borehole enlargements and fractures with the method of this invention.
    Type: Grant
    Filed: January 26, 1988
    Date of Patent: December 13, 1988
    Assignee: Schlumberger Technology Corporation
    Inventor: Olive Y. Liu
  • Patent number: 4775960
    Abstract: A method for measuring vibrational stresses and velocities of waves propagated within formations surrounding a wellbore essentially consists in simultaneously measuring the vibrational stress and vibrational velocity produced by propagation of the vibration within the medium, then in establishing a ratio of magnitudes relating to the vibrational stress and velocity in respect of one and the same measuring point. The method and device provided by the invention also find applications in the separation of different types of secondary waves generated during propagation of a primary wave in a medium.
    Type: Grant
    Filed: December 17, 1986
    Date of Patent: October 4, 1988
    Assignee: Societe Nationale Elf Aquitaine (Production)
    Inventors: Philippe Staron, Georges Arens, Jean P. Panziera, Pierre Gros