Near Field Optic Patents (Class 369/13.33)
  • Patent number: 10978102
    Abstract: A thermally assisted magnetic head including a main magnetic pole layer having a magnetic pole end face arranged in a medium-opposing surface, a near-field transducer which generates a near-field light for heating the magnetic recording medium, a waveguide guiding light to the near-field transducer; and an optical side shield being arranged in the medium-opposing surface side of the waveguide and being formed so as to sandwich a part of the near-field transducer, in the medium-opposing surface side, from both sides of a direction along the medium-opposing surface. The near-field transducer includes a protruding end-part (PEG). Then the protruding end-part is arranged to have a PEG end-surface at a position receded from the medium-opposing surface.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: April 13, 2021
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Wai Yuen Anthony Lai, Hon Kit Lau
  • Patent number: 10971177
    Abstract: A first heat-assisted magnetic recording (HAMR) writer writes to a surface of a magnetic disk using during an initial time period. A second HAMR writer is configured to write to the surface but not during the initial time period. The initial time period extends from a first time when the disk drive is first used to a second time when a near-field transducer of the first HAMR writer reaches a first wear threshold. During a subsequent time period after the initial time period, to the surface of the disk is written to using the second HAMR writer and not the first HAMR writer.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 6, 2021
    Assignee: Seagate Technology LLC
    Inventors: James E. Angelo, Mehmet Fatih Erden, John W. Dykes
  • Patent number: 10957345
    Abstract: According to one embodiment, a magnetic disk device includes a disk, a head including a main magnetic pole having a first end and a second end opposite to the first end in a radial direction of the disk, a write shield facing the main magnetic pole with a gap, and an assist element provided in the gap and at a position where a first distance between the first end and the assist element and a second distance between the second end and the assist element are different from each other, and a controller which controls a voltage applied to the assist element according to a shingled write direction in which a second track is overwritten on a first track.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: March 23, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventor: Yusuke Tomoda
  • Patent number: 10910007
    Abstract: A heat-assisted magnetic recording (HAMR) hard disk drive has a gas-bearing slider supporting a near-field transducer (NFT) and a NFT temperature sensor (NTS). An optional first IVC circuitry may provide a bias voltage to the slider body to assure substantially zero electrical potential between the slider body and the disk to minimize slider-disk contact and lubrication pick-up. A second IVC circuitry operates independently of the first IVC circuitry and provides a negative bias voltage to the NTS (and the connected NFT) relative to the disk to minimize the adverse effects of excessive heating on the NFT.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 2, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Tan Trinh, Sukumar Rajauria, Yuichi Aoki, Kosuke Nagase, Erhard Schreck, Qing Dai
  • Patent number: 10839830
    Abstract: A recording head comprises a waveguide core extending to an air-bearing surface, and a near-field transducer is centrally aligned with the waveguide core and positioned proximate a first side of the waveguide core in a down-track direction. First and second mirror portions form a mirror surrounding the near-field transducer in a cross-track direction with a gap therebetween. The mirror extends in the direction normal to the air-bearing surface a first distance that is less than a second distance the near-field transducer extends in the direction normal the air-bearing surface. First and second reflective heatsink structures are respectively coupled to the first and second mirror portions. The heatsink structures are spaced apart from the near-field transducer in the cross-track direction and extend in a direction normal the air-bearing surface, such that proximate the air-bearing surface the first and second reflective heatsink structures extend substantially parallel to, or converge toward, each other.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 17, 2020
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Martin Giles Blaber, Tae-Woo Lee
  • Patent number: 10839843
    Abstract: A method of operating an HDD having a slider-mounted read/write head that is configured for dynamic fly-height operation (DFH) and includes at least one head-disk interference sensor (HDIs). By operating the DFH to lower the head and subjecting the HDIs signal to a power-law enhancement, a consistent and accurate determination of the touchdown power (TDP) can be obtained. Combining absolute TDP determination with a method for measuring relative changes of FH, an absolute determination of FH can be determined.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 17, 2020
    Assignees: SAE Magnetics (H.K.) Ltd., Headway Technologies, Inc.
    Inventors: Qinghua Zeng, Soramany Ka, Ellis Cha
  • Patent number: 10832717
    Abstract: A near-field transducer has an enlarged portion with a layer of soft plasmonic material. A peg formed of a thermally robust plasmonic material includes an embedded part that is partially embedded within the enlarged portion and has an exposed surface facing away from the enlarged portion. An intersection between a lower edge of the enlarged portion and the embedded part has a discontinuity.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: November 10, 2020
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Nan Zhou, Yongjun Zhao, Huaqing Yin, Weibin Chen, Michael Allen Seigler
  • Patent number: 10811043
    Abstract: An apparatus includes a first waveguide core extending along a light-propagation direction and configured to receive light from a light source at a combined transverse electric (TE) mode and a transverse magnetic (TM) mode. A second waveguide core is spaced apart from the first waveguide core and is configured to couple light at a TM mode to the second waveguide core. A near-field transducer (NFT) is disposed at a media-facing surface of a write head, the NFT receiving the light from the first waveguide core or the second waveguide core and heating a magnetic recording medium in response thereto.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: October 20, 2020
    Assignee: Seagate Technology LLC
    Inventors: Christopher Neil Harvey, Aidan Dominic Goggin, Kelly Elizabeth Callan, Reyad Mehfuz
  • Patent number: 10734019
    Abstract: An apparatus includes an input coupler configured to receive light excited by a light source. A near-field transducer (NFT) is positioned at a media-facing surface of a write head. A layered waveguide is positioned between the input coupler and the NFT and configured to receive the light output from the input coupler in a transverse electric (TE) mode and deliver the light to the NFT in a transverse magnetic (TM) mode. The layered waveguide comprises a first layer extending along a light-propagation direction. The first layer is configured to receive light from the input coupler. The first layer tapers from a first cross track width to a second cross track width where the second cross track width is narrower than the first cross track width. The layered waveguide includes a second layer that is disposed on the first layer. The second layer has a cross sectional area in a plane perpendicular to the light propagation direction that increases along the light propagation direction.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 4, 2020
    Assignee: Seagate Technology LLC
    Inventors: Christopher Neil Harvey, Aidan Dominic Goggin, Kelly Elizabeth Callan, John Bernard McGurk, Reyad Mehfuz
  • Patent number: 10699740
    Abstract: A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 30, 2020
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Justin Glen Brons, Steve C. Riemer, Jie Gong, Michael Allen Seigler
  • Patent number: 10679653
    Abstract: A method of operating a HDD having a read/write head configured for Perpendicular Magnetic Recording (PMR) and configured for use in Thermally Assisted Magnetic Recording (TAMR). By using selected settings of a power ratio (PR) value to ensure that accurate fly height (FH) measurements of head-disk interference (HDI) can be taken during write touchdowns (TDs), head damage can be eliminated during HDI events. Under normal operating conditions the PMR head develops a sharp protrusion due to heating from the TAMR apparatus as well as the write current and read and write heaters. The sharp protrusion is prone to striking the disk surface, instead of the shields doing so. The shields would be more capable of absorbing the HDI, which would allow the HDI sensors (HDIs) to provide a more sensitive reading of the HDI which would prevent head wear caused by the sharp protrusion.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 9, 2020
    Assignees: SAE Magnetics (H.K.) Ltd., Headway Technologies, Inc.
    Inventors: Qinghua Zeng, Siu Yin Ngan, Soramany Ka, Ellis Cha
  • Patent number: 10657991
    Abstract: An apparatus comprises a slider having an air bearing surface (ABS), a leading edge, and a trailing edge opposing the leading edge. A writer having a write pole is situated at or near the ABS. A near-field transducer (NFT) is situated at or near the ABS and between the write pole and the leading edge of the slider. An optical waveguide is configured to couple light from a laser source to the NFT. A contact sensor is situated between the write pole and the trailing edge. The contact sensor comprises a first ABS section situated at or near the ABS, a second ABS section situated at or near the ABS and spaced apart from the first ABS in a cross-track direction by a gap, and a distal section extending away from the ABS and connecting the first ABS section with the second ABS section.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 19, 2020
    Assignee: Seagate Technology LLC
    Inventors: Erik Jon Hutchinson, Declan Macken, Manuel Charles Anaya-Dufresne
  • Patent number: 10657994
    Abstract: A folded lasing cavity comprises at least one bend. The folded lasing cavity is disposed on and configured to emit light along a substrate-parallel plane. An etched facet is on an emitting end of the folded lasing cavity and an etched mirror is on another end of the folding lasing cavity. An etched shaping mirror redirects light received from the etched facet in a direction normal to the substrate-parallel plane.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 19, 2020
    Assignee: Seagate Technology LLC
    Inventors: Roger L. Hipwell, Jr., Scott Eugene Olson
  • Patent number: 10643641
    Abstract: A slider for heat assisted magnetic recording (HAMR) is provided. The slider includes a writer for writing data to a HAMR medium, a reader for reading data stored on the HAMR medium, a near field transducer (NFT), a first waveguide optically coupled to the NFT, a slider laser configured to generate and transmit a first light energy to the first waveguide such that the NFT causes a portion of the HAMR medium to heat up, to assist the writer for writing data to the HAMR medium, and a second waveguide optically coupled to the NFT, for transmitting a light energy from an external laser to the NFT to optically anneal the NFT during a fabrication process of the slider.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 5, 2020
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Bin Ouyang, Takuya Matsumoto, Utis Cumhnoo, Mousumi Mani Biswas, Ozgun Suzer, Marc A Finot
  • Patent number: 10519540
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: December 31, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Patent number: 10510364
    Abstract: Devices that include a near field transducer (NFT) including a crystalline plasmonic material having crystal grains and grain boundaries; and nanoparticles disposed in the crystal grains, on the grain boundaries, or some combination thereof, wherein the nanoparticles are oxides of, lanthanum (La), barium (Ba), strontium (Sr), erbium (Er), hafnium (Hf), germanium (Ge), or combinations thereof; nitrides of zirconium (Zr), niobium (Nb), or combinations thereof; or carbides of silicon (Si), aluminum (Al), boron (B), zirconium (Zr), tungsten (W), titanium (Ti), niobium (Nb), or combinations thereof.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 17, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Justin Brons, Steven C. Riemer, Michael C. Kautzky, Xiaoyue Huang, Sarbeswar Sahoo
  • Patent number: 10510365
    Abstract: A recording head includes a near-field transducer proximate a media-facing surface. The near-field transducer comprises an aperture portion surrounded by walls of plasmonic material, the walls oriented normal to the media-facing surface. A notch protrudes within the aperture. The notch comprises at least one of Rh and Ir. A write pole is proximate the near-field transducer. The write pole has a back surface facing away from the media-facing surface and an aperture-facing surface proximate the aperture.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 17, 2019
    Assignee: Seagate Technology LLC
    Inventors: Martin Giles Blaber, Michael Allen Seigler, Michael Christopher Kautzky
  • Patent number: 10490214
    Abstract: An apparatus comprises a write pole, a waveguide core, and a near-field transducer (NFT) positioned between the write pole and the waveguide core. The NFT comprises an enlarged portion and a peg comprising a refractory metal and extending from the enlarged portion toward a media-facing surface. A first dielectric layer is positioned between the peg and the write pole, and a first adhesion layer is positioned between the peg and the first dielectric layer. In addition, a second dielectric layer is disposed on an entire surface of the NFT opposing the media-facing surface, and a second adhesion layer is positioned between the NFT and the second dielectric layer.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: November 26, 2019
    Assignee: Seagate Technology LLC
    Inventor: Weibin Chen
  • Patent number: 10482908
    Abstract: An apparatus comprises a laser diode configured to generate light during a write operation. A slider comprises a near-field transducer (NFT) and an optical waveguide. The slider is configured for heat-assisted magnetic recording and to communicate the light to the NFT via the waveguide. A writer heater of the slider is configured to receive power during the write operation. A thermal sensor is situated at or near an air bearing surface of the slider. The thermal sensor is configured to produce a sensor signal in response to sensing back-heating from the medium while the NFT generates heat during a write operation. Circuitry, coupled to the thermal sensor, is configured to compare the sensor signal to a threshold and generate an output signal indicative of degradation of NFT performance in response to the sensor signal exceeding the threshold.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 19, 2019
    Assignee: Seagate Technology LLC
    Inventors: Riyan Mendonsa, Jon D. Trantham, James Dillon Kiely, Peng Li, Joshua Ward Christensen
  • Patent number: 10438617
    Abstract: A magnetic write head for heat assisted magnetic recording having a novel heat sink structure. The write head includes a magnetic write pole and a thermal transducer located adjacent to a leading edge of the magnetic write pole. A heat sink structure, constructed of a non-magnetic, thermally conductive material such as Au, Ag or Cu partially surrounds the magnetic write pole. The heat sink structure can be formed to contact first and second sides of the magnetic write pole, and can be recessed from the media facing surface of the write head. The space between the heat sink structure and the media facing surface can be filled with a physically hard, non-corrosive metal.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 8, 2019
    Assignee: Western Digital Technologies, Inc.
    Inventors: Venkata R K Gorantla, Takuya Matsumoto, Aron Pentek
  • Patent number: 10410664
    Abstract: A near-field transducer has an enlarged portion with a layer of soft plasmonic material. A peg is embedded in a lower part of the enlarged portion that faces a media-facing surface. The peg has an elongated outer part that extends from a lower edge of the enlarged portion towards the media-facing surface and an embedded part that is embedded within the enlarged portion. The embedded part could be any shape. The peg is formed of a thermally robust plasmonic material.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 10, 2019
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Nan Zhou, Yongjun Zhao, Huaqing Yin, Weibin Chen, Michael Allen Seigler
  • Patent number: 10403315
    Abstract: Embodiments disclosed herein generally relate to a HAMR head. The HAMR head includes a main pole, a waveguide and a NFT disposed between the main pole and the waveguide. The NFT includes an antenna, and the antenna includes a first portion and a second portion. The second portion may be made of a material having a higher melting point than the material of the first portion. Having the second portion helps reduce the temperature rise of the NFT and reduce the laser power applied to the NFT.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: September 3, 2019
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Takuya Matsumoto, Vijay Prakash Singh Rawat, Barry C. Stipe
  • Patent number: 10403310
    Abstract: An apparatus comprises a slider configured for heat-assisted magnetic recording. A near-field transducer comprising a peg is situated at or near an air bearing surface of the slider, and an optical waveguide of the slider is configured to couple light from a light source to the near-field transducer. The peg comprises a hyperbolic metamaterial, and the near-field transducer may further include an enlarged portion from which the peg extends, where the enlarged portion may also comprise a hyperbolic metamaterial.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 3, 2019
    Assignee: Seagate Technology LLC
    Inventors: Andres David Barbosa Neira, Roberto Fernandez Garcia, Michael James Hardy, Choon How Gan, Mark Anthony Gubbins, Florin Zavaliche, Tong Zhao, Martin Giles Blaber
  • Patent number: 10395680
    Abstract: An apparatus includes a slider having an air bearing surface (ABS). A near-field transducer (NFT) is disposed at or near the ABS. The slider has an optical waveguide configured to couple light from a laser source to the NFT. A thermal sensor is disposed at a leading edge of the NFT, the thermal sensor has an ABS section situated at or proximate the ABS and a distal section extending away from the ABS. The thermal sensor is configured to detect changes in output optical power of the laser source and contact between the slider and a magnetic recording medium.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: August 27, 2019
    Assignee: Seagate Technology LLC
    Inventors: James Gary Wessel, Chen Wang
  • Patent number: 10366720
    Abstract: An apparatus comprises a slider comprising an air bearing surface (ABS) and configured for heat-assisted magnetic recording. The slider includes a writer and a reader at the ABS, a near-field transducer (NFT) proximate the writer, and an optical waveguide optically coupled to a laser source and the NFT. The slider further includes a sensor configured to contact and sense thermal asperities of a magnetic recording medium. The sensor is formed from one of Ru, Rh, Pd, Os, Ir, and Pt.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: July 30, 2019
    Assignee: Seagate Technology LLC
    Inventors: Declan Macken, Paul Julio Sonda, Peter Kevin McGeehin
  • Patent number: 10249326
    Abstract: A recording head has a near-field transducer proximate a media-facing surface of the recording head. A waveguide core overlaps and delivers light from a light source to the near-field transducer. The waveguide core has a dielectric cavity proximate the near-field transducer. The cavity is filled with a cladding material and reduces optical feedback to the light source.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: April 2, 2019
    Assignee: Seagate Technology LLC
    Inventor: Chubing Peng
  • Patent number: 10240975
    Abstract: An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: March 26, 2019
    Assignee: Seagate Technology LLC
    Inventors: James Dillon Kiely, John Charles Duda, Patrick Carl Fletcher, Andrei Dorobantu, Jon D. Trantham
  • Patent number: 10236026
    Abstract: Thermal barrier layers and seed layers for control of thermal and structural properties of heat assisted magnetic recording (HAMR) media are provided. One such HAMR medium includes a substrate, a heat sink layer on the substrate, a thermal barrier layer of SrTiO3 on the heat sink layer, an underlayer of MgO on the thermal barrier layer, and a magnetic recording layer on the underlayer. Another such HAMR medium includes a substrate, a heat sink layer on the substrate, a thermal barrier layer of an ABO3-type oxide on the heat sink layer, and a magnetic recording layer on the thermal barrier layer.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: March 19, 2019
    Assignee: WD MEDIA, LLC
    Inventors: Rui Zhang, Tomoko Seki, Antony Ajan, Paul C. Dorsey
  • Patent number: 10236020
    Abstract: A recording head includes a near-field transducer proximate a media-facing surface. The near-field transducer comprises an aperture portion surrounded by walls of plasmonic material, the walls oriented normal to the media-facing surface. A notch protrudes within the aperture. The notch comprises at least one of Rh and Ir. A write pole is proximate the near-field transducer. The write pole has a back surface facing away from the media-facing surface and an aperture-facing surface proximate the aperture.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: March 19, 2019
    Assignee: Seagate Technology LLC
    Inventors: Martin Giles Blaber, Michael Allen Seigler, Michael Christopher Kautzky
  • Patent number: 10217482
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 26, 2019
    Assignee: Seagate Technology LLC
    Inventors: Vijay Karthik Sankar, Tong Zhao, Yongjun Zhao, Michael C. Kautzky, Hui Brickner, Sarbeswar Sahoo
  • Patent number: 10190210
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 29, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Patent number: 10192573
    Abstract: Devices having an air bearing surface (ABS), the devices include a write pole; a near field transducer (NFT) including a peg and a disc, wherein the peg is at the ABS of the device; an overcoat, the overcoat including a low surface energy layer.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: January 29, 2019
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Ed F. Rejda, Andrew J. Boyne, Kurt W. Wierman, Michael Seigler, Scott Franzen, Jie Gong
  • Patent number: 10152991
    Abstract: A method for manufacturing a TAMR (thermal assisted magnetic recording) write head. The write head has a metal blocker formed against a distal end of a waveguide. The waveguide focuses optical radiation on an adjacent plasmon generator where it excites plasmon modes that heat the recording medium. Although the plasmon generator typically heats the recording medium using the plasmon near field to supply the required Joule heating, an unblocked waveguide would also send optical radiation to the medium and surrounding structures producing unwanted heating and device unreliability. The role of the blocker is to block the unwanted optical radiation and, thereby, to limit the heating to that supplied by the plasmon near field.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 11, 2018
    Assignee: Headway Technologies, Inc.
    Inventors: Tsutomu Chou, Kouji Shimazawa, Tobias Maletzky, Weihao Xu, Shinji Hara, Yoshihiro Tsuchiya, Yiming Wang, Cherng-Chyi Han, Xuhui Jin
  • Patent number: 10147454
    Abstract: An apparatus comprises a laser diode configured to generate light during a write operation. A slider comprises a near-field transducer (NFT) and an optical waveguide. The slider is configured for heat-assisted magnetic recording and to communicate the light to the NFT via the waveguide. A writer heater of the slider is configured to receive power during the write operation. A thermal sensor is situated at or near an air bearing surface of the slider. The thermal sensor is configured to produce a sensor signal in response to sensing back-heating from the medium while the NFT generates heat during a write operation. Circuitry, coupled to the thermal sensor, is configured to compare the sensor signal to a threshold and generate an output signal indicative of degradation of NFT performance in response to the sensor signal exceeding the threshold.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: December 4, 2018
    Assignee: Seagate Technology LLC
    Inventors: Riyan Mendonsa, Jon D. Trantham, James Dillon Kiely, Peng Li, Joshua Ward Christensen
  • Patent number: 10134436
    Abstract: A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: November 20, 2018
    Assignee: Seagate Technology LLC
    Inventors: Sethuraman Jayashankar, Michael C. Kautzky
  • Patent number: 10121496
    Abstract: A write head includes a waveguide, a magnetic pole, and a near-field transducer. The near-field transducer includes an enlarged portion and a peg. The peg is separated from the magnetic pole in a downtrack direction by a dielectric gap. A peg coupler covers a bottom surface of the magnetic pole and is separated from the peg. The peg coupler is formed of a first plasmonic material. A pad extends from the peg coupler into part of the gap in the downtrack direction towards the peg. The pad is formed of a second plasmonic material and extends into the write head away from the media-facing surface a distance L that is less than a corresponding distance of the peg coupler.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 6, 2018
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Tae-Woo Lee, Peng Zhang, Weibin Chen
  • Patent number: 10115423
    Abstract: A near-field transducer has an enlarged portion with a peg extending towards a media-facing surface. Two reflectors are located co-planar with near-field transducer and located on either side of the near-field transducer in a crosstrack direction. The two reflectors are separated by a gap proximate the peg of the near-field transducer. The two reflectors each include a first edge at the media facing surface and a second edge at an acute angle to the media-facing surface. The second edge faces the near-field transducer. The two reflectors concentrate the light on the peg of the near-field transducer.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: October 30, 2018
    Assignee: Seagate Technology LLC
    Inventors: Mark Anthony Gubbins, Choon How Gan, Roberto Fernandez Garcia, Michael James Hardy, Andres David Barbosa Neira
  • Patent number: 10106885
    Abstract: A magnetic write apparatus includes a pole and a near field transducer. The pole extends in a yoke direction from a media facing surface where the yoke direction extends perpendicular to the media facing surface. The near field transducer includes a near field transducer cap and a near field transducer nose. The near field transducer nose is separated from the pole by the near field transducer cap and a dielectric gap and the near field transducer nose comprises a bevel surface that forms a bevel angle with a plane extending in the yoke direction.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: October 23, 2018
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shawn M. Tanner, Mingjun Yu, Min Zheng, Kyung Lee, Tsung Yuan Chen
  • Patent number: 10102872
    Abstract: Devices that include a near field transducer (NFT), the NFT having at least one external surface; and at least one multilayer adhesion layer positioned on at least a portion of the at least one external surface, the multilayer adhesion layer including a first layer and a second layer, with the second layer being in contact with the portion of the at least one external surface of the NFT, the first layer including: yttrium (Y), scandium (Sc), zirconium (Zr), hafnium (Hf), silicon (Si), boron (B), tantalum (Ta), barium (Ba), aluminum (Al), titanium (Ti), niobium (Nb), calcium (Ca), beryllium (Be), strontium (Sr), magnesium (Mg), lithium (Li), or combinations thereof; and the second layer including: lanthanum (La), boron (B), lutetium (Lu), aluminum (Al), deuterium (D), cerium (Ce), uranium (U), praseodymium (Pr), yttrium (Y), silicon (Si), iridium (Ir), carbon (C), thorium (Th), scandium (Sc), titanium (Ti), vanadium (V), phosphorus (P), barium (Ba), europium (Eu), or combinations thereof.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 16, 2018
    Assignee: Seagate Technology LLC
    Inventors: Justin Brons, Tong Zhao, Yuhang Cheng, Dimitar V. Dimitrov
  • Patent number: 10062400
    Abstract: An apparatus includes a first waveguide core extending along a light-propagation direction and configured to receive light from a light source at a combined transverse electric (TE) mode and a transverse magnetic (TM) mode. A second waveguide core is spaced apart from the first waveguide core and is configured to couple light at a TM mode to the second waveguide core. A near-field transducer (NFT) is disposed at a media-facing surface of a write head, the NFT receiving the light from the first waveguide core or the second waveguide core and heating a magnetic recording medium in response thereto.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: August 28, 2018
    Assignee: Seagate Technology LLC
    Inventors: Christopher Neil Harvey, Aidan Dominic Goggin, Kelly Elizabeth Hamilton, Reyad Mefuz
  • Patent number: 10056101
    Abstract: A slider configured for heat-assisted magnetic recording comprises a magnetic writer, a near-field transducer, and an optical waveguide coupling the near-field transducer to a light source. The writer is situated proximate the near-field transducer at an air bearing surface of the slider and comprises a first return pole, a second return pole, and a write pole situated between and spaced apart from the first return pole and the second return pole. A structural element is situated at or near the air bearing surface between the write pole and one of the first and second return poles. The structural element comprises a cavity. A thermal sensor is disposed in the cavity. The thermal sensor is configured for sensing contact between the slider and a magnetic recording medium, asperities of the medium, and output optical power of the light source.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: August 21, 2018
    Assignee: Seagate Technology LLC
    Inventor: James Gary Wessel
  • Patent number: 10043542
    Abstract: A plasmon generator generates surface plasmon and generates near-field light from the surface plasmon at a distal end surface situated on an air bearing surface facing a magnetic recording medium. The plasmon generator has a first portion including the distal end surface, a second portion situated away from the air bearing surface, and a separating layer situated between the first portion and the second portion and separating the first portion from the second portion.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: August 7, 2018
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Tsutomu Chou, Yoshihiro Tsuchiya, Kosuke Tanaka
  • Patent number: 10043540
    Abstract: A method includes moving a heat-assisted magnetic recording head relative to a magnetic recording medium comprising a plurality of tracks, the head comprising a reader and a writer including a near-field transducer (NFT) optically coupled to a laser diode, the writer comprising a center which is laterally offset relative to a center of the reader to define a writer-reader offset (WRO) therebetween. Patterns are written to a particular track at a plurality of laser diode current levels. The patterns are read and a WRO value is calculated at a peak amplitude position for each of the laser diode current levels. A slope of the WRO values is determined with the laser current diode levels. A health condition of the NFT is determined by determining if the slope is greater than a predetermined threshold indicative of non-uniform activation across the NFT.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: August 7, 2018
    Assignee: Seagate Technology LLC
    Inventor: Won Choul Yang
  • Patent number: 10032468
    Abstract: An apparatus comprises a slider configured for heat assisted magnetic recording and comprising a substrate. At least one component of the slider generates heat when energized. At least one thermal via extends through a portion of the slider from a location proximate the component to the substrate. The thermal via is configured to conduct heat away from the component and to the substrate.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: July 24, 2018
    Assignee: Seagate Technology LLC
    Inventors: James Gary Wessel, Zoran Jandric, Vasudevan Ramaswamy
  • Patent number: 10026421
    Abstract: An apparatus comprises a slider configured for heat-assisted magnetic recording. A near-field transducer comprising a peg is situated at or near an air bearing surface of the slider, and an optical waveguide of the slider is configured to couple light from a light source to the near-field transducer. The peg comprises a hyperbolic metamaterial, and the near-field transducer may further include an enlarged portion from which the peg extends, where the enlarged portion may also comprise a hyperbolic metamaterial.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: July 17, 2018
    Assignee: Seagate Technology LLC
    Inventors: Andres David Barbosa Neira, Roberto Fernandez Garcia, Michael James Hardy, Choon How Gan, Mark Anthony Gubbins, Florin Zavaliche, Tong Zhao, Martin Giles Blaber
  • Patent number: 10014016
    Abstract: A recording head has a primary waveguide core with an input end at an input surface of the recording head and extends to a near-field transducer at a media-facing surface of the recording head. A secondary waveguide core is separated from the primary waveguide core by a gap such that light is evanescently coupled from the primary waveguide core to the secondary waveguide core. The secondary waveguide core has first and second bends such that an output end of the secondary waveguide core is parallel to and separated from the primary waveguide core in a cross-track direction. A polarization rotator rotates a polarization of light in the secondary waveguide core such that polarization-rotated light exits the secondary waveguide core at the media-facing surface.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 3, 2018
    Assignee: Seagate Technology LLC
    Inventors: Reyad Mehfuz, Aidan Dominic Goggin, Kelly Elizabeth Hamilton, John Bernard McGurk, Choon How Gan
  • Patent number: 9997178
    Abstract: A thermally assisted magnetic recording head includes: a main pole that has a main pole end face at an air bearing surface opposing a magnetic recording medium and emits magnetic flux from the main pole end face; a waveguide that propagates laser light as propagation light and has a first waveguide section provided with an incidence end face on which the laser light is incident, a second waveguide section provided with a waveguide end face positioned close to the main pole end face on the air bearing surface, and a third waveguide section that connects the first waveguide section to the second waveguide section; a metal layer surrounds at least a portion of the first waveguide section, the entire circumference of the second waveguide section and at least a portion of the third waveguide section.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: June 12, 2018
    Assignee: TDK Corporation
    Inventors: Yuki Nishimura, Norikazu Ota
  • Patent number: 9978412
    Abstract: A slider is configured for heat-assisted magnetic recording and comprises an NFT and a transparent thermocouple configured to produce a signal indicative of temperature at the NFT. A detector can be coupled to the thermocouple and configured to detect one or both of spacing changes and contact between the slider and a magnetic recording medium.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: May 22, 2018
    Assignee: Seagate Technology LLC
    Inventors: Declan Macken, Patrick Carl Fletcher, Song Chen
  • Patent number: 9958769
    Abstract: A plasmon generator including a wide portion and a narrow portion is manufactured by etching an initial plasmon generator using an etching mask. The etching mask includes a first mask layer for defining the shape of one of the narrow portion and the wide portion, and a second mask layer for defining the shape of the other of the narrow portion and the wide portion. The etching mask is formed by forming a first hard mask, a second initial mask layer and a second hard mask in this order on a first initial mask layer, and etching the first and second initial mask layers by using the first and second hard masks.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: May 1, 2018
    Assignee: HEADWAY TECHNOLOGIES, INC.
    Inventors: Hironori Araki, Yoshitaka Sasaki, Hiroyuki Ito, Seiichiro Tomita, Shigeki Tanemura, Yukinori Ikegawa
  • Patent number: 9960570
    Abstract: A slider includes a slot waveguide configured to receive energy from an input surface. The slot waveguide has first and second high-index regions surrounding a middle region that extends along a light propagation direction. The middle region has a refractive index less than that of the first and second high index regions. A near-field transducer is at an output portion of the middle region at media-facing surface. The near-field transducer has first and second plates parallel to the media-facing surface with a gap therebetween. An active laser region has a front facet optically coupled to the input surface of the slider. A reflective back facet of the laser and the near-field transducer define a single optical resonator.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: May 1, 2018
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Aidan Dominic Goggin, Mark Anthony Gubbins, Michael James Hardy, Kelly Elizabeth Hamilton