Comparison With Radiation Reference Standard Patents (Class 374/129)
  • Patent number: 12078544
    Abstract: A temperature calibration method of an infrared thermal image camera and a calibration method of a temperature sensing system of an infrared thermal image camera are provided. The temperature calibration method of the infrared thermal image camera includes: providing a temperature sensing system to measure an object under test, so as to obtain an uncalibrated temperature; and calibrating the uncalibrated temperature to obtain a calibrated temperature, according to the uncalibrated temperature and a temperature calibration function. The temperature calibration function is obtained through a regression analysis.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: September 3, 2024
    Assignee: RADIANT INNOVATION INC.
    Inventors: Yung-Chang Chang, Chien-Wen Huang, Yi-Chun Tsai, Feng-Lien Huang
  • Patent number: 11927488
    Abstract: A thermal detection system is provided. The thermal detection system includes a thermal detector, an area indicating unit and a control unit. The thermal detector includes a thermal sensor array. The thermal detector is configured to detect thermal radiation within a detection area around the thermal detector. The detection area is defined by a field of view of the thermal sensor array. The area indicating unit is arranged to indicate a human-perceptible area according to the detection area. The human-perceptible area is located within the detection area and indicates a geometric form of the detection area. The control unit, coupled to the thermal detector and the area indicating unit, is configured to generate a thermal detection result according to the detected thermal radiation. The thermal detection system further includes a notification unit for overheat indication, a communication unit for wireless signal transmission, and a protection unit for overheat protection.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 12, 2024
    Inventor: Chia-Ling Chen
  • Patent number: 11877087
    Abstract: According to one aspect, a method for remote monitoring of electrical equipment includes acquiring a set of data points, each data point representing a temperature associated with a piece of electrical equipment or a component thereof, assigning each data point to one or more groups of data points, and defining an alarm metric for each group. Each group's alarm metric may be defined independently of other group's metrics. The defined alarm metrics are used to determine the health of the electrical equipment. The data may be determined from virtual probes within an infrared sensor and/or received from RFID devices containing temperature sensor, which are attached to or near the equipment to be monitored, for example. The methods described herein do not require conversion of sensor data into temperature values, and thus obviate the need for expensive sensors and/or computationally demanding conversion, compensation, and calibration routines.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: January 16, 2024
    Assignee: NeoGenesys, Inc.
    Inventor: Randall Douglas Thompson
  • Patent number: 11869243
    Abstract: The invention relates to a method for detecting the heating activity in objects or materials, based on thermal only or thermal and visual data images. The method is based on a physics-based model of the underlying heating phenomena within materials or objects, while taking into account disturbing factors of natural phenomena such as weather conditions and day and night cycle. The invention also relates to a corresponding system for detecting the heating activity in objects or materials.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: January 9, 2024
    Assignee: Araani NV
    Inventors: Maggy Baetens, Maarten Callens, Tom Verdonck
  • Patent number: 11845870
    Abstract: A device formation method may include printing a chalcogenide glass ink onto a surface to form a chalcogenide glass layer, where the chalcogenide glass ink comprises chalcogenide glass and a fluid medium. The method may further include sintering the chalcogenide glass layer at a first temperature for a first duration. The method may also include annealing the chalcogenide glass layer at a second temperature for a second duration. A device may include a substrate and a printed chalcogenide glass layer on the substrate, where the printed chalcogenide glass layer includes annealed chalcogenide glass, and where the printed chalcogenide glass layer is free from cracks.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: December 19, 2023
    Assignee: Boise State University
    Inventors: Maria Mitkova, Al-Amin Ahmed Simon, Shah Mohammad Rahmot Ullah, Bahareh Badamchi, Harish Subbaraman
  • Patent number: 11835389
    Abstract: A temperature measuring device and a temperature measuring method are provided. The temperature measuring device includes a processing module, a first image capturing module and a second image capturing module. The processing module calculates a second reference area, a third temperature measuring area and a fourth temperature measuring area of a second image information according to a first reference area, a first temperature measuring area and a second temperature measuring area of a first image information, respectively. The processing module obtains a first detected temperature value of a test subject in the third temperature measuring area.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: December 5, 2023
    Inventor: Ching-Feng Lee
  • Patent number: 11801672
    Abstract: Inspection devices and methods for inspecting an adhesive pattern on a substrate are disclosed. The inspection device includes at least one sensor having a heat sensor head for detecting a pattern of the adhesive bead, and a controller. Reference data representing a desired adhesive pattern is initially provided to a controller. A predetermined tolerance range for the desired adhesive pattern is also provided to the controller. An adhesive bead is discharged onto a substrate from a nozzle. A pattern of the discharged adhesive bead is then detected by the sensor when the substrate moves. Signals representing the detected pattern are received from the sensor at the controller. Finally, the signals representing the detected adhesive pattern are compared to the tolerance range of the desired adhesive pattern.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: October 31, 2023
    Assignee: Nordson Corporation
    Inventors: Eric Lingier, Alexander Wilhelm
  • Patent number: 11740134
    Abstract: A microbolometer for measuring thermal radiation comprises an electrical circuit on a perforated plastic substrate. The electrical circuit comprises at least one thermistor having a temperature dependent electric resistance, wherein the thermistor is arranged to receive the thermal radiation for changing its temperature depending on a flux of the received thermal radiation. The electrical circuit is configured to measure the electric resistance of the thermistor for calculating the thermal radiation. The microbolometer is configured to cause a gas flow through the perforations for improving thermal characteristics.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 29, 2023
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventor: Gerwin Hermanus Gelinck
  • Patent number: 11710292
    Abstract: Embodiments herein provide a method and system for real time ROI detection in thermal face images based on a heuristic approach. The ROI of the thermal images, once detected, is then further used to detect temperature of a subject corresponding to the ROI. Unlike state of the art techniques, the heuristic approach is computationally less intensive and provides fast and accurate ROI detection even in case of occluded faces in a crowd with a single thermal image having a plurality of subject being scanned. The heuristics applied does not focus on face detection but directly on point of interest detection. Once the point of interest (ROI) is detected, it may be used for plurality of applications such as subject tracking and the like, not limited to subject or object temperature sensing since the method disclosed herein is easily implementable on low power devices.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: July 25, 2023
    Assignee: Tata Consultancy Services Limited
    Inventors: Swapna Agarwal, Sujit Shinde, Dibyanshu Jaiswal, Avik Ghose, Sanjay Kimbahune
  • Patent number: 11555743
    Abstract: A method comprises capturing outputs of a VLC and an infrared array sensor (IAS). A memory includes a calibration based on a position of a laser pointer relative to the IAS. The method includes the laser pointer outputting a light beam to produce a laser dot on a target. The output of the VLC includes a representation of the laser dot. The output of the IAS includes values indicative of infrared radiation from the target. The method includes determining a temperature based on a portion of the values indicative of infrared radiation from the target. The portion of the values includes values associated with a portion of the target at which the laser dot is produced. The method includes displaying, on the display, the output of the VLC and the temperature. Displaying the output of the VLC includes displaying a visible light image showing the laser dot and at least a portion of the target.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: January 17, 2023
    Assignee: Snap-on Incorporated
    Inventors: Timothy G. Ruther, Gary F. Stefanik, Robert Hoevenaar
  • Patent number: 11521422
    Abstract: A method and device for detecting a body temperature, electronic apparatus and storage medium are provided, which relate to the field of infrared temperature measurement. The method includes: performing face recognition on an optical static image, to determine at least one face image in the optical static image and coordinates of the face image; performing coordinate transformation on a thermal imaging static image and/or the optical static image, to determine thermal imaging information of the face image, wherein the optical static image and the thermal imaging static image include a same image acquisition target with a same face; and determining a body temperature corresponding to the face image, according to the thermal imaging information of the face image. in the embodiment of the present application, efficiency of body temperature detection in public places can be improved and cross infection can be prevented.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: December 6, 2022
    Assignee: Baidu Online Network Technology (Beijing) Co., Ltd.
    Inventors: Shupeng Gao, Jie Ma, Yuhang Liu
  • Patent number: 11378458
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor regulatory limitations on operation of the infrared imaging system and adjust and/or disable operation of the infrared imaging systems accordingly.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 5, 2022
    Assignee: Teledyne FLIR, LLC
    Inventors: Jeffrey D. Frank, Michael Kent, Anna-Karin Lindblom, Lei Bennett, Andrew C. Teich
  • Patent number: 11292079
    Abstract: Apparatus and methods for measuring the temperature of a substrate are disclosed. The apparatus includes a source of temperature-indicating radiation, a detector for the temperature-indicating radiation, and a decorrelator disposed in an optical path between the source of temperature-indicating radiation and the detector for the temperature-indicating radiation. The decorrelator may be a broadband amplifier and/or a mode scrambler. A broadband amplifier may be a broadband laser, Bragg grating, a fiber Bragg grating, a Raman amplifier, a Brillouin amplifier, or combinations thereof. The decorrelator is selected to emit radiation that is transmitted, at least in part, by the substrate being monitored. The source is matched to the decorrelator such that the emission spectrum of the source is within the gain bandwidth of the decorrelator, if the decorrelator is a gain-driven device.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: April 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jiping Li, Aaron Muir Hunter, Thomas Haw
  • Patent number: 11268860
    Abstract: Methods and apparatus for sensor calibration of a system having an aperture, primary mirror, secondary mirror, and a sensor, such as an FPA IR sensor. A calibration system includes calibration energy sources with a movable first mirror configured to be selectively inserted into the optical path and select one of the calibration energy sources and a second mirror configured to image the selected calibration energy source.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: March 8, 2022
    Assignee: Raytheon Company
    Inventor: Lacy G. Cook
  • Patent number: 11077684
    Abstract: A thermal printer, includes a head unit including a thermal head configured to perform printing on a recording sheet; a platen unit, which includes a platen roller configured to convey the recording sheet, and is separably combined with the head unit; a printer main body, which has a recording-sheet receiving portion configured to receive the recording sheet, and has the head unit mounted thereto; a printer cover, which has the platen unit mounted thereto, and is coupled to the printer main body so as to be pivotable; and a separator, which is provided in the recording-sheet receiving portion, and is configured to separate parts of the recording sheet, which is rolled into a roll shape around a core body, folded on each other at a rolling start portion, which is rolled around the core body and has a turn-back shape.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: August 3, 2021
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Kouji Kawaguchi, Shinichi Sudo, Takumi Seino
  • Patent number: 10746604
    Abstract: An apparatus for measuring temperature of turbine blades, including: a radiation collection device, a data processing module; a master control unit (MCU); a calibration module; and a motion servo. The radiation collection device includes a scan reflector, a collimator lens, a first dichroic mirror, a first focus lens, a visible and near-infrared (VNIR) detector, a second dichroic mirror, a second focus lens, a short-wave infrared (SWIR) detector, a third focus lens, and a medium-wave infrared (MWIR) detector. The calibration module includes a calibration reflection mirror and a blackbody furnace. The scan reflector, the collimator lens, the first dichroic mirror, the second dichroic mirror, the third focus lens, and the MWIR detector are disposed successively along a first optical axis; the first dichroic mirror, the first focus lens, and the VNIR detector are disposed successively along a second optical axis that is perpendicular to the first optical axis.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 18, 2020
    Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
    Inventors: Chao Wang, Zezhan Zhang, Fei Wang, Chengui Zhang, Jun Hu, Yang Yang, Jing Jiang, Hongchuan Jiang, Yueming Wang, Yuhua Cheng, Jiexiong Ding, Li Du, Houjun Wang
  • Patent number: 10690568
    Abstract: An optical fiber temperature distribution measurement system includes a temperature difference calculator configured to calculate a temperature difference between corresponding spatial resolution zones based on a first temperature distribution obtained by a return light from a first optical fiber part and a second temperature distribution obtained by a return light from a second optical fiber part, and an abnormality detector configured to calculate a temperature difference for evaluation for each spatial resolution zone, the temperature difference for evaluation being a sum of a temperature difference of each spatial resolution zone and a temperature difference of a spatial resolution zone adjacent thereto, and to determine that an abnormality has occurred in a roller near the spatial resolution zone when the calculated temperature difference for evaluation exceeds a reference value.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: June 23, 2020
    Assignee: Yokogawa Electric Corporation
    Inventor: Hideo Shida
  • Patent number: 9810588
    Abstract: An optical fiber temperature sensor implements a temperature monitoring function in an interphase insulating material between sandwich bus bars. The optical fiber temperature sensor is formed by housing an optical fiber cable in a housing formed from an ultra-thin sheet made from an insulating material having insulation quality equal to or higher than interphase insulating material between sandwich bus bars. Multiple ultra-thin columnar members, each made from same material as is housing, are housed in multiple locations in housing. Multiple sensor rings are each formed by unfixedly winding a portion of optical fiber cable with a length equal to or longer than that corresponding to range resolution around corresponding one of ultra-thin columnar members. The multiple sensor rings measure temperatures in multiple locations. Silicone sealing is applied to housing side surfaces. All surfaces of housing are sealed with a hermetic sealing member made from a silicone-based liquid insulating material.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 7, 2017
    Assignees: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION, KITASHIBA ELECTRIC CO., LTD.
    Inventors: Eiji Hashimoto, Koji Dojo, Takeshi Obata
  • Patent number: 9541459
    Abstract: An optical fiber temperature distribution measurement device configured to receive Raman back scattering lights obtained by inputting a pulsed light into an optical fiber and to measure a temperature distribution along a longitudinal direction of the optical fiber is provided. The device includes a first filter device.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 10, 2017
    Assignee: YOKOGAWA ELECTRIC CORPORATION
    Inventor: Hideo Shida
  • Patent number: 9404813
    Abstract: A temperature probe includes a shaft having a distal end, a proximal end, and a tip disposed at the distal end. The probe also includes an infrared sensor configured to measure a temperature of a structure disposed proximate the shaft. The probe further includes a temperature sensor disposed distal to the infrared sensor. The temperature sensor is configured to measure a body cavity temperature of a patient.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: August 2, 2016
    Assignee: WELCH ALLYN, INC.
    Inventors: Matthew J. Kinsley, David E. Quinn, John A. Lane, Michael J. Anson
  • Patent number: 9039276
    Abstract: A control unit sets a time interval for measuring a temperature of a liquid crystal panel as a first time interval (1 second), and thereafter measures the temperature of the liquid crystal panel each time the first time interval elapses. When the temperature of the liquid crystal panel is stabilized, the control unit sets a time interval for measuring the temperature of the liquid crystal panel as a second time interval (5 seconds). The control unit measures the temperature of the liquid crystal panel each time the second time interval elapses. Moreover, if an operation to change the amount of light reaching the liquid crystal panel is performed, the control unit restores the time interval for measuring the temperature of the liquid crystal panel to the first time interval.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: May 26, 2015
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Shinsuke Fujikawa
  • Publication number: 20150139273
    Abstract: Apparatus for use in the measurement of the API gravity of crude oil, comprises a conduit (1)for the oil, a thermo-couple (4) in the conduit for measuring temperature of the oil in contact therewith, a sapphire window (3) in the conduit, an infrared thermometer (5,6) for the measurement of the temperature of the oil through the window, and means (20) for comparing the measurements of temperature made by the thermometers to obtain a measure of the emissivity of the crude oil and thereby its API gravity.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 21, 2015
    Inventors: Philip Michael Bagley, Robin Slater
  • Patent number: 9022645
    Abstract: A plasma processing apparatus and a temperature measuring method that may measure a temperature of an object in a processing chamber by a low-coherence interferometer without forming a hole in a holding stage or an upper electrode of the plasma processing apparatus, thereby performing a plasma process of a substrate with high precision and uniformity. The plasma processing apparatus is implemented by disposing a light source collimator outside of a light source window, disposing a light-receiving collimator outside of a light-receiving window, allowing a measurement light emitted from the light source collimator to pass through the light source window to be obliquely emitted to a surface of the object to be measured, and allowing the reflected measurement light to pass through the light-receiving window to be incident on the light-receiving collimator. The temperature of the object in the processing chamber may be measured by the low-coherence interferometer.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 5, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Tatsuo Matsudo
  • Patent number: 8985848
    Abstract: The method and apparatus to automatically inspect or pre-screen the Equipment of passing CMVs employs the novel application of acquiring, processing and analyzing the temperature data from areas of interest on passing wheels using a computer based imaging system to improve the efficiency of current CMV inspecting and/or pre-screening manual methods that require an inspection system operator. The inspection system includes a triggering device, thermographic camera(s), computer based image acquisition hardware, image processing and analysis software, user interface and operator workspace (herein referred to as the “Inspection System”). The components of the apparatus are not limited to the list above nor are all components required to embody the method for inspection or pre-screening of equipment of passing CMVs. The method is a means of collecting the thermal information of the Equipment as it passes through an Inspection Area and analyzing it to determine or estimate its condition or fitness.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: March 24, 2015
    Assignee: BDC Capital Inc.
    Inventors: Brian Heath, Tse Young (Fred) Ko, Gurcharn Lotey
  • Patent number: 8967860
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for measuring, calibrating, and controlling substrate temperature during low temperature and high temperature processing.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventor: Kailash Kiran Patalay
  • Publication number: 20140286375
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun ABE, Tatsuo MATSUDO, Chishio KOSHIMIZU
  • Patent number: 8825434
    Abstract: A temperature measuring method includes: transmitting a light to a measurement point of an object to be measured, the object being a substrate on which a thin film is formed; measuring a first interference wave caused by a reflected light from a surface of the substrate, and a second interference wave caused by reflected lights from an interface between the substrate and the thin film and from a rear surface of the thin film; calculating an optical path length from the first interference wave to the second interference wave; calculating a film thickness of the thin film; calculating an optical path difference between an optical path length of the substrate and the calculated optical path length; compensating for the optical path length from the first interference wave to the second interference wave; and calculating a temperature of the object at the measurement point.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 2, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Jun Yamawaku, Tatsuo Matsudo
  • Patent number: 8814427
    Abstract: An optical measurement instrument includes one or more temperature sensors (122) arranged to measure sample well specific temperatures from sample wells (111-117) arranged to store samples (103-109) to be optically measured. A processing device (121) of the optical measurement instrument is arranged to correct, using a pre-determined mathematical rule, measurement results obtained by the optical measurements on the basis of the measured sample well specific temperatures. Hence, the adverse effect caused by temperature differences between different samples on the accuracy of the temperature correction of the measurement results is mitigated.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 26, 2014
    Assignee: Wallac Oy
    Inventors: Jyrki Laitinen, Markku Ojala
  • Patent number: 8764288
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: July 1, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8727613
    Abstract: A dual parameter sensor for sensing temperature and mechanical or chemical or related information is disclosed. The sensor is formed of an optical waveguide suitable for use in-situ in a high temperature environment having a Bragg grating written into a core region thereof with short-pulsed electromagnetic radiation. By noting the thermal Black Body radiation level above 650° C., wavelength shifts due to temperature can be decoupled from wavelength shifts due to the other parameter being sensed. Advantageously the thermal radiation can be used as an optical source to probe the Bragg grating, considerably simplifying the interrogating apparatus, removing the need for an extrinsic optical source to probe the sensor.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: May 20, 2014
    Assignee: National Research Council of Canada
    Inventor: Stephen J. Mihailov
  • Patent number: 8682417
    Abstract: Methods for detection of heat-related symptoms can include use of a thermal sensor to obtain thermal data. Subsets of the thermal data can correspond with multiple subjects. The subsets can be compared to determine whether any of the subjects is a thermal outlier relative to the remaining subjects.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 25, 2014
    Assignee: Intermountain Invention Management, LLC
    Inventor: Glen Forrest Huff
  • Patent number: 8657489
    Abstract: An embodiment method for power switch temperature control comprises monitoring a power transistor for a delta-temperature fault, and monitoring the power transistor for an over-temperature fault. If a delta-temperature fault is detected, then the power transistor is commanded to turn off. If an over-temperature fault is detected, then the power transistor is commanded to turn off, and delta-temperature hysteresis cycling is disabled.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 25, 2014
    Assignee: Infineon Technologies AG
    Inventors: Markus Ladurner, Robert Illing, Paolo Del Croce, Bernhard Auer
  • Patent number: 8585284
    Abstract: A temperature measurement apparatus includes a light source; a first splitter that splits a light beam into a measurement beam and a reference beam; a reference beam reflector that reflects the reference beam; an optical path length adjustor; a second splitter that splits the reflected reference beam into a first reflected reference beam and a second reflected reference beam; a first photodetector that measures an interference between the first reflected reference beam and a reflected measurement beam obtained by the measurement beam reflected from a target object; a second photodetector that measures an intensity of the second reflected reference beam; and a temperature calculation unit. The temperature calculation unit calculates a location of the interference by subtracting an output signal of the second photodetector from an output signal of the first photodetector, and calculates a temperature of the target object from the calculated location of the interference.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8573836
    Abstract: An apparatus evaluates a substrate mounting device adapted to hold a target substrate placed on a mounting surface and to control a temperature of the target substrate. The apparatus includes an evacuatable airtightly sealed chamber accommodating therein the substrate mounting device, a heat source, arranged in a facing relationship with the mounting surface, for irradiating infrared light. The apparatus further includes an evaluation-purpose substrate adapted to be mounted on the mounting surface in place of the target substrate, the evaluation-purpose substrate being made of an infrared light absorbing material, and having a unit for measuring temperatures at plural sites on a surface and/or inside of the substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yasuharu Sasaki, Takehiro Ueda, Taketoshi Okajo, Kaoru Oohashi
  • Patent number: 8568023
    Abstract: A measuring apparatus for an ear thermometer includes a battery, a mode switching circuit and a microcontroller, and the microcontroller, during a run mode or a normal operating state, does not pass battery current to the mode switching circuit in order that the insertion of the mode switching circuit causes no substantial change in power consumption so as to suppress a power consumption of the apparatus and extend the power of the battery.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 29, 2013
    Assignee: Bio Echo Net inc
    Inventor: Hideki Tanaka
  • Patent number: 8529123
    Abstract: A device for calibrating a fiber-optic temperature measuring system has a broadband light source, a coupling-in device, which can couple light generated by the light source for calibration into an optical fiber of the temperature measuring system, a coupling-out device, which can couple components of the light source-generated light that are backscattered in the optical fiber out of the optical fiber. An evaluation device performs a calibration of the temperature measuring system on the basis of the backscattered components of the light.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: September 10, 2013
    Assignee: Lios Technology, GmbH
    Inventors: Wieland Hill, Martin Fromme, Jochen Kübler
  • Publication number: 20130230074
    Abstract: Disclosed is a device and method for measuring temperature with infrared array sensor. This device includes: an infrared array sensor module to take thermal picture information of a subject, including a plurality of infrared sensors arranged in an array of pixels; an on-screen display module to generate an indicator having a profile corresponding to an entire or local shape of the subject and defining a target point to be measured for temperature; a display module to express the indicator and the thermal picture information; and a controller to enable the infrared array sensor module to measure the subject's temperature if the target point displayed by the thermal picture information overlaps with the indicator while the thermal picture information is expressed on the display module along with the indicator.
    Type: Application
    Filed: November 16, 2011
    Publication date: September 5, 2013
    Applicant: EASYTEM CO., LTD.
    Inventor: Jae-Woo Shin
  • Patent number: 8523427
    Abstract: A sensor device formed on a semiconductor substrate. The device comprises a thermal radiation sensor including a sensing cell and a referencing cell which are co-operable for providing a first output signal indicative of the temperature fluctuation resulting from incident radiation. A gradient sensor including a pair of cells spatially located on the semiconductor substrate is provided which are co-operable to provide a second output signal indicative of the temperature gradient across the semiconductor substrate for facilitating calibrating the first output signal. At least one of the cells of the gradient sensor is not common to the cells of the thermal radiation sensor.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: September 3, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Luke Alexander Pillans
  • Patent number: 8465202
    Abstract: A microstructured sensor for detecting IR radiation includes: one measuring channel having a measuring diaphragm, on which a first sensitive detector surface is implemented for the absorption of a first IR radiation; and one reference channel having a reference diaphragm, on which a second sensitive detector surface is implemented for the absorption of a second IR radiation. A measuring structure, e.g., a thermopile measuring structure as a series circuit made of thermocouple pairs, is implemented between the measuring diaphragm and the reference diaphragm for measuring a temperature differential between the measuring diaphragm and the reference diaphragm. First and second thermal contacts lie alternately on the two diaphragms.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 18, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Udo Kaess, Christian Lemier, Markus Niemann
  • Patent number: 8356934
    Abstract: A surrogate temperature sensor (52) for a convection cooled radiant heater system is described. The surrogate temperature sensor has an internal controllable heater (62) and a sensing device such as a thermocouple (64). The surrogate temperature sensor is paired with a furnace/dryer radiant heat source (38). The surrogate's internal heater provides sufficient power to heat the surrogate to the same temperature as the radiant heater. At least one surrogate temperature sensor (52) is positioned to be exposed to the cooling media in a manner similar to the radiant heat source. The surrogate sensor reports its temperature which is indicative of the radiant heater temperature to the cooling controller. The controller responds to this signal and adjusts cooling to maintain the radiant heater at its desired temperature.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: January 22, 2013
    Inventor: Paul Allen Howard
  • Publication number: 20120224603
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 6, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun ABE, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8192077
    Abstract: A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 5, 2012
    Assignee: Siemens Energy, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 8182142
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: May 22, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8177421
    Abstract: Infrared IR thermometer calibration systems and methods are disclosed in which the temperature of an IR thermometer calibration system is controlled such that radiation emitted by a target at a given input temperature is equal to the radiation emitted by a graybody heated to the input temperature and having an emissivity equal to an emissivity setting of an IR thermometer to be calibrated using the IR thermometer calibration system.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: May 15, 2012
    Assignee: Fluke Corporation
    Inventor: Frank E. Liebmann
  • Patent number: 8157439
    Abstract: Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: April 17, 2012
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 8123401
    Abstract: A probe cover for an infrared electronic thermometer including a generally tubular body having open first and second ends. The body is sized and shaped to receive a probe of the infrared electronic thermometer into the body through the first end. The probe cover further includes a film closing the second end of the body. The film has a metallic region defining a blackbody portion for rapidly equilibrating to a temperature corresponding to the temperature of an object for viewing by a sensor of the electronic thermometer to measure the temperature of the object.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: February 28, 2012
    Assignee: Covidien AG
    Inventor: Jeffrey E. Price
  • Patent number: 8104951
    Abstract: Methods and apparatus for measuring substrate uniformity is provided. The invention includes placing a substrate in a thermal processing chamber, rotating the substrate while the substrate is heated, measuring a temperature of the substrate at a plurality of radial locations as the substrate rotates, correlating each temperature measurement with a location on the substrate, and generating a temperature contour map for the substrate based on the correlated temperature measurements. Numerous other aspects are provided.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Aderhold, Andreas G. Hegedus, Nir Merry
  • Publication number: 20110235918
    Abstract: In a temperature measuring device (1) an IR-radiation detector (2) and a reference element (3) are provided, connected to a surface (6) of an object (7) in a heat-conducting fashion, with a first area (4) with high emissivity and a second area (5) with high reflectivity formed at the reference element (3), and the IR-radiation detector (2) is equipped for a separate detection of IR-radiation (9, 10, 11) from the first and second areas (4, 5) and a surface area (12) of the object (7). A computer (13) in the IR-radiation detector (2) is equipped to deduct a temperature measurement for the object (7), corrected for emissions and reflections from the detected IR-radiations (9, 10, 11).
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: TESTO AG
    Inventors: Martin Stratmann, Sabine Hinkel, Daniel Auer, Patrick Zahn, Andreas Messerschmid
  • Patent number: 7965054
    Abstract: A vacuum pump capable of accurately detecting a rotor temperature based on a change in permeability of a magnetic material. Two targets are fixed to a nut opposed to a gap sensor. The nut is made of pure iron, and a surface of the nut opposed to the gap sensor serves as a target. The target has a Curie temperature greater than a temperature monitoring range, and each of the targets has a Curie temperature falling within the temperature monitoring range. When the targets become opposed to the gap sensor in turn according to rotation of a rotor, three types of signals are output from the gap sensor. The difference-signal generation means generates a difference signal of each the targets, on the basis of a signal of the target. The difference signal is compared with a reference signal V0 for detecting the Curie temperatures to detect a rotor temperature.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: June 21, 2011
    Assignee: Shimadzu Corporation
    Inventors: Yoshio Tsunazawa, Akira Arakawa, Junichiro Kozaki, Masaki Ohfuji
  • Patent number: 7928393
    Abstract: A method of correlating thermal sensors data with temperature sensor data is disclosed. The method may include generating one or more temperature sensor data points and receiving the one or more temperature sensor data points at a remote location. The method may also include generating one or more thermal sensor data points or images and receiving the one or more thermal sensor data points or images at the remote location. Additionally, the method may include correlating the one or more thermal sensor data points or images based on the one or more temperature sensor data points and generating a notification when a temperature of one or more correlated thermal sensor data points or images fails to maintain a determined relationship with a preset limit in one or more locations other than the location of one or more temperature sensor data point.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 19, 2011
    Assignee: Solar Turbines Inc.
    Inventors: Kevin C. Brady, Michael Seskin, Anthony J. Grichnik