Comparison With Radiation Reference Standard Patents (Class 374/129)
  • Patent number: 9810588
    Abstract: An optical fiber temperature sensor implements a temperature monitoring function in an interphase insulating material between sandwich bus bars. The optical fiber temperature sensor is formed by housing an optical fiber cable in a housing formed from an ultra-thin sheet made from an insulating material having insulation quality equal to or higher than interphase insulating material between sandwich bus bars. Multiple ultra-thin columnar members, each made from same material as is housing, are housed in multiple locations in housing. Multiple sensor rings are each formed by unfixedly winding a portion of optical fiber cable with a length equal to or longer than that corresponding to range resolution around corresponding one of ultra-thin columnar members. The multiple sensor rings measure temperatures in multiple locations. Silicone sealing is applied to housing side surfaces. All surfaces of housing are sealed with a hermetic sealing member made from a silicone-based liquid insulating material.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 7, 2017
    Assignees: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION, KITASHIBA ELECTRIC CO., LTD.
    Inventors: Eiji Hashimoto, Koji Dojo, Takeshi Obata
  • Patent number: 9541459
    Abstract: An optical fiber temperature distribution measurement device configured to receive Raman back scattering lights obtained by inputting a pulsed light into an optical fiber and to measure a temperature distribution along a longitudinal direction of the optical fiber is provided. The device includes a first filter device.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 10, 2017
    Assignee: YOKOGAWA ELECTRIC CORPORATION
    Inventor: Hideo Shida
  • Patent number: 9404813
    Abstract: A temperature probe includes a shaft having a distal end, a proximal end, and a tip disposed at the distal end. The probe also includes an infrared sensor configured to measure a temperature of a structure disposed proximate the shaft. The probe further includes a temperature sensor disposed distal to the infrared sensor. The temperature sensor is configured to measure a body cavity temperature of a patient.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: August 2, 2016
    Assignee: WELCH ALLYN, INC.
    Inventors: Matthew J. Kinsley, David E. Quinn, John A. Lane, Michael J. Anson
  • Patent number: 9039276
    Abstract: A control unit sets a time interval for measuring a temperature of a liquid crystal panel as a first time interval (1 second), and thereafter measures the temperature of the liquid crystal panel each time the first time interval elapses. When the temperature of the liquid crystal panel is stabilized, the control unit sets a time interval for measuring the temperature of the liquid crystal panel as a second time interval (5 seconds). The control unit measures the temperature of the liquid crystal panel each time the second time interval elapses. Moreover, if an operation to change the amount of light reaching the liquid crystal panel is performed, the control unit restores the time interval for measuring the temperature of the liquid crystal panel to the first time interval.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: May 26, 2015
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Shinsuke Fujikawa
  • Publication number: 20150139273
    Abstract: Apparatus for use in the measurement of the API gravity of crude oil, comprises a conduit (1)for the oil, a thermo-couple (4) in the conduit for measuring temperature of the oil in contact therewith, a sapphire window (3) in the conduit, an infrared thermometer (5,6) for the measurement of the temperature of the oil through the window, and means (20) for comparing the measurements of temperature made by the thermometers to obtain a measure of the emissivity of the crude oil and thereby its API gravity.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 21, 2015
    Inventors: Philip Michael Bagley, Robin Slater
  • Patent number: 9022645
    Abstract: A plasma processing apparatus and a temperature measuring method that may measure a temperature of an object in a processing chamber by a low-coherence interferometer without forming a hole in a holding stage or an upper electrode of the plasma processing apparatus, thereby performing a plasma process of a substrate with high precision and uniformity. The plasma processing apparatus is implemented by disposing a light source collimator outside of a light source window, disposing a light-receiving collimator outside of a light-receiving window, allowing a measurement light emitted from the light source collimator to pass through the light source window to be obliquely emitted to a surface of the object to be measured, and allowing the reflected measurement light to pass through the light-receiving window to be incident on the light-receiving collimator. The temperature of the object in the processing chamber may be measured by the low-coherence interferometer.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 5, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Tatsuo Matsudo
  • Patent number: 8985848
    Abstract: The method and apparatus to automatically inspect or pre-screen the Equipment of passing CMVs employs the novel application of acquiring, processing and analyzing the temperature data from areas of interest on passing wheels using a computer based imaging system to improve the efficiency of current CMV inspecting and/or pre-screening manual methods that require an inspection system operator. The inspection system includes a triggering device, thermographic camera(s), computer based image acquisition hardware, image processing and analysis software, user interface and operator workspace (herein referred to as the “Inspection System”). The components of the apparatus are not limited to the list above nor are all components required to embody the method for inspection or pre-screening of equipment of passing CMVs. The method is a means of collecting the thermal information of the Equipment as it passes through an Inspection Area and analyzing it to determine or estimate its condition or fitness.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: March 24, 2015
    Assignee: BDC Capital Inc.
    Inventors: Brian Heath, Tse Young (Fred) Ko, Gurcharn Lotey
  • Patent number: 8967860
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for measuring, calibrating, and controlling substrate temperature during low temperature and high temperature processing.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventor: Kailash Kiran Patalay
  • Publication number: 20140286375
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun ABE, Tatsuo MATSUDO, Chishio KOSHIMIZU
  • Patent number: 8825434
    Abstract: A temperature measuring method includes: transmitting a light to a measurement point of an object to be measured, the object being a substrate on which a thin film is formed; measuring a first interference wave caused by a reflected light from a surface of the substrate, and a second interference wave caused by reflected lights from an interface between the substrate and the thin film and from a rear surface of the thin film; calculating an optical path length from the first interference wave to the second interference wave; calculating a film thickness of the thin film; calculating an optical path difference between an optical path length of the substrate and the calculated optical path length; compensating for the optical path length from the first interference wave to the second interference wave; and calculating a temperature of the object at the measurement point.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 2, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Jun Yamawaku, Tatsuo Matsudo
  • Patent number: 8814427
    Abstract: An optical measurement instrument includes one or more temperature sensors (122) arranged to measure sample well specific temperatures from sample wells (111-117) arranged to store samples (103-109) to be optically measured. A processing device (121) of the optical measurement instrument is arranged to correct, using a pre-determined mathematical rule, measurement results obtained by the optical measurements on the basis of the measured sample well specific temperatures. Hence, the adverse effect caused by temperature differences between different samples on the accuracy of the temperature correction of the measurement results is mitigated.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 26, 2014
    Assignee: Wallac Oy
    Inventors: Jyrki Laitinen, Markku Ojala
  • Patent number: 8764288
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: July 1, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8727613
    Abstract: A dual parameter sensor for sensing temperature and mechanical or chemical or related information is disclosed. The sensor is formed of an optical waveguide suitable for use in-situ in a high temperature environment having a Bragg grating written into a core region thereof with short-pulsed electromagnetic radiation. By noting the thermal Black Body radiation level above 650° C., wavelength shifts due to temperature can be decoupled from wavelength shifts due to the other parameter being sensed. Advantageously the thermal radiation can be used as an optical source to probe the Bragg grating, considerably simplifying the interrogating apparatus, removing the need for an extrinsic optical source to probe the sensor.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: May 20, 2014
    Assignee: National Research Council of Canada
    Inventor: Stephen J. Mihailov
  • Patent number: 8682417
    Abstract: Methods for detection of heat-related symptoms can include use of a thermal sensor to obtain thermal data. Subsets of the thermal data can correspond with multiple subjects. The subsets can be compared to determine whether any of the subjects is a thermal outlier relative to the remaining subjects.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 25, 2014
    Assignee: Intermountain Invention Management, LLC
    Inventor: Glen Forrest Huff
  • Patent number: 8657489
    Abstract: An embodiment method for power switch temperature control comprises monitoring a power transistor for a delta-temperature fault, and monitoring the power transistor for an over-temperature fault. If a delta-temperature fault is detected, then the power transistor is commanded to turn off. If an over-temperature fault is detected, then the power transistor is commanded to turn off, and delta-temperature hysteresis cycling is disabled.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 25, 2014
    Assignee: Infineon Technologies AG
    Inventors: Markus Ladurner, Robert Illing, Paolo Del Croce, Bernhard Auer
  • Patent number: 8585284
    Abstract: A temperature measurement apparatus includes a light source; a first splitter that splits a light beam into a measurement beam and a reference beam; a reference beam reflector that reflects the reference beam; an optical path length adjustor; a second splitter that splits the reflected reference beam into a first reflected reference beam and a second reflected reference beam; a first photodetector that measures an interference between the first reflected reference beam and a reflected measurement beam obtained by the measurement beam reflected from a target object; a second photodetector that measures an intensity of the second reflected reference beam; and a temperature calculation unit. The temperature calculation unit calculates a location of the interference by subtracting an output signal of the second photodetector from an output signal of the first photodetector, and calculates a temperature of the target object from the calculated location of the interference.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8573836
    Abstract: An apparatus evaluates a substrate mounting device adapted to hold a target substrate placed on a mounting surface and to control a temperature of the target substrate. The apparatus includes an evacuatable airtightly sealed chamber accommodating therein the substrate mounting device, a heat source, arranged in a facing relationship with the mounting surface, for irradiating infrared light. The apparatus further includes an evaluation-purpose substrate adapted to be mounted on the mounting surface in place of the target substrate, the evaluation-purpose substrate being made of an infrared light absorbing material, and having a unit for measuring temperatures at plural sites on a surface and/or inside of the substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yasuharu Sasaki, Takehiro Ueda, Taketoshi Okajo, Kaoru Oohashi
  • Patent number: 8568023
    Abstract: A measuring apparatus for an ear thermometer includes a battery, a mode switching circuit and a microcontroller, and the microcontroller, during a run mode or a normal operating state, does not pass battery current to the mode switching circuit in order that the insertion of the mode switching circuit causes no substantial change in power consumption so as to suppress a power consumption of the apparatus and extend the power of the battery.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 29, 2013
    Assignee: Bio Echo Net inc
    Inventor: Hideki Tanaka
  • Patent number: 8529123
    Abstract: A device for calibrating a fiber-optic temperature measuring system has a broadband light source, a coupling-in device, which can couple light generated by the light source for calibration into an optical fiber of the temperature measuring system, a coupling-out device, which can couple components of the light source-generated light that are backscattered in the optical fiber out of the optical fiber. An evaluation device performs a calibration of the temperature measuring system on the basis of the backscattered components of the light.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: September 10, 2013
    Assignee: Lios Technology, GmbH
    Inventors: Wieland Hill, Martin Fromme, Jochen Kübler
  • Publication number: 20130230074
    Abstract: Disclosed is a device and method for measuring temperature with infrared array sensor. This device includes: an infrared array sensor module to take thermal picture information of a subject, including a plurality of infrared sensors arranged in an array of pixels; an on-screen display module to generate an indicator having a profile corresponding to an entire or local shape of the subject and defining a target point to be measured for temperature; a display module to express the indicator and the thermal picture information; and a controller to enable the infrared array sensor module to measure the subject's temperature if the target point displayed by the thermal picture information overlaps with the indicator while the thermal picture information is expressed on the display module along with the indicator.
    Type: Application
    Filed: November 16, 2011
    Publication date: September 5, 2013
    Applicant: EASYTEM CO., LTD.
    Inventor: Jae-Woo Shin
  • Patent number: 8523427
    Abstract: A sensor device formed on a semiconductor substrate. The device comprises a thermal radiation sensor including a sensing cell and a referencing cell which are co-operable for providing a first output signal indicative of the temperature fluctuation resulting from incident radiation. A gradient sensor including a pair of cells spatially located on the semiconductor substrate is provided which are co-operable to provide a second output signal indicative of the temperature gradient across the semiconductor substrate for facilitating calibrating the first output signal. At least one of the cells of the gradient sensor is not common to the cells of the thermal radiation sensor.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: September 3, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Luke Alexander Pillans
  • Patent number: 8465202
    Abstract: A microstructured sensor for detecting IR radiation includes: one measuring channel having a measuring diaphragm, on which a first sensitive detector surface is implemented for the absorption of a first IR radiation; and one reference channel having a reference diaphragm, on which a second sensitive detector surface is implemented for the absorption of a second IR radiation. A measuring structure, e.g., a thermopile measuring structure as a series circuit made of thermocouple pairs, is implemented between the measuring diaphragm and the reference diaphragm for measuring a temperature differential between the measuring diaphragm and the reference diaphragm. First and second thermal contacts lie alternately on the two diaphragms.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 18, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Udo Kaess, Christian Lemier, Markus Niemann
  • Patent number: 8356934
    Abstract: A surrogate temperature sensor (52) for a convection cooled radiant heater system is described. The surrogate temperature sensor has an internal controllable heater (62) and a sensing device such as a thermocouple (64). The surrogate temperature sensor is paired with a furnace/dryer radiant heat source (38). The surrogate's internal heater provides sufficient power to heat the surrogate to the same temperature as the radiant heater. At least one surrogate temperature sensor (52) is positioned to be exposed to the cooling media in a manner similar to the radiant heat source. The surrogate sensor reports its temperature which is indicative of the radiant heater temperature to the cooling controller. The controller responds to this signal and adjusts cooling to maintain the radiant heater at its desired temperature.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: January 22, 2013
    Inventor: Paul Allen Howard
  • Publication number: 20120224603
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 6, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun ABE, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8192077
    Abstract: A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 5, 2012
    Assignee: Siemens Energy, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 8182142
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: May 22, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 8177421
    Abstract: Infrared IR thermometer calibration systems and methods are disclosed in which the temperature of an IR thermometer calibration system is controlled such that radiation emitted by a target at a given input temperature is equal to the radiation emitted by a graybody heated to the input temperature and having an emissivity equal to an emissivity setting of an IR thermometer to be calibrated using the IR thermometer calibration system.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: May 15, 2012
    Assignee: Fluke Corporation
    Inventor: Frank E. Liebmann
  • Patent number: 8157439
    Abstract: Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: April 17, 2012
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 8123401
    Abstract: A probe cover for an infrared electronic thermometer including a generally tubular body having open first and second ends. The body is sized and shaped to receive a probe of the infrared electronic thermometer into the body through the first end. The probe cover further includes a film closing the second end of the body. The film has a metallic region defining a blackbody portion for rapidly equilibrating to a temperature corresponding to the temperature of an object for viewing by a sensor of the electronic thermometer to measure the temperature of the object.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: February 28, 2012
    Assignee: Covidien AG
    Inventor: Jeffrey E. Price
  • Patent number: 8104951
    Abstract: Methods and apparatus for measuring substrate uniformity is provided. The invention includes placing a substrate in a thermal processing chamber, rotating the substrate while the substrate is heated, measuring a temperature of the substrate at a plurality of radial locations as the substrate rotates, correlating each temperature measurement with a location on the substrate, and generating a temperature contour map for the substrate based on the correlated temperature measurements. Numerous other aspects are provided.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Aderhold, Andreas G. Hegedus, Nir Merry
  • Publication number: 20110235918
    Abstract: In a temperature measuring device (1) an IR-radiation detector (2) and a reference element (3) are provided, connected to a surface (6) of an object (7) in a heat-conducting fashion, with a first area (4) with high emissivity and a second area (5) with high reflectivity formed at the reference element (3), and the IR-radiation detector (2) is equipped for a separate detection of IR-radiation (9, 10, 11) from the first and second areas (4, 5) and a surface area (12) of the object (7). A computer (13) in the IR-radiation detector (2) is equipped to deduct a temperature measurement for the object (7), corrected for emissions and reflections from the detected IR-radiations (9, 10, 11).
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: TESTO AG
    Inventors: Martin Stratmann, Sabine Hinkel, Daniel Auer, Patrick Zahn, Andreas Messerschmid
  • Patent number: 7965054
    Abstract: A vacuum pump capable of accurately detecting a rotor temperature based on a change in permeability of a magnetic material. Two targets are fixed to a nut opposed to a gap sensor. The nut is made of pure iron, and a surface of the nut opposed to the gap sensor serves as a target. The target has a Curie temperature greater than a temperature monitoring range, and each of the targets has a Curie temperature falling within the temperature monitoring range. When the targets become opposed to the gap sensor in turn according to rotation of a rotor, three types of signals are output from the gap sensor. The difference-signal generation means generates a difference signal of each the targets, on the basis of a signal of the target. The difference signal is compared with a reference signal V0 for detecting the Curie temperatures to detect a rotor temperature.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: June 21, 2011
    Assignee: Shimadzu Corporation
    Inventors: Yoshio Tsunazawa, Akira Arakawa, Junichiro Kozaki, Masaki Ohfuji
  • Patent number: 7928393
    Abstract: A method of correlating thermal sensors data with temperature sensor data is disclosed. The method may include generating one or more temperature sensor data points and receiving the one or more temperature sensor data points at a remote location. The method may also include generating one or more thermal sensor data points or images and receiving the one or more thermal sensor data points or images at the remote location. Additionally, the method may include correlating the one or more thermal sensor data points or images based on the one or more temperature sensor data points and generating a notification when a temperature of one or more correlated thermal sensor data points or images fails to maintain a determined relationship with a preset limit in one or more locations other than the location of one or more temperature sensor data point.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 19, 2011
    Assignee: Solar Turbines Inc.
    Inventors: Kevin C. Brady, Michael Seskin, Anthony J. Grichnik
  • Patent number: 7866882
    Abstract: The present standard radiation source comprises a black body having a cavity, a shielding plate positioned at an open end of the cavity, at least one first heater positioned in the shielding plate, at least one second heater positioned on the outer wall of the black body, a first insulation device covering the second heater and a temperature-controlling device positioned on the first insulation device.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: January 11, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Hsin Yi Ko, Chun Jen Lin
  • Patent number: 7837382
    Abstract: A fixed-point cell is provided which can provide a fixed-point in a wide temperature range by changing the fixed-point material. During the use of the fixed-point cell, the fixed-point material can be prevented from being contaminated, and the crucible of the cell can be prevented from being cracked. The fixed-point cell includes: the crucible composed of carbon; the fixed-point material enclosed in the crucible and composed of one of a metal, a eutectic of a metal and carbon, and a eutectic of a metal carbide and carbon; and a woven fabric of graphite fibers containing 10 ppm or lower of impurities and interposed between the crucible and the fixed-point material.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: November 23, 2010
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Yoshiro Yamada
  • Patent number: 7810992
    Abstract: This invention provides a non-contact temperature-measuring device including a distance sensor unit, an alarm unit, a temperature sensor unit, a microprocessor unit and a display unit. The distance sensor unit measures the distance between the device and a target. The alarm unit gives an alarm when the distance sensor unit measures a predetermined distance value. The temperature sensor unit measures a temperature of the target after the alarm unit gives the alarm. The microprocessor unit stores data of the predetermined distance value and the temperature value measured by the temperature sensor unit; the microprocessor unit also processes a distance signal emitted by the distance sensor unit and a temperature signal emitted by the temperature sensor unit. When the target's distance value equals the predetermined distance value, the microprocessor unit will further send a command for the alarm unit to give an alarm.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 12, 2010
    Assignee: Avita Corporation
    Inventors: Kun Sung Chen, Ying Chao Lin, Hsing Ou Yang
  • Patent number: 7758239
    Abstract: A method of sensing the temperature of a heated object includes obtaining past temperature data relating to the heated object, capturing a thermal image of the heated object, obtaining a reference temperature of the heated object, and calculating a normalized hotspot temperature.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 20, 2010
    Assignee: Fluke Corporation
    Inventor: Steven Ignatowicz
  • Patent number: 7744275
    Abstract: An optical fiber temperature sensing device has a sensor body; a light source housed in the sensor body; a temperature measuring optical fiber disposed outside the sensor body and extended to a temperature measurement site, wherein, when a light is emitted from the light source into the temperature measuring optical fiber, Stokes light intensity and anti-Stokes light intensity of backscattered light generated in the temperature measuring optical fiber are detected to determine a temperature at the temperature measurement site; a reference temperature optical fiber disposed inside the sensor body; and a controller that is operable to control an output of the light source by monitoring Stokes light intensity and anti-Stokes light intensity of backscattered light generated in the reference temperature optical fiber.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: June 29, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hidetaka Kawauchi, Masaki Ogura, Juhyun Yu, Akihiro Hiruta
  • Publication number: 20100135354
    Abstract: A mechanism of a monitoring unit of an electric rotating machinery covered in a housing that intercepts photoelectron transmission, the mechanism has: a monitoring window penetrating a part of the housing and configured to allow passage of photoelectrons and not to allow passage of gas; a camera arranged outside the monitoring window and configured to receive radiated photoelectron generated in the housing and passing through the monitoring window and to generate image data from the radiated photoelectron; and a computing unit configured to process the image data. The computing unit has reference image data storage means for storing image data resulting from blackbody radiation occurring in a reference state in the housing, as reference image data, and temperature calculating means for comparing the image data with the reference image data, thereby to calculate the temperature in the housing.
    Type: Application
    Filed: October 5, 2006
    Publication date: June 3, 2010
    Inventors: Takeshi Watanabe, Yuji Yao
  • Patent number: 7661876
    Abstract: Infrared Ir Thermometer Calibration Systems and Methods are Disclosed in which the temperature of an IR thermometer calibration system is controlled such that radiation emitted by a target at a given input temperature is equal to the radiation emitted by a graybody heated to the input temperature and having an emissivity equal to an emissivity setting of an IR thermometer to be calibrated using the IR thermometer calibration system.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: February 16, 2010
    Assignee: Fluke Corporation
    Inventor: Frank E. Liebmann
  • Patent number: 7632012
    Abstract: A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 15, 2009
    Assignee: Siemens Energy, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 7591586
    Abstract: A method of precisely measuring temperature of an object without having to setting the emissivity of the object over a wide temperature range from low to high temperature with a single radiation thermometer. The temperature-measuring device of the present invention includes a reference object having an emissivity of substantially 1 in a prescribed wavelength range; a bandpass filter transmitting radiant energy in the prescribed wavelength range; and a radiation thermometer for observing temperature by taking in the radiant energy transmitted through the bandpass filter.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: September 22, 2009
    Assignee: Japan Aerospace Exploration Agency
    Inventor: Akira Ohnishi
  • Patent number: 7543981
    Abstract: Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: June 9, 2009
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 7473032
    Abstract: A system for enabling the measurement of a temperature in a furnace (30, 48) using a pyrometer (38) that includes a pallet support (32, 52) for supporting a pallet (40, 50) a given distance (c) above a furnace floor (31) and a pyrometer target (10, 60, 80) that includes a support member (12, 62, 82) and a target member (14, 68) separable from said support member (12, 62, 82) where the support member (12, 62, 82) has a height less than the given distance (c).
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: January 6, 2009
    Assignee: Honeywell International Inc.
    Inventors: Michael J. Worrell, James Jay Cress
  • Patent number: 7438468
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7422365
    Abstract: A thermal imaging system and method for quantitative thermal mapping of a scene. The system comprises a thermal imaging device, a heat source of known temperature and emissivity located within the scene viewed by the thermal imaging device and a processor adapted to generate a calibrated temperature map of the scene from the data supplied by the thermal imaging device, based on the known temperature of the heat source. This enables accurate temperature measurements to be made using inexpensive uncooled Focal Plane Array detectors.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: September 9, 2008
    Assignee: Land Instruments International Limited
    Inventors: Gary Roy Chamberlain, Andrew Mellor, Ian Hamilton Ridley
  • Patent number: 7407323
    Abstract: Methods and systems for detecting a temperature TO of a remote object are provided. The method includes storing in memory, a lookup table relating an output voltage of an infrared sensor to a temperature sensed by the infrared sensor V(TO, TA), determining a temperature sensor voltage output corresponding to a temperature TA proximate the infrared sensor, determining a first voltage as a function of the temperature TA proximate the infrared sensor and a reference temperature TREF, V(TA, TREF), determining a second voltage as a function of the temperature of the object TO and the reference temperature TREF, V(TO, TREF) by combining the determined temperature sensor voltage output and the first voltage, and determining a temperature of the object TO from the lookup table using the second voltage.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: August 5, 2008
    Assignee: GE Infrastructure Sensing Inc.
    Inventor: David R. Hutcherson
  • Patent number: 7408728
    Abstract: An optical metrological system having a heat-generating light source coaxially mounted near a heat-sensitive lens. The system uses a temperature sensor to monitor the lens temperature and a heating element to heat the lens such that the lens operating temperature is greater than a maximum operating temperature of the light source in order to stabilize the focal length of the lens.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 5, 2008
    Assignee: Quality Vision International, Inc.
    Inventors: Stephanie Bloch, Fred J. Schwab
  • Patent number: 7357570
    Abstract: A method and device for determining the temperature of a sample, wherein a probing light beam is directed onto the sample whereby at least two partial beams of the probing light pass through paths of different lengths inside the sample by backscattering or reflecting the beams from at least two different depths in the sample, returning the partial beams to an analysis unit, and producing an interference pattern in the analysis unit by means of an interferometric device which uses one light beam as a reference for evaluating the interference pattern in an evaluating unit, wherein the signal intensity of the partial beam is determined counter to the optical path and the temperature displacement and temperature of the sample are determined by the temperature adjustment of the signal intensity.
    Type: Grant
    Filed: January 11, 2004
    Date of Patent: April 15, 2008
    Assignee: Medizinisches Laserzentrum Luebeck GmbH
    Inventor: Georg Schuele
  • Patent number: 7346386
    Abstract: Body temperature measurements are obtained by scanning a thermal radiation sensor across the side of the forehead over the temporal artery. A peak temperature measurement is processed to compute an internal temperature of the body as a function of ambient temperature and the sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature through a minimum in the range of 96° F. and 100° F. The radiation sensor views the target surface through an emissivity compensating cup which is spaced from the skin by a circular lip of low thermal conductivity.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: March 18, 2008
    Assignee: Exergen Corporation
    Inventor: Francesco Pompei