In Spaced Noncontact Relationship To Specimen Patents (Class 374/120)
  • Patent number: 10082464
    Abstract: A small-size reliable gas sensor that can reduce a measurement error can be provided. The gas sensor includes: a first light source (20); a first sensor unit (31) and a second sensor unit (32) disposed to receive light output from the first light source (20); a first substrate (41) having a first principal surface (411) on which the first light source (20) and the first sensor unit (31) are provided; and a second substrate (42) having a first principal surface (422) on which the second sensor unit (32) is provided. The first sensor unit (31) is disposed at a location where light output from the first light source (20) and reflected on the second principal surface (412) strikes the first principal surface (422) of the first substrate (41).
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: September 25, 2018
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Edson Gomes Camargo, Satoshi Takehara
  • Patent number: 10066998
    Abstract: Method and apparatus for detecting defects in a laminate of uncured, compacted composite sheets. After a number of plies of composite sheets are arranged and compacted, a burst of heat energy is applied to a top surface of the laminate and a digital thermographic camera captures images of the top surface. A computer processor measures heat characteristics of the top surface to identify regions of the top surface with different heat characteristics. Such different areas are identified as regions that include a defect. The defect regions can be repaired by applying additional compaction and/or by removing at least a portion of some layers, removing any foreign object debris, replacing the layers, and compacting the replaced layers. After any defects are addressed, the laminate is cured.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 4, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Tyler M. Holmes, Gary E. Georgeson, Jeffrey G. Thompson
  • Patent number: 9985572
    Abstract: A modular solar roadway/railway system (MSRS) and method (MSRM) utilizing interlocked solar/optical collection panels (SCP) having stacked solar collection strips (SCS) is disclosed. The SCS are configured with an optical input surface (OIS) configured to collect solar energy and a road support surface (RSS) configured to support automobile traffic. The SCS are stacked in an anti-symmetrical alignment pattern that allows solar energy to be efficiently collected while simultaneously supporting automobiles and other vehicles. The SCS as formed within the SCP are configured with a matrix of bottom photovoltaic cell cavities (PCC) that permit the SCP to be mated to a road/railway surface while simultaneously integrated with solar cells in the PCC for the generation of electricity. The MSRS may be configured in a flexible SCP array in rolled sheet form (RSF) suitable for installation via the use of a vehicle equipped with axial support for the RSF.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: May 29, 2018
    Inventor: Glenn Arthur Hastings
  • Patent number: 9921515
    Abstract: An optical writing device having; a plurality of light-emitting points; a photodiode configured to output a signal which represents a quantity of incident light from a predetermined light-emitting point selected from the plurality of light-emitting points; and a calculation section for calculating a temperature of the photodiode based on a magnitude of a photodiode dark current included in the signal output from the photodiode while the predetermined light-emitting point is OFF.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: March 20, 2018
    Assignee: Konica Minolta, Inc.
    Inventors: So Yano, Satoshi Masuda, Makoto Obayashi, Masayuki Iijima, Yoshikazu Watanabe
  • Patent number: 9915511
    Abstract: Embodiments are directed to unpowered railgun field validation for safe-arm fuzing. Embodiments use a wire coil having an induced electromotive force voltage. At least one positive duration circuit measures the positive portion of the induced voltage. At least one positive peak duration circuit measures the peak value of the positive portion of the induced voltage. At least one negative duration circuit measures the duration value of the negative portion of the induced voltage. At least one negative peak detector circuit measures the peak value of the negative portion of the induced voltage.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: March 13, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Michael D. Haddon
  • Patent number: 9759693
    Abstract: A novel and useful method of visualization by detection of EM radiation being irradiated or reflected from objects in the imager's field of view using Finite Element Method (FEM) simulation software tools. The methodology provides a verification method of antenna operation from an electrical point of view since bolometer performance cannot be estimated using regular antenna parameters such as directivity, gain, impedance matching, etc. as the bolometer does not behave as an antenna but rather behaves as an absorber. An incident wave is triggered on the absorber and the absorption of the bolometer structure is estimated using commercially available Finite Element Method (FEM) software (e.g., ANSYS® HFSS software, CST MICROWAVE STUDIO®, etc.). How much of the energy is reflected is subsequently measured. The energy which is not reflected is considered to be absorbed by the absorber.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 12, 2017
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Patent number: 9706138
    Abstract: Various techniques are provided for an infrared sensor assembly having a hybrid infrared sensor array. In one example, such a hybrid infrared sensor array may include a plurality of microbolometers and a non-bolometric infrared sensor. The non-bolometric infrared sensor may be a thermopile or other type of infrared sensor different from a bolometer-based sensor. The non-bolometric infrared sensor may be utilized to provide a more accurate and stable temperature reading of an object or area of a scene captured by the array. In some embodiments, the non-bolometric infrared sensor may also be utilized to perform a shutter-less radiometric calibration of the microbolometers of the array. An infrared sensor assembly may include, for example, the hybrid infrared sensor array, as well as a substrate including bond pads and/or appropriate circuits to obtain and/or transmit output signals from the non-bolometric infrared sensor.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: July 11, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, William A. Terre, Pierre Boulanger, Jeffrey D. Frank, John H. Distelzweig
  • Patent number: 9591968
    Abstract: In one implementation, an apparatus estimates body core temperature from an infrared measurement of an external source point using a cubic relationship between the body core temperature and the measurement of an external source point is described, estimates temperature from a digital infrared sensor and determines vital signs from a solid-state image transducer, or determines vital signs from a solid-state image transducer and estimates body core temperature from an infrared measurement of an external source point using a cubic relationship between the body core temperature and the measurement of an external source point; after which the estimated and/or determined information is transmitted to an external database.
    Type: Grant
    Filed: December 28, 2014
    Date of Patent: March 14, 2017
    Assignee: ARC DEVICES, LTD
    Inventors: Irwin Gross, Michael G. Smith, Mark Khachaturian, Martin Crawley, Steven Gerst, John Barrett, Michael Cronin, Derek Turnbull, Jason Bodnick
  • Patent number: 9443715
    Abstract: A method and device for determining temperature of a substrate in a vacuum processing apparatus during a process of the substrate are disclosed, the substrate to be measured is placed on a susceptor in the vacuum processing apparatus for a manufacture process, and the method includes: selecting i wavelengths from radiance emitted from the susceptor through a substrate, where i is a natural number greater than 1; obtaining at least i pieces of radiance corresponding to the selected i wavelengths; and calculating the temperature of the substrate based on the i pieces of radiance and the i wavelengths, by using a mathematical equation: E(?i)=T(d)×M(?i,T), where E(?i) is the ith radiant quantity corresponding to the ith wavelength ?i, T(d) is transmittance of the substrate, which is a function of thickness d of a film grown on the substrate, and M(?i,T) is blackbody radiation equation, which is a function of the ith wavelength ?i and the substrate temperature T.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: September 13, 2016
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC, SHANGHAI
    Inventors: Yousen Li, Steven Lee, David Zhehao Chen
  • Patent number: 9028136
    Abstract: A method for determining a blackbody temperature of an electrical discharge may include providing a radiometer with a sensor aperture, positioning a viewing aperture sheet between the sensor aperture and the electrical discharge, and providing the viewing aperture sheet with a viewing aperture therethrough, determining an area of the viewing aperture, determining a distance of the sensor aperture from the viewing aperture, observing the electrical discharge with the sensor aperture through the viewing aperture to obtain radiometer data, and calculating the blackbody temperature based at least on the radiometer data, the area of the viewing aperture and the distance of the sensor aperture from the viewing aperture.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: May 12, 2015
    Assignee: The Boeing Company
    Inventor: Michael M. Ladd
  • Patent number: 9028139
    Abstract: A component in a processing chamber of a substrate processing apparatus, where a temperature may be accurately measured by using a temperature measuring apparatus using an interference of a low-coherence light, even when a front surface and a rear surface are not parallel due to abrasion, or the like. A focus ring used in a vacuum atmosphere and of which a temperature is measured includes an abrasive surface exposed to an abrasive atmosphere according to plasma, a nonabrasive surface not exposed to the abrasive atmosphere, a thin-walled portion including a top surface and a bottom surface that are parallel to each other, and a coating member coating the top surface of the thin-walled portion, wherein a mirror-like finishing is performed on each of the top and bottom surfaces of the thin-walled portion.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Chishio Koshimizu, Tatsuo Matsudo
  • Patent number: 9028135
    Abstract: A non-contact pyrometer and method for calibrating the same are provided. The pyrometer includes a radiation sensor configured to measure at least a portion of a radiance signal emitted from a target medium and output a voltage that is a function of an average of the absorbed radiance signal, and an optical window disposed proximate the radiation sensor and configured to control a wavelength range of the radiance signal that reaches the radiation sensor. The pyrometer may further include a reflective enclosure configured to receive the target medium therein, wherein the radiation sensor and the optical window are disposed within the reflective enclosure, an amplifier in communication with an output of the radiation sensor, and a data acquisition system in communication with an output of the amplifier.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 12, 2015
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Asia N. Quince, Alexander Stein
  • Publication number: 20150098486
    Abstract: An assembly for measuring a temperature of a fluid flowing through a tubing section is provided. The assembly can include the tubing section that can include a reduced-width portion. The reduced-width portion can traverse a circumference of the tubing section. The assembly can also include a temperature measurement component in thermal communication with an inner diameter of the tubing section. A temperature of a fluid flowing through the tubing section can be detected using the temperature measurement component.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 9, 2015
    Inventors: Christopher Michael McMillon, Robert Mitchell Neely
  • Patent number: 8998485
    Abstract: The laser anemometry probe (LAP) system with continuous coherent detection, with single-particle mode, comprises means (AN) for analyzing the measurement signals of the said probe (LAP) and means (MES_T) for measuring the temperature (T). The system comprises, furthermore, means (DET_CG) for determining icing conditions when means (DET_GEL) for detecting the presence of a liquid water drop detect the presence of a liquid water drop, and when the said temperature (T) is below the said third threshold (S3).
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: April 7, 2015
    Assignee: Thales
    Inventors: Jean-Pierre Schlotterbeck, Xavier LaCondemine
  • Patent number: 8961006
    Abstract: Fiber optic sensing systems and methods. In a described embodiment, a fiber optic sensing system includes an optical fiber transmitting energy to a chemical vapor deposited diamond material proximate a substance in a well. The diamond material is deposited as a coating on a substrate. The substrate and coating are heated when the energy is transmitted by the optical fiber. This heats the substance in the well, which is detected to determine a property of the substance. In another embodiment, light energy is transmitted through the diamond material.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: February 24, 2015
    Assignee: WellDynamics, B.V.
    Inventor: Daniel D. Gleitman
  • Patent number: 8944677
    Abstract: A test apparatus for testing an IR sensor of train undercarriage temperatures is disclosed. The IR sensor may be used to obtain infrared IR emission data by sensing a wheel or a wheel bearing of a rail vehicle. The test apparatus may comprise a heat emitter for supplying IR emissions at a reference temperature to the IR sensor. A support may support the heat emitter at a position spaced from the passage of the rail vehicle and in an orientation for directing the IR emissions at the IR sensor.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: February 3, 2015
    Assignee: Progress Rail Services Corp
    Inventors: Alessandro Agostini, Andrea Ricci
  • Patent number: 8920026
    Abstract: In one embodiment, a current sensing circuit corrects for the transient and steady state temperature measurement errors due to physical separation between a resistive sense element and a temperature sensor. The sense element has a temperature coefficient of resistance. The voltage across the sense element and a temperature signal from the temperature sensor are received by processing circuitry. The processing circuitry determines a power dissipated by the sense element, which may be instantaneous or average power, and determines an increased temperature of the sense element. The resistance of the sense element is changed by the increased temperature, and this derived resistance Rs is used to calculate the current through the sense element using the equation I=V/R or other related equation. The process is iterative to continuously improve accuracy and update the current.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: December 30, 2014
    Assignee: Linear Technology Corporation
    Inventors: Kalin V. Lazarov, Matthew J. Maloney, Christopher Pollard, Edson W. Porter
  • Patent number: 8918226
    Abstract: A temperature measuring method accurately measures a sheet-like object even when the sheet-like object has an uneven temperature distribution throughout. In this method, temperature measurement is conducted in a measuring area where the sheet-like object is to be measured for its physical quantity or in the vicinity of the measuring area during determination of the physical quantity by a physical quantity measuring device. One or more temperature sensors are located at a position proximal to each sheet-like object that streams in a predetermined direction relative to the temperature sensors, and air is jetted out toward the sheet-like object for creating an air curtain that surrounds each temperature sensor so that a gauge workspace substantially confining the atmosphere therein is defined over one or both of the opposite surfaces of the sheet-like object. The temperature sensors detect the temperature in the measuring area or its vicinity within the gauge workspace.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 23, 2014
    Assignee: Yamabun Electronics Co., Ltd.
    Inventors: Fumio Tojo, Shunzo Hirakawa, Toshiyasu Toyoda, Masaru Iguchi, Katayama Yusuke
  • Patent number: 8911146
    Abstract: A method of measuring the wall temperature of a container blank, including the following operations: inserting a temperature probe into the blank in motion, upon completion of the operation of heating the blank in an oven; maintaining the probe in the blank in motion for a predetermined time; making a temperature measurement by the probe maintained in the blank without contact with the inner wall of the blank; and storing the temperature or the temperature profile thus measured.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 16, 2014
    Assignee: Sidel Participations
    Inventors: Ertan Cetinel, Thierry Deau, Guy Feuilloley
  • Patent number: 8911147
    Abstract: A graphical user interface for analyzing thermal images is provided. The interface can be used to identify the temperatures at multiple areas of interest defined on an image. The areas can be denoted by configurable markers of different predetermined shapes. In some embodiments, the interface simultaneously displays temperature statistics relating to the user-identified areas of interest.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: December 16, 2014
    Assignee: Fluke Corporation
    Inventors: Stefan H. Warnke, Thomas Heinke
  • Publication number: 20140334518
    Abstract: Systems, methods and computer-accessible mediums for determining a specific absorption rate (SAR) of a radio frequency (RF) radiation on an object(s) can be provided, which can, for example hardware arrangement configured to receive thermal information for a portion(s) of the at least one object, and determine the SAR based on the thermal information.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: NEW YORK UNIVERSITY
    Inventors: LEEOR ALON, CEM MURAT DENIZ, GENE YOUNG CHO, LESLIE F. GREENGARD
  • Publication number: 20140269825
    Abstract: A wireless temperature sensor includes an electrical conductor and a material spaced apart from the conductor and located within one or more of the responding electric field and responding magnetic field of the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in one of dielectric properties and magnetic permeability properties in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Inventors: Stanley E. Woodard, Chuantong Wang, Bryant D. Taylor
  • Publication number: 20140254627
    Abstract: The present invention concerns a method and an apparatus (12) for measuring the temperature of a fluid stream (11), said apparatus comprising a movable frame (13, 14) having first end facing towards the fluid stream to be measured and an oppositely directed second end; a beam splitter (9) which is movably arranged in the frame for advancement into said fluid stream to open the fluid stream; an optical temperature measurement device (8) for determining the temperature of the fluid stream by measuring the thermal radiation from the fluid stream; and control means for controlling the movement of the frame and the beam splitter and controlling the performance of the optical temperature measurement device.
    Type: Application
    Filed: September 21, 2012
    Publication date: September 11, 2014
    Applicant: ROCKWOOL INTERNATIONAL A/S
    Inventors: Haosheng Zhou, Jeroen Petrus Wilhelmus Sap, Lars Bøllund, Per Steenbjerg
  • Patent number: 8814427
    Abstract: An optical measurement instrument includes one or more temperature sensors (122) arranged to measure sample well specific temperatures from sample wells (111-117) arranged to store samples (103-109) to be optically measured. A processing device (121) of the optical measurement instrument is arranged to correct, using a pre-determined mathematical rule, measurement results obtained by the optical measurements on the basis of the measured sample well specific temperatures. Hence, the adverse effect caused by temperature differences between different samples on the accuracy of the temperature correction of the measurement results is mitigated.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 26, 2014
    Assignee: Wallac Oy
    Inventors: Jyrki Laitinen, Markku Ojala
  • Patent number: 8810447
    Abstract: A calibration device, capable of calibrating a gain of a radiometer, includes an actuator and a micro-electromechanical-system (MEMS) unit. The actuator receives a calibration signal outputted from a control unit. The MEMS unit is coupled to the actuator, in which the actuator enables the MEMS unit to shield an antenna of the radiometer according to the calibration signal, such that the radiometer generates an environmental signal according to an equivalent radiant temperature received from the MEMS unit, and the control unit calibrates the gain of the radiometer according to the environmental signal.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Yen Huang, Chin-Chung Nien, Li-Yuan Chang, Chen-Ming Li, Ya-Chung Yu
  • Patent number: 8790006
    Abstract: A thermal measurement system that includes a light collection device and a detection system in communication with the device. The detection system includes two detection subsystems, wherein one subsystem is configured to detect light from a surface of an object, while the other subsystem is configured to detect light from the surface and a gas. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Hejie Li, Samhita Dasgupta, Edward Randall Furlong, Nirm Velumylum Nirmalan, Anquan Wang, Guanghua Wang, Stephen Thomas Walls, Lesley Ellen Brown
  • Patent number: 8777484
    Abstract: A resistance temperature sensor with a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element comprises a first measuring path and the second temperature sensor element a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions (a, c), and wherein a projection of the first measuring path on the expansion directions (a) differs from a projection of the second measuring path on the expansion directions (c).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 15, 2014
    Assignee: Endress + Hauser Wetzer GmbH + Co. KG
    Inventors: Peter Seefeld, Reinhard Buchner
  • Patent number: 8777483
    Abstract: The temperature measuring apparatus includes: a light source; a first wavelength-dividing unit which wavelength-divides a light from the light source into m lights whose wavelength bands are different from one another; m first dividing units which divides each of the m lights from the first wavelength-dividing unit into n lights; a transmitting unit which transmits lights from the m first dividing unit to measurement points of an object to be measured; a light receiving unit which receives a light reflected by each of the measurement points; and a temperature calculating unit which calculates a temperature of each of the measurement points based on a waveform of the light received by the light receiving unit.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: July 15, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Chishio Koshimizu, Tatsuo Matsudo, Kenji Nagai
  • Patent number: 8770836
    Abstract: A wireless temperature profiling system and the methods of making it are disclosed. The wireless temperature profiling system can include a photovoltaic substrate, a transponder, and a reader.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: July 8, 2014
    Assignee: First Solar, Inc.
    Inventor: Daniel Burgard
  • Patent number: 8753007
    Abstract: A system includes a sensing cell having a walled structure configured to receive a fuel sample within an interior space of the walled structure. The sensing cell also has at least one cooling surface located on at least a portion of the walled structure and configured to cool the fuel sample. The sensing cell further has an optical port configured to couple to one or more optical fibers and to provide first radiation to the fuel sample. In addition, the sensing cell has a mirror configured to reflect the first radiation in order to provide second radiation to the optical port. The optical port defines a collinear optical geometry for providing the first radiation to the fuel sample and receiving the second radiation through the fuel sample. The system also includes at least one cooler configured to cool the fuel sample in the sensing cell by cooling the at least one cooling surface.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: June 17, 2014
    Assignee: Honeywell ASCa Inc.
    Inventors: Frank M. Haran, Sebastien Tixier, Stuart J. Heath
  • Patent number: 8740454
    Abstract: An optical fiber is provided with a first measurement portion and a second measurement portion provided with covering layers different at least in any one of heat capacity and heat conductivity. Then, the first measurement portion and the second measurement portion are located in the same measurement position and light is inputted from a temperature measurement device into the optical fiber. Thereafter, the temperature measurement device receives backscattered light generated inside the optical fiber to measure temperature distribution in a longitudinal direction of the optical fiber. An analyzer analyzes a variation over time of the temperature distribution outputted from the temperature measurement device to calculate a temperature and a wind velocity in a measurement position where the first measurement portion and the second measurement portion are located.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: June 3, 2014
    Assignee: Fujitus Limited
    Inventors: Fumio Takei, Kazushi Uno, Takeo Kasajima
  • Patent number: 8734009
    Abstract: A system, method and device determine the state of a beverage and communicate information regarding the beverage. A communication device runs an application that determines the start temperature of the beverage to be cooled and sets a desired end temperature. Thermochromatic inks are used on the container label or packaging of the container to convey temperature information. A camera of the communication device senses temperature information of an image of the container. The application then determines an amount of time for cooling the beverage also taking into consideration the type and size of container. The beverage is placed in a cooling device, a timer is initiated by the user, and the application later generates a message indicating the beverage has reached the desired end temperature. The user may link information generated from the application to social networking sites for purposes such as generating invitations to friends within the social network.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 27, 2014
    Assignee: Millercoors, LLC
    Inventors: Jason Morgan Kelly, Ray Alan Toms, Charles Ho Fung
  • Patent number: 8734008
    Abstract: An active sensor apparatus includes an array of sensor elements arranged in a plurality of columns and rows of sensor elements. The sensor apparatus includes a plurality of column and row thin film transistor switches for selectively activating the sensor elements, and a plurality of column and row thin film diodes for selectively accessing the sensor elements to obtain information from the sensor elements. The thin film transistor switches and thin film diodes are formed on a common substrate.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: May 27, 2014
    Assignee: Next Biometrics AS
    Inventor: Matias N. Troccoli
  • Patent number: 8727608
    Abstract: A moisture meter with non-contact temperature measurement capability having a housing, a moisture-detecting device coupled to or contained at least partially in the housing, and having an output related to measured moisture parameters, a non-contact, optically-based temperature sensing device coupled to the housing, having an output related to sensed temperature, an output display contained in the housing, for displaying measurements to a user, and circuitry contained in the housing for processing both the moisture-detecting device output and the non-contact temperature sensing device output, and transmitting the processed outputs to the output display. The moisture-detecting device can be either one or both of a contact-type moisture-detecting device such as a pad on the rear side of the housing, and a pin-type moisture-detecting device in a hand-held probe, and electrically coupled to the circuitry in the housing through a cord.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: May 20, 2014
    Assignee: FLiR Systems, Inc.
    Inventor: Gerald W. Blakeley, III
  • Patent number: 8727614
    Abstract: A method for monitoring a status of a sleeve for lining a system of pipes or conduits, the sleeve being impregnated with a curable resin, includes the steps of providing the sleeve, disposing at least one fiber optic sensor in thermally conductive contact with the sleeve, and generating, using the at least one fiber optic sensor, a positionally resolved thermographic image representative of a temperature of the sleeve as a function of position and time.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 20, 2014
    Inventor: Ulrich Glombitza
  • Patent number: 8726411
    Abstract: A charged probe and an electric field measuring method are provided. The probe can be charged with single electricity on single nano particle attached on the top of the probe tip being a charged probe and the probe is applicable for measuring the electric fields of object in the nano scale. The probe comprises an insulating tip base, a cantilever and a single nano-particle. The cantilever is arranged for supporting the insulating tip base and the single nano-particle is configured on the erosion plane. After conducting contact electrification method to charge the electric nano particle, the single nano-particle will be charged with fixed number of single electrical charge. Then, the amount of the fixed number of single electrical charge is calculated by the virtual image charge calculation method. The charged probe can be used to measure the electric fields distribution by tapping mode or f-d curve measurement.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: May 13, 2014
    Assignee: National Tsing Hua University
    Inventors: Fan-Gang Tseng, Joe-Ming Chang
  • Patent number: 8708560
    Abstract: The invention relates to a method for the temperature-dependent adjustment of the color properties or the photometric properties of an LED illuminating device having LEDs emitting light of different colors or wavelengths or LED color groups emitting light of the same color or wavelength within a color group, the luminous flux portions thereof determine the color of light, color temperature and/or the chromaticity coordinates of the light mixture emitted by the LED illuminating device.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: April 29, 2014
    Assignee: Arnold & Richter Cine Technik, GmbH & Co. Betriebs KG
    Inventor: Regine Kraemer
  • Patent number: 8708558
    Abstract: A temperature detecting apparatus for adjusting heat dissipating angle of a fan according to status of heat sources, includes detection module, a comparison module, a control module, and a driver module. The detection module detects temperatures of the heat sources, and converts the detected temperatures to voltage signals. The comparison module receives the voltage signals, and compares the voltage signals with a reference voltage to output control signals. The control module receives the control signals, and turns on according to the control signals. The driver module drives a plurality of air guiding fins rotating thereon. A direction of current flowing through the driver module is adjustable when the control module turns on. The driver module drives the air guiding fins turning toward to guide air flowing to one of the heat sources according to the direction of the current.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 29, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Xiang Cao
  • Patent number: 8708557
    Abstract: An apparatus for measuring thermal diffusivity includes a Raman spectroscope, a heating device, and a signal analyzing unit. The Raman spectroscope is utilized to measure a Raman scattering intensity of different sites of a film to be measured. The heating device is utilized to provide a controllable thermal driving wave. The signal analyzing unit is utilized to analyze the Raman scattering intensity from the Raman spectroscope and the thermal driving wave so as to evaluate the thermal diffusivity of the film to be measured.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: April 29, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chao Shih, Jin-Bao Wu, Ming-Sheng Leu
  • Patent number: 8702302
    Abstract: A combustion gas measurement apparatus mounted in a gas turbine including: a tunable laser generating a radiation beam passing through a combustion gas path; a controller tuning the laser to emit radiation having at least a first selected wavelength and a second selected wavelength which both correspond to temperature-dependent transitions of a combustion species of the gas, wherein the first selected wavelength and the second selected wavelength are not near absorption peaks of neighboring wavelengths; a detector sensing the radiation beam passing through the combustion gas and generating an absorption signal indicative of an absorption of the beam by the combustion gas at each of the first wavelength and the second wavelength, and a processor executing a program stored on a non-transitory storage medium determining a combustion gas temperature based on a ratio of the adoption signals for the first wavelength and the second wavelength.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: April 22, 2014
    Assignee: General Electric Company
    Inventors: Vivek Venugopal Badami, Scott Mordin Hoyte, Chayan Mitra, Ayan Banerjee
  • Patent number: 8696198
    Abstract: A temperature recorder mainly includes a micro control unit (MCU), a temperature sensing circuit, a memory with RF transmission function, and at least one antenna unit. The MCU electrically connects to the temperature sensing circuit and the memory, and the antenna unit electrically connects to the memory. The temperature sensing circuit senses external temperature variations surrounding the temperature recorder, and the sensed temperature variations are progressed by the MCU and then stored into the memory in accordance with scheduled parameters. The temperature recorder can be connected externally through wired serial transmitting interface or wireless radio frequency (RF) transmitting interface when internal temperature data needs to be retrieved, or a new parameter needs to be written into the memory. Thus, the memory in the temperature recorder can be retrieved and written via both wired connection and wireless connection, the usage of the temperature recorder is more flexible.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 15, 2014
    Assignee: Jogtek Corp.
    Inventors: Wei-Chun Huang, Tsung-Hsing Hsieh
  • Publication number: 20140070813
    Abstract: A wireless handle for a battery tester, comprising a wireless signal transmitting/receiving means capable of exchanging information with a battery tester through wireless communication; an information input means; an information output means; and a signal processing and control means, wherein the wireless signal transmitting/receiving means, the information input means, and the information output means are coupled with the signal processing and control means. The wireless handle enables an operator to control some functions of the battery tester and/or monitor detected information remotely during the process of testing, which can increase efficiency of the testing and avoid any disturbance of the testing circuits caused by the information input means and the information output means.
    Type: Application
    Filed: June 25, 2013
    Publication date: March 13, 2014
    Inventors: Shounan Luo, Junlong Sheng, Tao Zhong
  • Publication number: 20140044148
    Abstract: A device is provided with a measurement window, which is provided in a heat treat furnace and which permits direct visual observation of a surface to be measured of a heat-treated workpiece, and a temperature sensor, which is provided outside the measurement window and which is capable of carrying out noncontact measurement of the surface temperature of the surface to be measured through the measurement window. The temperature sensor has a measurement wavelength range in which the absorptivity by water is low (e.g., 1.95 ?m to 2.5 ?m). Further, the measurement window is composed of a window material having a high transmittance in the measurement wavelength range (e.g., germanium).
    Type: Application
    Filed: August 27, 2013
    Publication date: February 13, 2014
    Applicants: IHI Machinery and Furnace Co., Ltd., IHI Corporation
    Inventors: Kazuhiko KATSUMATA, Junji INOUE, Takahisa SHIMADA, Shinya KUDO, Ami UEDA
  • Patent number: 8641274
    Abstract: The polarization-maintaining fiber of the invention includes a core (1) made of germanium doped silica glass; a stress-applying part (3) made of boron doped silica glass; a cladding (2) made of pure silica glass; and a polyimide coating layer (4) with a thickness of 10 ?m or less that surrounds the outer periphery of the cladding (2).
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 4, 2014
    Assignee: Fujikura Ltd.
    Inventors: Koji Omichi, Yoshihiro Terada, Yutaka Endoh, Kazuyuki Hayashi, Katsuaki Izoe, Kazuhiko Aikawa, Manabu Kudoh
  • Patent number: 8636407
    Abstract: A wireless temperature sensor includes an electrical conductor and a dielectric material on the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in either dielectric or magnetic permeability attributes in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 28, 2014
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Marie Woodard
  • Patent number: 8628237
    Abstract: A method for measuring a contacting thermal resistance of one-dimensional structures is provided. A first one-dimensional structure and A second one-dimensional structure are crossed and in contact with each other to form a suspended junction. A point P of the first one-dimensional structure is heated until the first one-dimensional structure and the second one-dimensional structure reach a thermal equilibrium. A point A and a point B are selected on the first one-dimensional structure and a point C and a point D are selected on the second one-dimensional structure, wherein the point B, the point A, the suspended junction, the point C and the point D are arranged equidistantly with a distance ?x. A temperature difference ?Tj is calculated by the formula ?Tj=?TAC??TBA??TCD. The heat flux Qj is calculated by the formula Qj=2k?TCD/?x. The contacting thermal resistance Rj is calculated by the formula Rj=?Tj/Qj.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: January 14, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jun-Ku Liu, Qun-qing Li, Yuan Zou, Shou-Shan Fan
  • Publication number: 20140010261
    Abstract: The invention relates to a high-temperature sensor comprising contact wires in a metal tube, preferably a bent metal tube for arrangement especially inside the exhaust gas system of an internal combustion engine, and spacer bodies distributed in rows along the contact wires so as to maintain the contact wires at a predetermined distance to the inner wall of the metal tube. According to the invention, every spacer body is approximately ovoid, the diameter of the center portion of the egg being not wider than the inside width of the as yet unbent metal tube. The spacer bodies are injection-molded polymer ceramic parts molded onto the contact wires.
    Type: Application
    Filed: February 28, 2012
    Publication date: January 9, 2014
    Applicant: HELLA KGAA HUECK & CO.
    Inventors: Thomas Niemann, Torsten Eggers
  • Patent number: 8622612
    Abstract: A focus error signal resulting from the photothermically-induced expansion is measured in a sample of material under analysis. A laser is disposed as a periodically modulated heating source which is directed to the sample and a device for focus error measuring which is directed to the surface being heated. A device measuring focus error generates a signal representative of the displacement of the surface of material in perpendicular direction due to the expansion produced by the periodic heating, which is filtered, either analogically or digitally, to discriminate the displacement component at the frequency in which it was modulated or at any other related frequency, such any harmonic or a sum with any other modulation. The focus error signal, appropriately calibrated, gives a precise and sensitive measure of the magnitude the expansion.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: January 7, 2014
    Assignee: Consejo Nacional de Investigaciones Cientificas y Tecnicas (Conicet)
    Inventors: Oscar Eduardo Martínez, Esteban Alejo Domené, Nélida Mingolo, Francisco Balzarotti, Andrea Verónica Bragas
  • Patent number: 8614097
    Abstract: An assembly determines an analyte concentration in a sample of body fluid. The assembly includes a test sensor having a fluid-receiving area for receiving a sample of body fluid, where the fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the sample. The assembly also includes a meter having a port or opening configured to receive the test sensor; a measurement system configured to determine a measurement of the reaction between the reagent and the analyte; and a temperature-measuring system configured to determine a measurement of the test-sensor temperature when the test sensor is received into the opening. The meter determines a concentration of the analyte in the sample according to the measurement of the reaction and the measurement of the test-sensor temperature.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: December 24, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Jeffrey D. Blais, Steve Sun, Bern Harrison, Narasinha C. Parasnis, Serban F. Peteu, Tony Nguyen, Paul Ripley, Xin Wang, Igor Gofman
  • Patent number: 8602640
    Abstract: A sensing system is configured to detect physical parameters of a fluid sample. In particular, the sensing system is configured to detect the dew point of the fluid by reducing temperature of a sensing medium and detecting the fluid condensate on a sensing surface by directing light from a light source to the sensing surface and detecting the light reflected off the sensing surface onto a light detector. The light source and the light detector are on the opposite side of the sensing medium from the sensing surface.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: December 10, 2013
    Assignee: Entegris—Jetalon Solutions, Inc.
    Inventors: Ronald P. Chiarello, Christopher Andrew Wacinski, Charles Eric Boyd, Stewart Robin Shearer