Temperature Distribution Or Profile Patents (Class 374/137)
  • Publication number: 20120163411
    Abstract: A system and method for implementing embedded electronics in environments where radiation or extreme temperatures are used is disclosed. Embedded electronics are affixed to various components of a pharmaceutical system, thereby enabling the customer to download pertinent information about the component, such as lot number, date of manufacturer, test parameters, etc. Additionally, these electronics allow an array of functions and features to be implemented, such as integrity tests and diagnostics. The electronics in the pharmaceutical components utilize a technology that is not as susceptible to radiation and extreme temperatures as traditional electronics.
    Type: Application
    Filed: March 8, 2012
    Publication date: June 28, 2012
    Applicant: EMD MILLIPORE CORPORATION
    Inventor: Aaron Burke
  • Patent number: 8201997
    Abstract: An imaging temperature sensing system having at least one imaging component and at least one temperature sensing component, thus providing means for implementing temperature sensing and imaging within a single device.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 19, 2012
    Assignee: IPITEK, Inc.
    Inventor: Michael M. Salour
  • Patent number: 8177422
    Abstract: A system and method for automatic analysis of temperature transition data over an area of a sample surface. The system relies on the use of a microfabricated probe, which can be rapidly heated and cooled and has a sharp tip to provide high spatial resolution. The system also has fast x-y-z positioners, data collection, and algorithms that allow automatic analysis of and visualization of temperature transition data.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: May 15, 2012
    Assignee: Anasys Instruments
    Inventors: Kevin Kjoller, Khoren Sahagian, Doug Gotthard, Anthony Kurtz, Craig Prater, Roshan Shetty, Michael Reading
  • Patent number: 8162538
    Abstract: The surface density of projections formed on a thin metal film of a temperature-measuring member having the metal film having been subjected to a temperature profile is calculated with a number-calculating section according to image data fed into an arithmetic processing unit through an optical microscope, CCD camera, and I/O board. The maximum temperature of the object is determined with the temperature-calculating unit according to the surface density and data on the maximum temperature and surface density previously stored in memory. Furthermore, a temperature-measuring member constituted by a thin aluminum film arranged on a substrate is used. A reduction in the reflectivity of the film due to projections formed on the film surface according to a temperature profile to which the member has been subjected is measured. The maximum temperature in the temperature profile is estimated according to the reduction in reflectivity.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: April 24, 2012
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Masao Mizuno, Takayuki Hirano, Katsufumi Tomihisa
  • Patent number: 8152372
    Abstract: Described herein are methods and apparatuses for testing an integrated circuit chip including a thermal diode. According to various embodiments, a method for testing an integrated circuit chip including a thermal diode may comprise performing a test operation on the integrated circuit chip, and during the test operation, detecting a signal representative of a temperature sensed by a thermal diode embedded in the integrated circuit chip. Other embodiments may be described and claimed.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: April 10, 2012
    Assignee: Marvell International Ltd.
    Inventors: Hsui-Peng Peng, Jae-Hong Lee
  • Patent number: 8147136
    Abstract: A micromechanical device includes a micromechanical functional structure and an electromagnetic radiation heating associated with the micromechanical functional structure, which is formed to cause a spatially and temporally defined temperature or a spatially and temporally defined temperature course in the micromechanical functional structure.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 3, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V.
    Inventors: Jörg Heber, Thomas Klose, Thilo Sandner, Andreas Bergmann, Christian Gerwig, Thomas Knieling
  • Patent number: 8147130
    Abstract: A heat flux measurement device includes at least two thermocouples disposed within a front portion of the device at different axial distances from a front wall of the device. A correlation between the measured heat fluxes from the device over a period of time is used to estimate a fouling thickness on a wall, for example, a water wall of a radiant syngas cooler (RSC).
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: April 3, 2012
    Assignee: General Electric Company
    Inventors: Mohamed Sakami, James Michael Storey, Shobhana Mani, Fulton Jose Lopez
  • Patent number: 8136982
    Abstract: Counterfeit electronic devices are detected by comparing a thermal profile of the counterfeit device and an authentic device under predetermined operating conditions. A thermal profile for an authentic electronic device is recorded executing an instruction set over time, such as with static infrared images at predetermined times, video infrared images over a predetermined time period or temperature measurements made at predetermined locations of the electronic device. In one embodiment, a thermal profile indicates that a processor device has been used in the place of a field programmable grid array device. In an alternative embodiment, an electromagnetic profile is detected instead of or in addition to the thermal profile. The electromagnetic profile of an authentic device is used to create an expected profile for comparison with an electromagnetic profile of electronic devices under test.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: David B. Kumhyr, Yvonne M. Young, Glenn D. Johnson
  • Patent number: 8136988
    Abstract: A temperature sensor is described that includes a base, a first set of posts attached to the base having a first coefficient of thermal expansion, a second set of posts attached to the base and having a second coefficient of thermal expansion, and two substantially parallel conductive plates forming a capacitor. The first of the conductive plates is fixed to the first set of posts and the second of the conductive plates is fixed to the second set of posts. Temperature changes cause the first set of posts and the second set of posts to elongate at different rates, thereby changing a distance between the conductive plates and therefore the resulting capacitance. A system and method are also described for determining resonant frequency associated with the sensor which correlates to the temperature at the sensor when multiple sensors are networked across a system.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: March 20, 2012
    Assignee: The Boeing Company
    Inventors: William Preston Geren, Brian Kenneth Kormanyos, Kathryn A. Masiello, Gerardo Pena
  • Patent number: 8128281
    Abstract: A technique that is usable with a well includes changing the temperature of a local environment of a distributed temperature sensor, which is deployed in a region of the well and using the sensor to acquire measurements of a temperature versus depth profile. The region contains at least two different well fluid layers, and the technique includes determining the depth of a boundary of at least one of the well fluid layers based at least in part on a response of the temperature versus depth profile to the changing of the temperature.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 6, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Maxwell Richard Hadley, Dylan H. Davies
  • Patent number: 8118482
    Abstract: A system for changing the temperature (T1) of a fluid such as an on-demand water heater is disclosed. The system comprises an input for receiving the fluid (120) at a first temperature (T1) and an output for delivering the fluid at a second temperature (T2). A conduit connects the input to the output, and comprising means such as a heating element for altering the temperature of the fluid from the first temperature (T1) to the second temperature (T2). The system is characterized by the presence of one or more virtual sensors for estimating the fluid temperature in a given location within the conduit. The system provides accurate fluid temperature control without suffering from the slow responsiveness that usually mars sensor-based systems.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: February 21, 2012
    Assignee: Nestec S.A
    Inventors: Tim Palmer, Paul Winter
  • Patent number: 8117005
    Abstract: A system for monitoring the lyophilization process of a product in containers (4, 4a, 4b) arranged inside a lyophilization chamber, including a temperature measurement system (6) associated with each container housed inside (10) the lyophilization chamber, capable of surveying local temperature data for each container. The system includes a wireless communication system (8) for the surveyed temperature data and a processing module (16) for said data, located externally to the lyophilization chamber, programmed to determine at least one parameter indicative of the progress of the lyophilization process not measured by the measurement system, through the use of a predetermined representation model of the process, capable of correlating a local temperature value of the container with the parameter.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: February 14, 2012
    Assignees: Politecnico Di Torino, Universite Claude Bernard Lyon 1
    Inventors: Antonello Barresi, Giancarlo Baldi, Marco Parvis, Alberto Vallan, Salvatore Velardi, Hassan Hammouri
  • Patent number: 8109669
    Abstract: Methods and systems for determining a radial differential metrology profile of a substrate heated in a process chamber is provided. Methods and systems for determining an angular or azimuthal differential metrology profile of a rotating substrate in a processing chamber are also provided. The radial and azimuthal differential metrology profiles are applied to adjust a reference metrology profile to provide a Virtual metrology of the process chamber. The virtual metrology is applied to control the performance of the process chamber.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 7, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Aderhold, Jallepally Ravi, Balasubramanian Ramachandran, Aaron M. Hunter, Ilias Iliopoulos
  • Patent number: 8109670
    Abstract: A portable temperature sensing probe (10) having a plurality of thermocouples (18) is inserted into a tank (16) mounted on a truck or other receptacle at the time of loading a hot liquid, e.g., molten sulfur (14). The probe and at least a portion of the associated wiring or leads are attached to the loading pipe (22) and/or discharge nozzle, and the probe is inserted into the interior of the tank before the molten sulfur (14) is discharged. The signals from the plurality of thermocouples (18) are amplified and the corresponding temperature information is transmitted to a display and control device (30). Due to the significant differential between the temperature of the rising molten sulfur (14) and the vapors in the tank overhead space (26), the signals generated indicate which of the thermocouple (18) are in contact with molten sulfur (14) or the vapor zone (32). The generated signals adjust the shut-off valve (38) that controls the flow of molten sulfur (14) into the tank (16).
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: February 7, 2012
    Assignee: Saudi Arabian Oil Company
    Inventor: Adel S. Al-Misfer
  • Patent number: 8104951
    Abstract: Methods and apparatus for measuring substrate uniformity is provided. The invention includes placing a substrate in a thermal processing chamber, rotating the substrate while the substrate is heated, measuring a temperature of the substrate at a plurality of radial locations as the substrate rotates, correlating each temperature measurement with a location on the substrate, and generating a temperature contour map for the substrate based on the correlated temperature measurements. Numerous other aspects are provided.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Aderhold, Andreas G. Hegedus, Nir Merry
  • Patent number: 8104954
    Abstract: The present invention discloses a method and apparatus for measuring the temperature field on the surface of casting billet/slab, including: a thermal imager, an infrared radiation thermometer, a mechanical scanning unit, an image and data processing system; the thermal imager, the infrared radiation thermometer and the mechanical scanning unit are respectively connected to the image and data processing system; the infrared radiation thermometer is installed on the mechanical scanning unit and can measure the temperature of casting billet/slab surface by scanning; the thermal imager can measure the temperature of a certain area on the surface of casting billet/slab by thermal imaging.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 31, 2012
    Assignees: Northeastern University, Shenyang Taihe Metallurgy Measurement & Control Technology Co., Ltd.
    Inventors: Zhi Xie, Zhenwei Hu, Ying Ci, Da Zhang
  • Patent number: 8096705
    Abstract: A method of estimating temperature of a transient nature of a thermal system, including, without a temperature measurement being made available, determining a drive current and thermal parameters of the thermal system.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: January 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sri M. Sri-Jayantha, Hien P. Dang, Arun Sharma
  • Patent number: 8075181
    Abstract: A thermal monitoring sheet measures surface temperature distributions of large areas, even over large, contoured surfaces. The sheet incorporates conduits that terminate or intersect at temperature measurement locations with a fixed relative arrangement to form a two-dimensional grid for sensing temperature distributions.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: December 13, 2011
    Assignee: The Regents of the University of California
    Inventors: Paul Rath Stauffer, Celestino John Gaeta, Richard Alan Forber, Doug Peder Bonnell
  • Publication number: 20110280277
    Abstract: Systems and methods for extending the range of a fiber optic DTS system are provided. In one respect, a method may provide steps for transmitting, in a first time period, an optical signal at a first energy level through an optical fiber, collecting backscatter signals as a result of the first transmission, adjusting the first energy level to a second energy level, transmitting, in an additional time period, the adjusted optical signal through the optical fiber, collecting backscatter signals as a result of the adjusted transmissions, and using a portion of the collected backscatter as a result of the first transmission and a portion of the collected backscatter as a result of the additional transmissions, determining one or more parameter profiles, such as a temperature profile.
    Type: Application
    Filed: January 17, 2009
    Publication date: November 17, 2011
    Inventors: Lee Chung, Kalar Kent, Mahesh Ajgaonkar, Michael Sanders
  • Patent number: 8047709
    Abstract: A method and system for detecting the location of an air/sea interface on an Instrumented Tow Cable (ITC) when distributed temperature measurements are provided. The air/sea interface is determined by estimating the variance of observed temperature in the proximity of each measurement cell. The method and system described herein uses a sliding variance across the entire cable length. The variance of the cell or cells in the area of the interface has been found to be large compared to other cells. Accordingly, the location of the air/sea interface is determined based on the location of the peak variance. The location of the air/sea interface is used in determining the catenary of the ITC.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 1, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Mark J. Vaccaro
  • Patent number: 8039729
    Abstract: A thermocouple mounting assembly is provided. A plurality of retainers includes portions that are interengageable, some portions carried by a body and some portions carried by a thermocouple assembly to effect releasable mounting of a thermocouple assembly to a body. The retainers are constructed and shaped to provide for their formation by a molding process such as die-casting or investment casting, eliminating or substantially eliminating the need for machining of the retainer components. Preferably, there is an audible sound, e.g., click, present to signify when the retainers are interengaged.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: October 18, 2011
    Assignee: Robertshaw Controls Company
    Inventor: Can Trong Nguyen
  • Patent number: 8038343
    Abstract: A novel computer program product and method for thermally characterizing a device used for cooling an electronic device is disclosed. A cooling device, being operated, is thermally coupled to a heat pipe having a surface to receive a test chip. A heater is patterned on a circuitry side of the test chip. The heater is separate from operational circuitry of the test chip. A localized heat source is applied to at least one region on a test chip thermally coupled to the heat pipe to locally heat more than one region on a second surface of the test chip to test more than one hot spot. The second surface is the circuitry side of the test chip. The heater provides a bias heat to the test chip, independent of operating the test chip, while the localized heat source is selectively applied directly to the test chip. A temperature detector is used to measure a temperature distribution on the second surface of the test chip.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt
  • Publication number: 20110243183
    Abstract: A temperature measurement device includes a first surface temperature measurement part performing a measurement to be used as a first surface temperature; a first reference temperature measurement part performing a measurement to be used as a first reference temperature; a first external air temperature measurement part performing a measurement to be used as a first external air temperature; a second surface temperature measurement part performing a measurement to be used as a second surface temperature; a second reference temperature measurement part performing a measurement to be used as a second reference temperature; a second external air temperature measurement part performing a measurement to be used as a second external air temperature; a deep-part temperature computation part computing the deep-part temperature of a subject to be measured; and an external air temperature computation part computing the external air temperature of the external air.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 6, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Kenji GOTO
  • Patent number: 8029186
    Abstract: What is disclosed is an apparatus for determining the cooling characteristics of a cooling device used for transferring heat from an electronic device. The apparatus comprising a cooling device thermally coupled to a heat pipe. The heat pipe having an exposed surface for the selective application of heat thereon. A localized heat source is selectively applied to at least one region of the exposed surface. The heat source preferably capable of being varied both positionally relative to the exposed surface and in heat intensity. A heat shield is preferably positioned around the exposed surface of the heat pipe to isolate the operational cooling device from the localized heat source. A temperature detector repeatedly measures a temperature distribution across the exposed surface while the cooling device is in a heat transfer mode. The temperature distribution is then used to thermally characterize the cooling device.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt
  • Publication number: 20110236518
    Abstract: A method of measuring the wall temperature of a container blank, including the following operations: inserting a temperature probe into the blank in motion, upon completion of the operation of heating the blank in an oven; maintaining the probe in the blank in motion for a predetermined time; making a temperature measurement by the probe maintained in the blank without contact with the inner wall of the blank; and storing the temperature or the temperature profile thus measured.
    Type: Application
    Filed: September 16, 2009
    Publication date: September 29, 2011
    Applicant: SIDEL PARTICIPATIONS
    Inventors: Ertan Cetinel, Thierry Deau, Guy Feuilloley
  • Patent number: 8027798
    Abstract: A method and apparatus are provided for calibrating digital thermal sensors. A processor chip with a plurality of digital thermal sensors receives an analog voltage. A test circuit coupled to the processor chip receives a clock signal and a register coupled to the test circuit outputs a value on each clock cycle to a digital thermal sensor in the plurality of digital thermal sensors. The digital thermal sensor transitions an output state in response to the value of the register received in the digital thermal sensor equaling a temperature threshold of the digital thermal sensor. The value of the register at the point of transition is used to calibrate the digital thermal sensor. An incrementer increments the value of the register on each clock cycle in response to the value of the register received in the digital thermal sensor failing to equal the temperature threshold of the digital thermal sensor.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Charles R. Johns, Mack W. Riley, David W. Shan, Michael F. Wang
  • Patent number: 8011827
    Abstract: The present invention provides a dual-probe thermally compensated fluorescence decay rate temperature sensor capable of measuring the true temperature of a sample surface and its associated method of use.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 6, 2011
    Assignee: University of South Florida
    Inventor: Nicholas Djeu
  • Publication number: 20110211612
    Abstract: A system for determining a temperature of a medium, such as water, in a volume, such as a water heater tank. The system includes a temperature sensor array and a variable frequency voltage supply. A first temperature sensing unit of the temperature sensor array includes a temperature sensor in parallel with a capacitor. The capacitor is selected such that the impedance is low relative to the resistance of the temperature sensor at frequencies above a threshold and high at frequencies below a threshold. A second temperature sensing unit of the array includes a second temperature sensor. The temperatures sensed by the various temperature sensors in the array are determined by selectively varying the frequency of the voltage supply.
    Type: Application
    Filed: February 18, 2011
    Publication date: September 1, 2011
    Inventor: Brian T. Branecky
  • Patent number: 8002462
    Abstract: The present disclosure relates to thermal profiling systems for hypothermic and/or ablative energy systems and methods of their use. According to an aspect of the present disclosure, a system for profiling a thermal or electromagnetic treatment system, including an energy delivery probe, is provided. The profiling system includes a bath including a fitting supported on a side wall thereof configured for selective insertion of a distal tip of probe therethrough; a test gel disposed within the bath; and at least one piece of a reactive medium submerged in the test gel.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 23, 2011
    Assignee: Covidien AG
    Inventors: Ronald J. Podhajsky, Arlan J. Reschke, Anna Belous
  • Patent number: 7976216
    Abstract: The temperature of an object such as a semiconductor wafer that includes silicon can be determined based on the variation of the optical absorption coefficient of silicon with temperature. Temperatures above about 850° C., can be found by measuring phenomena that are affected by the magnitude of the optical absorption coefficient, especially at wavelengths >˜1 ?m. Phenomena could include measuring light reflected, transmitted, emitted, absorbed, or scattered by the wafer and deriving the absorption coefficient from the measurements and then deriving temperature from the absorption coefficient. Temperature could be determined from a model relating phenomena directly to temperature, the model constructed based on absorption behavior and techniques discussed herein. The resulting temperature could be used to calibrate or control a rapid thermal processing chamber or other apparatus.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 12, 2011
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 7976217
    Abstract: A screening device and a method are described herein which can automatically handle and measure (interrogate) a plurality of sensor carriers (i.e., multiwell plates, microplates) with multi-dimensionally arranged, temperature-compensated or temperature-compensatable optical sensors, while maintaining a substantially constant temperature gradient for a relatively long period of time around the optical sensors where temperature compensation has been performed on the sensor carriers.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: July 12, 2011
    Assignee: Corning Incorporated
    Inventors: Mark F. Krol, Thomas C. Moore, David A. Pastel, Gordon M. Shedd
  • Publication number: 20110150032
    Abstract: A method for measuring the temperature at various locations in a furnace adapted to heat-treat a metal part commences by placing one or more devices at various location within the furnace. Each device is an inorganic/metallic skeletal structure residual from firing a mixture of binder and one or more of inorganic or metallic particles at a temperature that chars the binder to form the inorganic/metallic skeletal structure of a determined shape. A physical parameter of the skeletal structure determined shape is monitored after firing of the furnace. Then, the monitored physical parameter is compared to a plot of temperature versus the physical parameter to determine the temperature of the furnace at the various locations.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 23, 2011
    Inventors: Gary Childress, James Litzinger, Thomas McInnerney
  • Patent number: 7953574
    Abstract: In some embodiments, an information system is divided into sections, with one or more first computers located in a first section and one or more second computers located in a second section, including a first temperature sensor sensing a temperature condition for the first section and a second temperature sensor sensing a temperature condition for the second section. In some embodiments, when heat distribution determined from the first and second temperature conditions is not in conformance with a predetermined rule for heat distribution, the information system is configured to relocate a portion of the processing load of the first computers to the second computers, or vice versa, for bringing the heat distribution into conformance with the rule. In some embodiments, the effect of other equipment, such as storage system or switches in the sections is also considered, and loads on this equipment may also be relocated between sections.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: May 31, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Arakawa, Yoshiki Kano
  • Patent number: 7946760
    Abstract: In one embodiment, the invention is a method and apparatus for dynamic measurement of across-chip temperatures. One embodiment of a method for measuring temperatures across an integrated circuit chip includes generating a plurality of surface images of the integrated circuit chip, deriving power values across the integrated circuit chip from the surface images, computing the temperatures across the integrated circuit chip in accordance with the power values, and outputting the temperatures.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventor: Kerry Bernstein
  • Patent number: 7946763
    Abstract: A compact resistive thermal sensor is provided for an integrated circuit (IC), wherein different sensor components are placed on different layers of the IC. This allows the lateral area needed for the sensor resistance wire on any particular IC layer to be selectively reduced. In a useful embodiment, a plurality of first linear conductive members are positioned in a first IC layer, in spaced-apart parallel relationship with one another. A plurality of second linear conductive members are similarly positioned in a second IC layer in spaced-apart parallel relationship with one another, and in orthogonal relationship with the first linear members or in parallel with existing wiring channels of the second IC layer. Conductive elements respectively connect the first linear members into a first conductive path, and the second linear members into a second conductive path.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Aquilur Rahman, Lloyd Andre Walls
  • Patent number: 7941283
    Abstract: Some embodiments of the present invention provide a system that determines a flow rate of air along an airflow path in a computer system. During operation the system monitors a first temperature profile from a first temperature sensor located in a first position in the airflow path, and monitors a second temperature profile from a second temperature sensor located in a second position in the airflow path, wherein the first position is upstream in the airflow path from the second position, and wherein the first position and the second position are separated by a predetermined distance along the airflow path. Next, the system computes a cross-power spectral density based on the first temperature profile and the second temperature profile. Then, the system determines a flow rate of air in the computer system based on the cross-power spectral density.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 10, 2011
    Assignee: Oracle America, Inc.
    Inventors: Kenny C. Gross, Kalyanaraman Vaidyanathan
  • Publication number: 20110076207
    Abstract: A process for monitoring the condition of a guard bed catalyst material used in an adiabatic reactor to thereby protect a primary reaction catalyst and, in particular, the present invention is intended to be applied to a guard bed used prior to the heterogeneous catalyzed esterification of free fatty acids with low molecular weight monohydric alcohols, especially methanol, to produce fatty acid alkyl esters for biodiesel production.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Applicant: LANXESS SYBRON CHEMICALS INC.
    Inventors: Anthony Tirio, George Dimotsis
  • Patent number: 7890280
    Abstract: A method and system for determining a physical property as a function of position. A data series including data point from one or more channels is obtained by frequency modulation continuous wave. A number of data points correspond to Nda different values of frequency of modulation. One or more processing steps are performed including at least part of said primary data series to obtain at least one secondary data series comprising N (N>Nda) data points from the values of frequency of modulation. The secondary data series from frequency domain is transformed to obtain at least one back scattering curve in space domain, and optionally the back scattering curve(s) to one or more physical properties as a function of position.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: February 15, 2011
    Assignee: LIOS Technology GmbH
    Inventor: Martin Fomme
  • Patent number: 7883266
    Abstract: Method and apparatus are provided for detecting a defect in a cold plate, configured for cooling an electronics component. The method includes: establishing a first fluid flow through the cold plate, the first fluid flow being at a first temperature; impinging a second fluid flow onto the interface surface, the second fluid flow being at a second temperature, the first temperature and the second temperature being different temperatures; obtaining an isotherm mapping of the interface surface of the cold plate while the first fluid flow passes through the cold plate and the second fluid flow impinges onto the interface surface; and using the isotherm mapping to determine whether the cold plate has a defect. In one embodiment, an infrared-transparent manifold is employed in impinging the second fluid flow onto the interface surface, and the isotherm mapping of the interface surface is obtained through the infrared-transparent manifold.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Michael J. Domitrovits, Michael J. Ellsworth, Jr., Prabjit Singh
  • Patent number: 7874725
    Abstract: An optical fiber temperature distribution measuring apparatus and a method for measuring optical fiber temperature distribution, provided with a light source for inputting a pulse light to an optical fiber to be measured, a signal detecting unit for detecting a received light intensity of a predetermined light included in a backscattering light generated by an input of the pulse light in the optical fiber to be measured, and a signal processing unit for calculating a value corresponding to a variation of the received light intensity due to a hydrogen molecular absorption of the optical fiber to be measured based on the received light intensity of the predetermined light, to compensate the received light intensity of the predetermined light corresponding to a temperature of the optical fiber to be measured based on the value.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: January 25, 2011
    Assignees: J-Power Systems Corporation, Sumitomo Electric Industries, Ltd.
    Inventors: Hidehiko Komeda, Tsuyoshi Igi, Yasushi Koyano, Fumiyoshi Ohkubo, Kazuaki Negishi
  • Patent number: 7862229
    Abstract: A system, device, and method for minimizing x-axis and/or y-axis offset shift due to internally produced as well as externally produced on chip temperature imbalances. At least one temperature gradient canceling device is disposed on a substrate including a temperature gradient sensitive device having at least one pair of sensors. Voltage signals generated by the temperature gradient canceling devices can be combined with voltage signals generated by each of the pair of sensors to account for the offset.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: January 4, 2011
    Assignee: Memsic, Inc.
    Inventors: Alexander Dribinsky, Gregory P. Pucci, Yongyao Cai, Mathew Varghese, Gary J. O'Brien
  • Patent number: 7862231
    Abstract: An apparatus for testing temperature includes a plurality of thermocouples, a plurality of relays, a ground circuit, a compensation circuit, a power supply circuit, a switch circuit, and an MPU. The thermo-couples samples temperatures at different locations in a CNC machine, each thermo-couple is connected to a corresponding relay and selectively connected to the switch circuit by turning on or off the corresponding relay, the compensation circuit includes a cold junction compensator and a first relay, the ground circuit includes a ground terminal and a second relay, the power circuit includes a power supply and a third relay. The first, second, and third relays selectively turn on or off to connect the cold junction compensator, the ground terminal, or the power supply to the switch circuit.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: January 4, 2011
    Assignee: Foxnum Technology Co., Ltd.
    Inventor: Hsing-Chang Liu
  • Publication number: 20100329302
    Abstract: There is provided a lighting apparatus that is capable of accurately measuring the temperature of an optical member that transmits therethrough light emitted from a light source without blocking the optical path of the light.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 30, 2010
    Applicant: NIKON CORPORATION
    Inventor: Norifumi Nakagawa
  • Patent number: 7857508
    Abstract: In a method for monitoring the functionality of a temperature sensor that can deliver an electrical signal as a function of the measured temperature and is disposed, in particular, in the cooling water circuit of an internal combustion engine, the persistence of the temperature sensor in the high signal range is made possible by a method encompassing the following steps: Characterizing the sensor as possibly faulty if the sensor indicates, upon engine shutdown, at least a maximum value of the cooling fluid temperature; determining a first gradient of the cooling fluid temperature, measured by the possibly faulty sensor, up to a first point in time after engine shutdown, and characterizing the sensor as fault-free if the gradient exceeds a minimum value; determining a second gradient of the cooling fluid temperature, measured by the possibly faulty sensor, between the point in time and a point in time after engine shutdown, and characterizing the sensor as fault-free if the second gradient exceeds a minimum va
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: December 28, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Foerstner, Andreas Eckert, Siegfried Goetz, Joerg Neumann
  • Publication number: 20100319679
    Abstract: An exemplary heat-distribution sensor includes a base and a number of thermocouples. The base includes a spherical surface and defines a number of receiving holes in the spherical surface. Each thermocouple has a sensing end which is received in a corresponding receiving hole and is configured for sensing heat generated by sunlight rays impinging on the sensing end.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 23, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIANG-HUNG CHEN
  • Patent number: 7841768
    Abstract: A sensor arrangement is provided for determining an interior temperature in a motor vehicle, which sensor arrangement is at least one part of an air-conditioning operating part, comprising a closed housing having at least one front wall and one rear wall, wherein the front wall is manufactured from a material which ensures satisfactory thermal transfer and the housing and is filled with a thermally insulating means, further comprising a first temperature sensor which is fastened to a rear side of the front wall and a second temperature sensor which interacts with the first temperature sensor at least in relation to an evaluation of the interior temperature, wherein the at least second temperature sensor is fastened on an inner side of the rear wall which faces the rear side of the front wall.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: November 30, 2010
    Assignee: PREH GmbH
    Inventors: Johann Regensburger, Georg Bauer, Andreas Kramlich, Michael Reiser, Wolfgang Kuechler
  • Publication number: 20100296546
    Abstract: The invention relates to an optical element for guiding and forming a laser beam, and to a method for recording beam parameters, particularly in a laser system, comprising a carrier substrate (40) and a coating (39), which is applied to at least one side of the carrier substrate (40), and comprising at least one temperature sensor (38). The temperature sensor (38) is comprised of a number of pixels arranged in a matrix, and each respective pixel has at least one temperature-sensitive element (39). The at least one temperature-sensitive element (39) of the pixel is constructed inside the carrier substrate (40) made of silicon.
    Type: Application
    Filed: April 3, 2006
    Publication date: November 25, 2010
    Applicant: TRUMPF WERKZEUGMASCHINEN GMBH + CO. KG
    Inventors: Jürgen-Michael Weick, Armin Horn, Gerhard Hammann, Peter Laitenberger, Nick Collier, Ross Peter Jones
  • Patent number: 7832925
    Abstract: Apparatus and method are provided for facilitating simulation of heated airflow exhaust of an electronics subsystem, electronics rack or row of electronics racks. The apparatus includes a thermal simulator, which includes an air-moving device and a fluid-to-air heat exchanger. The air-moving device establishes airflow from an air inlet to air outlet side of the thermal simulator tailored to correlate to heated airflow exhaust of the electronics subsystem, rack or row of racks being simulated. The fluid-to-air heat exchanger heats airflow through the thermal simulator, with temperature of airflow exhausting from the simulator being tailored to correlate to temperature of the heated airflow exhaust of the electronics subsystem, rack or row of racks being simulated. The apparatus further includes a fluid distribution apparatus, which includes a fluid distribution unit disposed separate from the fluid simulator and providing hot fluid to the fluid-to-air heat exchanger of the thermal simulator.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: November 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Matthew R. Archibald, Richard C. Chu, Hendrik F. Hamann, Madhusudan K. Iyengar, Roger R. Schmidt
  • Publication number: 20100286945
    Abstract: A method is provided for estimating a temperature distribution history in the case of line-heating flat-plate steel by high frequency induction.
    Type: Application
    Filed: November 21, 2008
    Publication date: November 11, 2010
    Inventors: Yoshihiko Tango, Morinobu Ishiyama, Naoki Osawa, Kiyoshi Hashimoto, Junji Sawamura
  • Patent number: 7828478
    Abstract: A thermal detecting device for sensing temperature at multiple locations proximate to the detecting device is provided. The detecting device has a pair of infrared detectors each configured to measure temperature of two locations by receiving infrared energy of the two locations. A housing encloses the pair of infrared detectors. The housing is configured with an aperture to allow the infrared energy of the two locations to be received by the pair of infrared detectors. A reflective mirror or two mirrors focus the infrared energy of the two locations towards the pair of infrared detectors. The detecting device may be configured to determine if there is a temperature differential at a location as the housing moves with respect to the location.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 9, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Siddharth S. Rege, Joseph E. Harter, Jr., Ronald M. Taylor