Encased With Nonfuel Component Patents (Class 376/412)
  • Patent number: 11728043
    Abstract: The disclosure relates to a high temperature gas-cooled reactor core including a plurality of elongate fuel elements arranged in the form of a multi-lobed prism. Each prismatic fuel element includes an elongate prismatic body and a plurality of elongate fuel channels located within the prismatic body, wherein the cross-sectional area of each prismatic fuel element in a plane parallel to the bases of the prismatic fuel element is no more than 800 cm2 and wherein a ratio of the height of the prismatic body to its greatest width is greater than or equal to 3.0.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: August 15, 2023
    Assignee: U-BATTERY LIMITED
    Inventors: Kornelia Wolodzko, Timothy James Abram
  • Patent number: 10658086
    Abstract: Fuel assemblies include an outer channel having a physical configuration optimized for a position of the fuel assembly within a core of a nuclear reactor. The position of the fuel assembly with respect to an employed control blade in the nuclear reactor determines if the outer channel may be thickened, reinforced, and/or fabricated of Zircaloy-4 or similar distortion-resistant material, so as to reduce or prevent distortion of the channel against the control blade, or thinned so as to increase water volume and enhance reactivity in the assembly. Reactor cores having configured fuel assemblies include fuel assemblies having different outer channels. Methods include determining operational characteristics of the fuel assembly, including likelihood of being placed directly adjacent to an employed control blade, and physically selecting or modifying the outer channel of the fuel assembly based thereon.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: May 19, 2020
    Assignee: Global Nuclear Fuel—Americas, LLC
    Inventors: Jason B. Ingraham, Gerald Dean Kvaall, Jr., Paul E. Cantonwine, Michael W. Thomas, William C. Cline
  • Patent number: 9574257
    Abstract: The invention relates to a powder of an alloy based on uranium and molybdenum in a metastable ? phase, which is formed of particles which have an elongation index at least equal to 1.1, a non-zero closed porosity value and which are composed of grains having a molybdenum content, for which the variations within the same grain are of at most 1% by mass. It also relates to a method allowing preparation of this alloy powder as well as to the use of said powder for manufacturing nuclear fuels and targets for producing radioisotopes. Applications: Manufacturing of nuclear fuels, notably for experiment nuclear reactors; manufacturing of targets for producing radioisotopes, notably for the medical industry.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: February 21, 2017
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, UNIVERSITE DE RENNES 1
    Inventors: Jerome Allenou, Francois Charollais, Meryl Brothier, Xaviere Iltis, Olivier Tougait, Mathieu Pasturel, Henri Noel
  • Patent number: 9042507
    Abstract: A sintered fuel pellet for a water nuclear reactor fuel rod including a peripheral wall extending along a central axis and two end faces. At least one of the end faces includes at least a first chamfer extending from the peripheral wall towards the central axis with a first non-zero slope with respect to a plane perpendicular to the central axis and a second chamfer extending from the first chamfer towards the central axis with a second non-zero slope with respect to a plane perpendicular to the central axis, wherein the first slope is different from the second slope.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 26, 2015
    Assignee: AREVA NP
    Inventors: Wolfgang Doerr, Andreas Hoff, William Jentzen, Dave Curran, Alain Chotard, Pascal Deydier
  • Patent number: 9008259
    Abstract: A sheathed, annular metal fuel system is described. A metal fuel pin system is described that includes an annular metal nuclear fuel alloy. A sheath may surround the metal nuclear fuel alloy, and a cladding may surround the sheath. A gas plenum may also be present. Mold arrangements and methods of fabrication of the sheathed, annular metal fuel are also described.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: April 14, 2015
    Assignee: Advanced Reactor Concepts LLC
    Inventor: Leon C. Walters
  • Patent number: 8989339
    Abstract: Disclosed is a zirconium alloy material having high corrosion resistance regardless of thermal history during its manufacturing process. The zirconium alloy material is obtained by providing a zirconium alloy containing on the mass basis: 0.001% to 1.9% of Sn, 0.01% to 0.3% of Fe, 0.01% to 0.3% of Cr, 0.001% to 0.3% of Ni, 0.001% to 3.0% of Nb, 0.027% or less of C, 0.025% or less of N, 4.5% or less of Hf and 0.16% or less of O with the remainder being inevitable impurities and zirconium, being formed of a bulk alloy and a surface layer, in which the surface layer has a plastic strain of 3 or more or a Vickers hardness of 260 HV or more and an arithmetic mean surface roughness Ra of 0.2 ?m or less.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: March 24, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Ryo Ishibashi, Masahisa Inagaki, Hideo Soneda, Naoya Okizaki, Tomomi Nakamura, Yoshikazu Todaka, Hiroaki Azuma, Nozomu Adachi, Minoru Umemoto
  • Patent number: 8953731
    Abstract: In a method of producing isotopes in a light water power reactor, one or more targets within the reactor may be irradiated under a neutron flux to produce one or more isotopes. The targets may be assembled into one or more fuel bundles that are to be loaded in a core of the reactor at a given outage. Power operations in the reactor irradiate the fuel bundles so as to generate desired isotopes, such as one or more radioisotopes at a desired specific activity or stable isotopes at a desired concentration.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: February 10, 2015
    Assignee: General Electric Company
    Inventors: Russell Morgan Fawcett, Randy Peter Gonzales, Russell Patrick Higgins, Robert Bryant James, Michael Thomas Kiernan, William Earl Russell, II, Steven Bruce Shelton, David Grey Smith, Russell Edward Stachowski, Lukas Trosman
  • Publication number: 20140334595
    Abstract: Nuclear fuel assemblies include non-symmetrical fuel elements with reduced lateral dimensions on their outer lateral sides that facilitate fitting the fuel assembly into the predefined envelope size and guide tube position and pattern of a conventional nuclear reactor. Nuclear fuel assemblies alternatively comprise a mixed grid pattern that positions generally similar fuel elements in a compact arrangement that facilitates fitting of the assembly into the conventional nuclear reactor.
    Type: Application
    Filed: November 15, 2013
    Publication date: November 13, 2014
    Applicant: Thorium Power, Inc.
    Inventors: Sergey Mikhailovich BASHKIRTSEV, Alexey Glebovich Morozov, Aaron Totemeier
  • Publication number: 20140307844
    Abstract: Example embodiments are directed to a fuel rod having end pieces on either end containing irradiation targets. Example embodiment end pieces may contain materials that may be converted to desired isotopes when exposed to neutron flux encountered at the end piece position. Example embodiment end pieces may be fabricated from the materials or may otherwise house the materials. Example embodiment end pieces may mate with a variety of full-length and/or part-length fuel rods and may function as upper and/or lower end plugs, mating the fuel rods to upper and/or lower tie plates.
    Type: Application
    Filed: December 18, 2007
    Publication date: October 16, 2014
    Inventors: William Earl Russell, II, David Grey Smith
  • Publication number: 20140294135
    Abstract: The invention relates to a powder of an alloy comprising uranium and molybdenum in ?-metastable phase, a composition of powders comprising this powder, and the uses of said alloy powder and of said composition of powders. The alloy powder comprising uranium and molybdenum in ?-metastable phase according to the invention is formed of particles comprising a nucleus which consists of said alloy, and which is covered with a layer of alumina positioned in contact with this nucleus. Applications: manufacture of nuclear fuel elements and, in particular, of fuel elements for experimental nuclear reactors; manufacture of targets intended for production of radioelements, which are useful in particular for medical imaging, such as technetium 99m.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 2, 2014
    Applicant: COMMISSARIAT A L'ENRGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Jerome Allenou, Xavier Iltis, Francois Charollais, Olivier Tougait, Mathieu Pasturel, Stephanie Deputier
  • Patent number: 8842800
    Abstract: Example embodiments may include a nuclear fuel rod and/or segment design using fuel element spacers. Fuel element spacers may be placed at intervals within fuel rods and/or segments in order to manipulate operating characteristics of the fuel rods and/or segments and/or decrease consequences of fretting of the fuel rod and/or segment. Example methods may include using fuel rods and/or segments having fuel element spacing elements by adjusting intervals of the spacing elements so as to affect the mechanical, neutronic, and/or thermal properties of the fuel rod and/or segment.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: September 23, 2014
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: William Earl Russell, II, Christopher J. Monetta, David Grey Smith
  • Patent number: 8831166
    Abstract: Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350° C. to 750° C., and a second additive having a solubility in zirconium over the temperature range extending from 350° C. to 750° C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350° C. to 750° C. and a solubility of the second additive in the first additive over the temperature range extending from 350° C. to 750° C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350° C. to 750° C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 9, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Robert Dominick Mariani
  • Publication number: 20140247915
    Abstract: A method for producing a wear-resistant and corrosion-resistant stainless steel part for a nuclear reactor is provided. This method comprises steps of providing a blank in stainless steel; shaping the blank; finishing the blank to form the part in stainless steel, the finishing step allowing the prevented onset or the removal of work hardness on the outer surface of the part; hardening the outer surface of the part via diffusion of one or more atomic species.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 4, 2014
    Applicant: AREVA NP
    Inventor: Dominique Hertz
  • Publication number: 20140185731
    Abstract: A uranium dioxide nuclear fuel pellet includes metallic microcells having a high protection capacity for fission products and a high thermal conductivity simultaneously arranged in the nuclear fuel pellet to trap fission products, such that extraction of fission products may be restrained in a normal operation condition and that the temperature of a nuclear fuel may be lowered to enhance the performance of the nuclear fuel, only to restrain extraction of radioactive fission products toward the environment in an accident condition to enhance a stability of the nuclear fuel pellet, and a fabricating method thereof.
    Type: Application
    Filed: October 23, 2013
    Publication date: July 3, 2014
    Applicant: Korea Atomic Energy Research Institute
    Inventors: Keon-Sik KIM, Yang-Hyun KOO, Jong-Hun KIM, JangSoo OH, Young Woo RHEE, Dong-Joo KIM, Jae-Ho YANG
  • Publication number: 20140185730
    Abstract: A uranium dioxide nuclear fuel pellet has about 50 to about 400 ?M (with respect to a 3-dimentional size) microcells formed of a ceramic material having a chemical attraction with fission products generated in the nuclear fuel pellet to absorb and trap the fission products, such that the extraction of the fission product may be retrained in a normal operation condition and that the performance of the nuclear fuel may be enhanced by mitigating PCI. In addition, highly radioactive fission products including Cs and I having a large generation amount or a long half-life enough to affect the environments can be trapped in the pellet in an accident condition, without being released outside.
    Type: Application
    Filed: October 22, 2013
    Publication date: July 3, 2014
    Applicants: Korea Hydro & Nuclear Power Co., Ltd, Korea Atomic Energy Research Institute
    Inventors: Keon-Sik KIM, Yang-Hyun KOO, Jong-Hun KIM, JangSoo OH, Young Woo RHEE, Dong-Joo KIM, Jae-Ho YANG
  • Publication number: 20140169516
    Abstract: Nuclear fuel rods have cladding or fuel with physical parameters that substantially change based on axial position within a rod. Parameters include inner and outer cladding and fuel diameters or widths, volume, mass, internal volume, thickness, rod width, etc. Parameters are selected and implemented based on calculated operating conditions and/or desired fuel response at an axial position across an entire rod length and/or fuel assembly position, including both fueled regions and non-fueled zones. Desired parameters can be achieved through fabrication or later alterations. Parameter variations versus axial position and fuel assembly position are intentional and achieve desired fuel properties and responses, such as optimized fuel mass, pressure drop, over-pressurization protection, etc. Fuel rods can be compatible with existing fuel types and replace conventional fuel rods therein.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: GLOBAL NUCLEAR FUEL - AMERICAS, LLC
    Inventors: Randall J. Dunavant, David Grey Smith, Peter R. Diller
  • Patent number: 8711997
    Abstract: A reactor core is immersed in a liquid metal coolant in a core barrel of a liquid metal cooled reactor. The reactor core includes a plurality of fuel assemblies contained in the core barrel, a neutron absorber that absorbs a neutron in the reactor core, and a neutron moderator that moderates a neutron therein so as to control a reactivity of the reactor core. The neutron absorber and the neutron moderator constitute a mixture contained in reactivity control assemblies of the reactor core in the liquid metal coolant prior to immersion of the reactor core. The neutron moderator is composed of zirconium hydride.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsugio Yokoyama, Hisato Matsumiya, Yasushi Tsuboi
  • Patent number: 8699655
    Abstract: The present invention relates to tubular elements, such as fuel assembly tubes, which are designed to be used in high pressure and high temperature water in nuclear reactors, such as pressurized water nuclear reactors. In particular, the present invention relates to a method of improving wear resistance and corrosion resistance by depositing a protective coating having a depth of from about 5 to about 25 ?m on the surface of the tubular elements. The coating is provided by nitriding the tubular element at a temperature of from about 400° C. to about 440° C. The nitridation of the tubular element can be carried out for a duration of from about 12 hours to about 40 hours.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Westinghouse Electric Company, LLC
    Inventor: Nagwa Mahmoud Elshaik
  • Patent number: 8675809
    Abstract: An article made by applying a burnable poison onto the cladding of a nuclear fuel rod, which involves providing a nuclear fuel rod and at least one application device, rotating the nuclear fuel rod, optionally removing one or more oxides and/or surface deposits on the outer surface of the nuclear fuel rod by spraying an abrasive material onto the nuclear fuel rod via the application device while adjusting the position of the application device in relation to the nuclear fuel rod, and applying burnable poison particles onto the outer surface of the nuclear fuel rod by spraying the burnable poison onto the nuclear fuel rod via the application device while adjusting the position of the application device in relation to the nuclear fuel rod, where the burnable poison particles are applied at a velocity sufficient to cause adhesion to the outer surface of the cladding.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: March 18, 2014
    Assignee: Westinghouse Electric Company LLC
    Inventors: Edward J. Lahoda, Warren R. Junker, Thomas V. Congedo, John P. Lareau
  • Patent number: 8666018
    Abstract: A nuclear fuel rod plenum spring assembly that has a spacer affixed to the lower end of the ground torsion spring. The spacer has a substantially flat surface on its underside that presses against the upper surface of the upper fuel pellets to spread the load of the spring over the top surface of the upper most fuel pellet.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: March 4, 2014
    Assignee: Westinghouse Electric Company LLC
    Inventors: Yuriy Aleshin, Stephen H. Green, Andrew Atwood, Hemant Shah
  • Publication number: 20140050293
    Abstract: A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: The Penn State Research Foundation
    Inventors: Steven L. Garrett, James A. Smith, Dale K. Kotter
  • Patent number: 8654917
    Abstract: Fuel elements are supported by fuel assemblies configured for use in land-based nuclear reactors such as the VVER-1000. The fuel elements include a kernel having a multi-lobed profile that forms spiral ribs that include fissionable material (e.g., uranium or plutonium), a central metal displacer extending along a longitudinal axis of the kernel, and a metal cladding (e.g., zirconium and/or other refractory metals) enclosing the kernel. The fuel element may be fabricated by joint extrusion of the displacer, kernel, and cladding through a die to metallurgically bond the kernel and cladding.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 18, 2014
    Assignee: Thorium Power, Inc.
    Inventors: Sergey Mikhailovich Bashkirtsev, Valentin Fedorovich Kuznetsov, Valery Vladimirovich Kevrolev, Alexei Glebovich Morozov, Michael H. Montgomery
  • Patent number: 8625733
    Abstract: A neutron source rodlet assembly having a separate source capsule assembly that is not encapsulated within the neutron source rodlet assembly. The neutron source rodlet assembly is made up, at least in part, of a neutron source positioning rodlet assembly and the source capsule assembly configured such that assembly together is feasible at a remote site and they can be shipped separately. The source capsule assembly has outer and inner capsules with the outer capsule having a threaded stud at one end that mates with a complimentary threaded recess on the neutron source positioning rodlet assembly. The inner capsule contains a neutron source. The neutron source positioning rodlet assembly and the source capsule assembly are locked together at their interface when the threaded joint is completely tightened. A secondary neutron source material may also be encapsulated within a hollow portion of the neutron source positioning rodlet assembly.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: January 7, 2014
    Assignee: Westinghouse Electric Company LLC
    Inventors: Ashutosh Chahande, Thanh Do
  • Publication number: 20130329849
    Abstract: A nuclear-fuel pin including a linear element made of a metal nuclear-fuel material consisting of uranium and/or plutonium, and cladding including Fe and Cr or an alloy including at least both of said elements, comprises a main shell provided around the linear nuclear-fuel element, said shell including threads or fibers made of SiC. A method for producing a nuclear-fuel pin is also provided.
    Type: Application
    Filed: October 4, 2011
    Publication date: December 12, 2013
    Applicant: Commissariat a L'Energie Atomique et aux Energies Alternatives
    Inventor: Fabrice Mazaudier
  • Publication number: 20130322590
    Abstract: A 12×12 fully ceramic micro-encapsulated fuel assembly for a light water nuclear reactor includes a set of FCM fuel rods bundled in a square matrix arrangement. The fully ceramic micro-encapsulated fuel is comprised of tristructural-isotropic particles. Each tristructural-isotropic particle has a kernel that is comprised uranium nitride. The kernel diameter is 400 or more micrometers. The fully ceramic micro-encapsulated fuel is further mixed with a burnable poison material.
    Type: Application
    Filed: November 19, 2012
    Publication date: December 5, 2013
    Inventors: Francesco Venneri, Won Jae Lee
  • Patent number: 8599993
    Abstract: A fuel compact formed by integrally molding coated fuel particles by a press into a cylindrical body and comprising a chamfer having plane or curved surface at its corner to thereby prevent the coated fuel particles from being damaged due to stress on press molding whereby the strength thereof is improved against mechanical contact with a fuel sleeve and a graphite block.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: December 3, 2013
    Assignee: Nuclear Fuel Industries, Ltd.
    Inventors: Masashi Takahashi, Kazutoshi Okubo
  • Patent number: 8576977
    Abstract: A method for design of a fuel assembly for nuclear reactors, including structural components made from zirconium alloy: the mean uniaxial tensile or compressive stress to which the components are subjected during the assembly life is calculated, the zirconium alloy of which the components are made is selected according to the following criteria: those components subjected to an axial or transverse compressive stress of between ?10 et ?20 MPa are made from an alloy with a content of Sn between Sn=(=0.025??0.25)% and Sn=?0.05?%: those components subjected to such a stress of between 0 et ?10 MPa are made from an alloy the Sn content of which is between Sn=traces and Sn=(0.05?+1)%: those components subjected to such a stress of between 0 and +10 MPa are made from an alloy the Sn content of which is between Sn=0.05% and Sn=(0.07?+1)%: and those components subjected to such a stress of between +10 and +20 MPa are made from an alloy the content of SN of which is between 0.05% and 1.70%.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 5, 2013
    Assignee: Areva NP
    Inventors: Pierre Barberis, Véronique Rebeyrolle, Jean-Jérôme Vermoyal
  • Patent number: 8571166
    Abstract: A core of a light water reactor having a plurality of fuel assemblies, which are loaded in said core, having nuclear fuel material containing a plurality of isotopes of transuranium nuclides, an upper blanket zone, a lower blanket zone, and a fissile zone, in which the transuranium nuclides are contained, disposed between the upper blanket zone and the lower blanket zone, wherein a ratio of Pu-239 in all the transuranium nuclides contained in the loaded fuel assembly is in a range of 40 to 60% when burnup of the fuel assembly is 0, sum of a height of the lower blanket zone and a height of the upper blanket zone is in a range of 250 to 600 mm, and the height of said lower blanket zone is in a range of 1.6 to 12 times the height of the upper blanket zone.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 29, 2013
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Renzo Takeda, Junichi Miwa, Kumiaki Moriya
  • Patent number: 8571167
    Abstract: A metal particulate fuel system is described. The metal fuel system may include particulate metal fuel for use in nuclear reactors. The particulate metal fuel may include a plurality of particles of at least one enriched alloy where the particles are compacted into a fuel column. The metal particulate fuel system may also include a cladding and/or a gas-filled plenum.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: October 29, 2013
    Assignee: Advanced Reactor Concepts LLC
    Inventor: Leon C. Walters
  • Patent number: 8526566
    Abstract: Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: September 3, 2013
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Publication number: 20130114781
    Abstract: A fully ceramic micro-encapsulated fuel assembly for a light water nuclear reactor includes a set of FCM fuel rods bundled in a square matrix arrangement. Fully ceramic micro-encapsulated fuel assemblies replace standard reference solid fuel assemblies with smaller number of FCM fuel rods that have a larger diameter than the diameter of the solid standard reference fuel rods, while keeping similar amounts of fissile material in the fuel assembly and maintaining comparable rates of burnup and number of EFPDs, and compatible power production, heat transfer and thermo-hydraulic features. A fully ceramic micro-encapsulated fuel rod includes multiple fully ceramic micro-encapsulated fuel pellets, which are comprised of tristructural-isotropic particles. In order to obtain compatible burnup rates with the standard reference fuel, the tristructural-isotropic particles have preferentially large diameter and packing fraction.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 9, 2013
    Inventors: Francesco Venneri, Won Jae Lee
  • Publication number: 20130114780
    Abstract: A fuel rod or control rod for a nuclear reactor that has a spacer interposed between an upper end plug and a plenum spring which extends between the spacer and the fissile or absorber material. Preferably, the spacer is a relatively thin sleeve with a radially extending lip that sits above the coil spring wound at least in part around the sleeve.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Applicant: WESTINGHOUSE ELECTRIC COMPANY LLC
    Inventors: David Anthony Boatwright, Anand Madhav Garde
  • Publication number: 20130010914
    Abstract: Methods of forming composite bodies and materials including a metal oxide, such as, uranium dioxide, and silicon carbide are disclosed. The composite materials may be formed from a metal oxide powder, a silicon carbide powder and, optionally, a carbon powder. For example, the metal oxide powder, the silicon carbide powder and the carbon powder, if present, may each be combined with a binder and may be deposited in succession to form a precursor structure. Segments of the precursor structure may be removed and pressed together to form a multi-matrix material that includes interlaced regions of material including at least one of the metal oxide powder, the silicon carbide powder and, optionally, the carbon powder. The segments may be extruded or coextruded with another material, such as, a silicon carbide material, to form a green body. The green body may be sintered to form the composite bodies and materials having a desired final density.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: John E. Garnier, Michael V. Glazoff, Sergey Rashkeev, George W. Griffith
  • Publication number: 20120321031
    Abstract: A new type of nuclear fuel rods. The rod cladding has an elliptical section transverse to its longitudinal direction and each nuclear fuel pellet has a truncated elliptical shape along the major axis of the cladding, the minor axis of the pellets is the same as the length of the minor axis of the cladding except for the assembly clearance j, the difference in length between the major axis of the cladding and the truncated major axis of the pellets is very much larger than the assembly clearance j. Also disclosed is a method of manufacturing nuclear fuel rods and stacking them in the cladding so as to form a nuclear fuel rod.
    Type: Application
    Filed: December 1, 2010
    Publication date: December 20, 2012
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventor: Alain Ravenet
  • Patent number: 8311180
    Abstract: A fuel assembly, comprising: a plurality of first fuel rods including uranium and not including a burnable poison; a plurality of second fuel rods including said uranium and said burnable poison; and a water rod; wherein said second fuel rods are placed at corners of an outermost layer of a fuel rod array; other second fuel rods are placed, in said outermost layer, adjacent to said second fuel rods placed at said corners; and other second fuel rods are placed adjacent to said water rod.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: November 13, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Takeshi Mitsuyasu, Motoo Aoyama, Tetsushi Hino
  • Publication number: 20120263271
    Abstract: A nuclear fuel pellet design that is a cylindrical axial profile with either a larger radius or conical shaped ends such that the as built diameter at the ends of the pellet are slightly smaller than at the middle and at normal operating conditions, the diameter at the ends is nearly the same as at the middle. Preferably, there are short chamfers at the axial ends of the pellet.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: WESTINGHOUSE ELECTRIC COMPANY LLC
    Inventors: Yuriy Aleshin, David B. Mitchell
  • Publication number: 20120201341
    Abstract: Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350° C. to 750° C., and a second additive having a solubility in zirconium over the temperature range extending from 350° C. to 750° C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350° C. to 750° C. and a solubility of the second additive in the first additive over the temperature range extending from 350° C. to 750° C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350° C. to 750° C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 9, 2012
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventor: Robert Dominick Mariani
  • Publication number: 20120195402
    Abstract: A neutron source rodlet assembly having a separate source capsule assembly that is not encapsulated within the neutron source rodlet assembly. The neutron source rodlet assembly is made up, at least in part, of a neutron source positioning rodlet assembly and the source capsule assembly configured such that assembly together is feasible at a remote site and they can be shipped separately. The source capsule assembly has outer and inner capsules with the outer capsule having a threaded stud at one end that mates with a complimentary threaded recess on the neutron source positioning rodlet assembly. The inner capsule contains a neutron source. The neutron source positioning rodlet assembly and the source capsule assembly are locked together at their interface when the threaded joint is completely tightened. A secondary neutron source material may also be encapsulated within a hollow portion of the neutron source positioning rodlet assembly.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: WESTINGHOUSE ELECTRIC COMPANY LLC
    Inventors: Ashutosh Chahande, Thanh Do
  • Publication number: 20120177169
    Abstract: A core of a light water reactor having a plurality of fuel assemblies, which are loaded in said core, having nuclear fuel material containing a plurality of isotopes of transuranium nuclides, an upper blanket zone, a lower blanket zone, and a fissile zone, in which the transuranium nuclides are contained, disposed between the upper blanket zone and the lower blanket zone, wherein a ratio of Pu-239 in all the transuranium nuclides contained in the loaded fuel assembly is in a range of 40 to 60% when burnup of the fuel assembly is 0, sum of a height of the lower blanket zone and a height of the upper blanket zone is in a range of 250 to 600 mm, and the height of said lower blanket zone is in a range of 1.6 to 12 times the height of the upper blanket zone.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 12, 2012
    Inventors: Renzo Takeda, Junichi Miwa, Kumiaki Moriya
  • Publication number: 20120106693
    Abstract: Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with to superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
    Type: Application
    Filed: October 25, 2011
    Publication date: May 3, 2012
    Applicants: KOREA HYDRO AND NUCLEAR POWER CO., LTD, KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Sung Ho Kim, Jong Hyuk Baek, Tae Kyu Kim, Woo Gon Kim, Jun Hwan Kim, Chang Hee Han, Chan Bock Lee, Yeong-II Kim, Dohee Hahn
  • Patent number: 8149984
    Abstract: A new nuclear fuel element has been developed to be used in particular in fourth generation gaseous heat exchanger reactors working with a fast neutron flow. With a composite plate structure, the element (1) according to the invention comprises a network of cells (8), more preferably of honeycomb shape, in each of which is placed a nuclear fuel pellet (10). Radial and axial gaps are provided in each cell (8) to compensate for the differential expansion between fissile materials and structural materials inherent in the operation of the plate (1).
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: April 3, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Alain Ravenet
  • Patent number: 8116423
    Abstract: The invention relates to light water reactor designs in which thorium is used as fuel and in particular to designs of jacketless fuel assemblies, which make up the cores of pressurized water reactors (PWRs) such as the VVER-1000. Nuclear reactor cores containing seed and blanket subassemblies that make up the fuel assemblies are used to burn thorium fuel together with conventional reactor fuel that includes nonproliferative enriched uranium, as well as weapons-grade and reactor-grade plutonium. In the first alternative, the reactor core is fully “nonproliferative,” since neither the reactor fuel nor the wastes generated can be used to produce nuclear weapons. In the second version of the invention, the reactor core is used to burn large amounts of weapons-grade plutonium together with thorium and provides a suitable means to destroy stockpiles of weapons-grade plutonium and convert the energy released to electric power.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 14, 2012
    Assignee: Thorium Power, Inc.
    Inventors: Sergey Mikhailovich Bashkirtsev, Valentin Fedorovich Kuznetsov, Valery Vladimirovich Kevrolev, Alexey Glebovich Morozov
  • Patent number: 8116422
    Abstract: A zirconium alloy suitable for forming reactor components that exhibit reduced irradiation growth and improved corrosion resistance during operation of a light water reactor (LWR), for example, a boiling water reactor (BWR). During operation of the reactor, the reactor components will be exposed to a strong, and frequently asymmetrical, radiation fields sufficient to induce or accelerate corrosion of the irradiated alloy surfaces within the reactor core. Reactor components fabricated from the disclosed zirconium alloy will also tend to exhibit an improved tolerance for cold-working during fabrication of the component, thereby simplifying the fabrication of such components by reducing or eliminating subsequent thermal processing, for example, anneals, without unduly degrading the performance of the finished component.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: February 14, 2012
    Assignee: General Electric Company
    Inventors: Daniel Reese Lutz, Gerald Allen Potts, Yang-Pi Lin, Sheikh Tahir Mahmood, Mark Andrew Dubecky, David William White, John Schardt
  • Publication number: 20120020447
    Abstract: Fuel assemblies include an outer channel having a physical configuration optimized for a position of the fuel assembly within a core of a nuclear reactor. The position of the fuel assembly with respect to an employed control blade in the nuclear reactor determines if the outer channel may be thickened, reinforced, and/or fabricated of Zircaloy-4 or similar distortion-resistant material, so as to reduce or prevent distortion of the channel against the control blade, or thinned so as to increase water volume and enhance reactivity in the assembly. Reactor cores having configured fuel assemblies include fuel assemblies having different outer channels. Methods include determining operational characteristics of the fuel assembly, including likelihood of being placed directly adjacent to an employed control blade, and physically selecting or modifying the outer channel of the fuel assembly based thereon.
    Type: Application
    Filed: July 25, 2010
    Publication date: January 26, 2012
    Inventors: Jason B. INGRAHAM, Gerald D. Kvaall, JR., Paul E. Cantonwine, Michael W. Thomas, William C. Cline
  • Publication number: 20110317795
    Abstract: The invention relates to the field of nuclear technology and radiochemistry, more specifically to the production and isolation of radionuclides for medical purposes. The method for producing actinium-225 and isotopes of radium comprises irradiating a solid block of metallic thorium of a thickness of 2 to 30 mm, which is contained within a hermetically sealed casing made of a material which does not react with thorium, with a flow of accelerated charged particles with high intensity. The irradiated metallic thorium is removed from the casing and is either heated with the addition of lanthanum and the distillation of radium or is dissolved in nitric acid with the recovery of actinium-225 by extraction. A target for implementing this method consists of blocks of metallic thorium of a thickness of 2 to 30 mm, which are contained within a hermetically scaled casing made of different materials which do not react with thorium.
    Type: Application
    Filed: September 9, 2009
    Publication date: December 29, 2011
    Inventors: Boris Leonidovich Zhuikov, Stepan Nikolaevich Kalmykov, Ramiz Avtandilovich Aliev, Stanislav Viktorovich Ermolaev, Vladimir Mikhailovich Kokhanyuk, Nikolai Alexandrovich Konyakhin, Ivan Gundarovich Tananaev, Boris Fedorovich Myasoedov
  • Patent number: 8085894
    Abstract: A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: December 27, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Athanasios Arsenlis, Joe Satcher, Jr., Sergei O. Kucheyev
  • Publication number: 20110299645
    Abstract: Disclosed is a breeding nuclear fuel mixture including metallic thorium useable in a nuclear power plant, prepared by mixing uranium dioxide (UO2) or plutonium dioxide (PuO2) having ceramic properties with metallic thorium (Th), in order to enable thorium breeding by neutrons released during nuclear fission of U or Pu and conversion of the bred thorium into a novel nuclear fissile material, i.e., U-233, thereby ensuring continuous nuclear fission. The foregoing nuclear fuel mixture may be burned at a reactor core of a nuclear power plant through thorium breeding over a long period of time. Therefore, when the inventive breeding nuclear fuel mixture is employed in a nuclear power plant, utilization of the nuclear power plant may be increased while maximizing conservation of limited uranium resources.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 8, 2011
    Applicants: Korea Hydro & Nuclear Power Co., Ltd., Korea Atomic Energy Research Institute
    Inventors: Dae-Ho Kim, Je-Geon Bang, Yang-Hyun Koo, Ik-Sung Lim, Sun-Ki Kim, Yong-Sik Yang, Kun-Woo Song
  • Publication number: 20110268243
    Abstract: A fuel channel (5) for a fuel element (1) to a fission reactor, where the fuel element comprises an inlet (9), an outlet (11) and a plurality of elongated fuel rods (3), which fuel rods each comprises a nuclear fuel and are adapted to transfer energy to a streaming medium during operation of the fission reactor. The fuel channel comprises a casing (7) adapted to surround the fuel rods between the inlet and the outlet. The casing is adapted during operation of the fission reactor to guide the streaming medium along the fuel rods from the inlet to the outlet and be subjected to irradiation from the fuel rods. The casing is manufactured from a ceramic material.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 3, 2011
    Inventors: Lars Hallstadius, Edward J. Lahoda, Mats Dahlback
  • Publication number: 20110255651
    Abstract: Fuel elements are supported by fuel assemblies configured for use in land-based nuclear reactors such as the VVER-1000. The fuel elements include a kernel having a multi-lobed profile that forms spiral ribs that include fissionable material (e.g., uranium or plutonium), a central metal displacer extending along a longitudinal axis of the kernel, and a metal cladding (e.g., zirconium and/or other refractory metals) enclosing the kernel. The fuel element may be fabricated by joint extrusion of the displacer, kernel, and cladding through a die to metallurgically bond the kernel and cladding.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 20, 2011
    Applicant: THORIUM POWER, INC.
    Inventors: Sergey Mikhailovich BASHKIRTSEV, Valentin Fedorovich KUZNETSOV, Valery Vladimirovich KEVROLEV, Alexei Glebovich MOROZOV, Michael H. MONTGOMERY
  • Publication number: 20110222643
    Abstract: A cladding tube for nuclear fuel made from metal and including concave dimples on its external surface. A nuclear fuel assembly includes at least a plurality of nuclear fuel rods provided with such cladding tubes. The cladding tube is advantageously manufactured by pilgrim rolling, the dimples being formed during the pilgrim rolling.
    Type: Application
    Filed: September 29, 2009
    Publication date: September 15, 2011
    Inventors: Jean-Luc Doudoux, Eric Galban, Yves Charbonnier, Jérôme Boussin, Matthieu Ponce, Jan Patrice Simoneau, Jörg Peucker, Holger Schmidt, Klaus L. Nissen