Coated, Preformed, Or Impregnated Layer Or Part Or Adhesively Bonded Layers Or Parts Patents (Class 376/414)
  • Patent number: 11378230
    Abstract: A gas enclosure can include a refractory metal liner; a ceramic matrix composite cladding; and a diffusion barrier layer. The refractory metal liner is adapted to surround and enclose a gas to be contained within the gas enclosure. The diffusion barrier layer is disposed between the refractory metal liner and the ceramic matrix composite cladding.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: July 5, 2022
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Yinbin Miao, Nicolas E. Stauff, Sumit Bhattacharya, Abdellatif M. Yacout, Taek K. Kim
  • Patent number: 11362256
    Abstract: A method is provided for growing a fiber structure, where the method includes: obtaining a substrate, growing an array of pedestal fibers on the substrate, growing fibers on the pedestal fibers, and depositing a coating surrounding each of the fibers. In another aspect, a method of fabricating a fiber structure includes obtaining a substrate and growing a plurality of fibers on the substrate according to 1½D printing. In another aspect, a multilayer functional fiber is provided produced by, for instance, the above-noted methods.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: June 14, 2022
    Assignee: FREE FORM FIBERS, LLC
    Inventors: Joseph Pegna, Ram K. Goduguchinta, Kirk L. Williams, John L. Schneiter, Shay L. Harrison, Erik G. Vaaler
  • Patent number: 11342084
    Abstract: A nuclear reactor includes a passive reactivity control nuclear fuel device located in a nuclear reactor core. The passive reactivity control nuclear fuel device includes a multiple-walled fuel chamber having an outer wall chamber and an inner wall chamber contained within the outer wall chamber. The inner wall chamber is positioned within the outer wall chamber to hold nuclear fuel in a molten fuel state within a high neutron importance region. The inner wall chamber allows at least a portion of the nuclear fuel to move in a molten fuel state to a lower neutron importance region while the molten nuclear fuel remains within the inner wall chamber as the temperature of the nuclear fuel satisfies a negative reactivity feedback expansion temperature condition. A duct contains the multiple-walled fuel chamber and flows a heat conducting fluid through the duct and in thermal communication with the outer wall chamber.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 24, 2022
    Assignee: TERRAPOWER, LLC.
    Inventors: Jesse R. Cheatham, III, John R. Gilleland, Jon D. McWhirter
  • Patent number: 11081241
    Abstract: Nuclear fuel elements may include: a fuel zone including fuel particles disposed in parallel layers in a matrix including graphite powder; and a shell comprising graphite and surrounding the fuel zone. The fuel particles may include fissile particles, burnable poison particles, breeder particles, or a combination thereof. The fuel zone may include a central region and a peripheral region surrounding the central region, and a fuel particle density of the peripheral region may be greater than a fuel particle density of the central region.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: August 3, 2021
    Assignee: X-ENERGY, LLC
    Inventors: Peter Pappano, Martin Peter Van Staden
  • Patent number: 10957456
    Abstract: Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components useable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 23, 2021
    Assignee: Global Nuclear Fuel—Americas, LLC
    Inventors: Kevin L. Ledford, Yuk-Chiu Lau, David W. White, Yang-Pi Lin, Paul E. Cantonwine, Nicholas R. Gullette, Timothy W. Clark
  • Patent number: 10916352
    Abstract: A layer protecting the surface of zirconium alloys used as materials for nuclear reactors is formed by a homogenous polycrystalline diamond layer prepared by chemical vapor deposition method. This diamond layer is 100 nm to 50 ?m thick and the size of the crystalline cores in the layer ranges from 10 nm to 500 nm. Maximum content of non-diamond carbon is 25 mol %, total content of non-carbon impurities is maximum up to 0.5 mol %, RMS surface roughness of the polycrystalline diamond layer has a value less than 40 nm and thermal conductivity of the layer ranges from 1000 to 1900 W?m?1?K?1. Coating of the zirconium alloys surface with the described polycrystalline diamond layer serves as a zirconium alloys surface protection against undesirable changes and processes in the nuclear reactor environment.
    Type: Grant
    Filed: November 10, 2018
    Date of Patent: February 9, 2021
    Assignees: CZECH TECHNICAL UNIVERSITY IN PRAGUE, FACULTY OF MECHANICAL ENGINEERING, DEPARTMENT OF ENERGY ENGINEERING, INSTITUTE OF PHYSICS OF THE ACADEMY OF SCIENCE OF THE CZECH REPUBLIC, V.V.I.
    Inventors: Radek Skoda, Jan Skarohlid, Irena Kratochvilova, Frantisek Fendrych, Andrew James Taylor
  • Patent number: 10573416
    Abstract: Micro encapsulated fuel particles enhance safety in high-temperature gas cooled reactors by employing multiple barriers to fission product release. Microencapsulated fuel particles also have the potential to do the same in other reactor platforms. The present disclosure provides a method for enhancing the ability of microencapsulated fuel particles to retain radionuclides and thereby further enhance safety in nuclear reactors. Specifically, a nuclear fuel particle including a fuel kernel; a buffer graphitic carbon layer; an inner pyrolytic carbon layer; a multilayer pressure vessel; and an outer pyrolytic carbon layer is disclosed. The multilayer pressure vessel includes alternating layers of silicon carbide and pyrolytic carbon.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: February 25, 2020
    Assignee: Ultra Safe Nuclear Corporation
    Inventor: Francesco Venneri
  • Patent number: 10497480
    Abstract: A nuclear reactor includes a passive reactivity control nuclear fuel device located in a nuclear reactor core. The passive reactivity control nuclear fuel device includes a multiple-walled fuel chamber having an outer wall chamber and an inner wall chamber contained within the outer wall chamber. The inner wall chamber is positioned within the outer wall chamber to hold nuclear fuel in a molten fuel state within a high neutron importance region. The inner wall chamber allows at least a portion of the nuclear fuel to move in a molten fuel state to a lower neutron importance region while the molten nuclear fuel remains within the inner wall chamber as the temperature of the nuclear fuel satisfies a negative reactivity feedback expansion temperature condition. A duct contains the multiple-walled fuel chamber and flows a heat conducting fluid through the duct and in thermal communication with the outer wall chamber.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: December 3, 2019
    Assignee: TERRAPOWER, LLC
    Inventors: Jesse R. Cheatham, III, John R. Gilleland, Jon D. McWhirter
  • Patent number: 10361007
    Abstract: A method of making a nuclear fuel pellet for a nuclear power reactor. The method includes: providing a nuclear fuel material in powder form, pressing the powder such that a green pellet is obtained; providing a liquid that comprises an additive which is to be added to the green pellet; contacting the green pellet with the liquid so the liquid, with the additive, penetrates into the pellet; and sintering the treated green pellet. The additive is such that larger grains in the nuclear fuel material are obtained with the additive.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 23, 2019
    Assignee: Westinghouse Electric Sweden AB
    Inventor: Hans Widegren
  • Patent number: 10361008
    Abstract: A method of making a nuclear fuel pellet for a nuclear power reactor. The method includes: providing a nuclear fuel material in powder form, the nuclear material is based on UO2; providing an additive; forming a green pellet, wherein said additive is added either to said nuclear fuel material or to the green pellet; and sintering the green pellet, wherein said additive causes larger grains in the nuclear fuel pellet, and wherein said additive is made of or includes a substance which causes the larger grains and which substantially leaves at least an outer portion of the pellet before and/or during the sintering step, wherein said substance is made of, or comprises, B and/or Cr.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 23, 2019
    Assignee: Westinghouse Electric Sweden AB
    Inventors: Hans Widegren, Edward J. Lahoda, Lars Hallstadius
  • Patent number: 10276268
    Abstract: The invention provides a nuclear reactor cladding, wherein at least one layer of coating is deposited on the exterior surface of the cladding. A nuclear reactor cladding, wherein at least one layer of coating is deposited on the interior surface of the cladding. A method of coating a nuclear reactor cladding, with the steps of selecting the cladding and depositing at least one layer of a first coating on the cladding.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: April 30, 2019
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: A. M. Yacout, Michael J. Pellin, Michael Billone
  • Patent number: 10068675
    Abstract: A protective coating for a graphite (Gr) containing fuel element used in a nuclear thermal propulsion system includes a first layer that is configured to resist hot hydrogen attacks. The first layer has a coefficient of thermal expansion that is higher than a coefficient of thermal expansion of the Gr containing substrate. The coating also includes a plurality of second layers located between the first layer and the substrate. The second layers are configured to mitigate the differences in coefficients of thermal expansion between the first layer and the substrate to minimize debonding and exposure of the substrate to hydrogen attack. Preferably, the protective coating can comprise an outermost first layer including zirconium carbide (ZrC), a second layer including niobium (Nb), a third layer including molybdenum (Mo), and a fourth layer including molybdenum carbide (Mo2C) located adjacent to the substrate.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: September 4, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Sai V. Raj, Mark Stewart, James A. Nesbitt
  • Patent number: 10043595
    Abstract: A uranium dioxide nuclear fuel pellet has about 50 to about 400 ?M (with respect to a 3-dimentional size) microcells formed of a ceramic material having a chemical attraction with fission products generated in the nuclear fuel pellet to absorb and trap the fission products, such that the extraction of the fission product may be retrained in a normal operation condition and that the performance of the nuclear fuel may be enhanced by mitigating PCI. In addition, highly radioactive fission products including Cs and I having a large generation amount or a long half-life enough to affect the environments can be trapped in the pellet in an accident condition, without being released outside.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 7, 2018
    Assignees: Korea Hydro & Nuclear Power Co., Ltd, Korea Atomic Energy Research Institute
    Inventors: Keon-Sik Kim, Yang-Hyun Koo, Jong-Hun Kim, JangSoo Oh, Young Woo Rhee, Dong-Joo Kim, Jae-Ho Yang
  • Patent number: 9982350
    Abstract: The invention relates to a multilayer cladding including a combination of ceramic and metallic components. The multilayer coating includes an inner layer, an intermediate layer and an outer layer. The inner layer can form the cladding structure, the intermediate layer can include a ceramic composite or ceramic-containing composite composed of interlocking woven or braided fibers, e.g., fiber tows wrapped on the inner layer to form a woven structure, and a matrix material, and the outer can be composed of metal or metal alloy, such as, in the form of a coating. The multilayer cladding is effective to protect contents of the cladding structure from exposure to high temperature environments.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: May 29, 2018
    Assignee: Westinghouse Electric Company LLC
    Inventors: Michael A. Burke, Edward J. Lahoda, Paolo Ferroni, Fausto Franceschini
  • Patent number: 9589680
    Abstract: A nuclear fuel rod for fast reactors includes a metallic fuel slug coated with a protective coating layer. In embodiments, a nuclear fuel rod for fast reactors includes a uranium and zirconium fuel slug having a single protective coating which is an oxide layer having a thickness in the range of 0.5 ?m to 100 ?m, and the protective coating layer may be configured to (i) prevent interdiffusion between the fuel slug and a cladding tube during fast reactor operation, and (ii) prevent a cladding tube from thinning during fission operation in a fast reactor.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: March 7, 2017
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Chan Bock Lee, Jun Hwan Kim, Jong-Hyuk Baek, Jin-Sik Cheon, ByoungOon Lee, Ki Hwan Kim, Sung-Ho Kim, Junehyung Kim, Seok-Jin Oh, Young-Mo Ko, Yoon-Myeong Woo, Seong Woo Yang
  • Patent number: 9008259
    Abstract: A sheathed, annular metal fuel system is described. A metal fuel pin system is described that includes an annular metal nuclear fuel alloy. A sheath may surround the metal nuclear fuel alloy, and a cladding may surround the sheath. A gas plenum may also be present. Mold arrangements and methods of fabrication of the sheathed, annular metal fuel are also described.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: April 14, 2015
    Assignee: Advanced Reactor Concepts LLC
    Inventor: Leon C. Walters
  • Patent number: 8989339
    Abstract: Disclosed is a zirconium alloy material having high corrosion resistance regardless of thermal history during its manufacturing process. The zirconium alloy material is obtained by providing a zirconium alloy containing on the mass basis: 0.001% to 1.9% of Sn, 0.01% to 0.3% of Fe, 0.01% to 0.3% of Cr, 0.001% to 0.3% of Ni, 0.001% to 3.0% of Nb, 0.027% or less of C, 0.025% or less of N, 4.5% or less of Hf and 0.16% or less of O with the remainder being inevitable impurities and zirconium, being formed of a bulk alloy and a surface layer, in which the surface layer has a plastic strain of 3 or more or a Vickers hardness of 260 HV or more and an arithmetic mean surface roughness Ra of 0.2 ?m or less.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: March 24, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Ryo Ishibashi, Masahisa Inagaki, Hideo Soneda, Naoya Okizaki, Tomomi Nakamura, Yoshikazu Todaka, Hiroaki Azuma, Nozomu Adachi, Minoru Umemoto
  • Publication number: 20150063521
    Abstract: A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: A. M. Yacout, Michael J. Pellin, Marius Stan
  • Patent number: 8831166
    Abstract: Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350° C. to 750° C., and a second additive having a solubility in zirconium over the temperature range extending from 350° C. to 750° C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350° C. to 750° C. and a solubility of the second additive in the first additive over the temperature range extending from 350° C. to 750° C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350° C. to 750° C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 9, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Robert Dominick Mariani
  • Publication number: 20140241485
    Abstract: A nuclear fuel cladding tube for a liquid-metal or molten-salt cooled reactor includes a tubular body of metal material and a protective coating applied on an outer surface of the tubular body, to contact the coolant. The coating includes at least one layer of coating material selected from the group consisting of ceramic materials, refractory metals, and FeCrAlY alloys, and includes a matrix composed of the coating material in amorphous phase, inside which nanodomains composed of the coating material in crystalline phase are dispersed.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    Inventors: Fabio DI FONZO, Marco BEGHI, Francisco GARCIA FERRE
  • Patent number: 8792607
    Abstract: There is provided a fuel rod assembly comprising a first component of a zirconium-based material. The first component is in contact with or is located adjacent to a second component of a material different from the zirconium-based material, e.g. a nickel-based or iron-based alloy. A coating is disposed on an outer surface of the first component, which is effective to reduce an electrochemical corrosion potential difference between the first component and the second component relative to an electrochemical corrosion potential difference between the first component and the second component without the coating.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Dennis Michael Gray, David William White, Yang-Pi Lin, Todd Charles Curtis, Charles Beaty Patterson
  • Publication number: 20140205054
    Abstract: Provided are a nuclear fuel rod for fast reactors that includes a metallic fuel slug coated with a protective coating layer and a fabrication method thereof. The nuclear fuel rod for fast reactors that includes a surface treated metallic fuel slug and a cladding tube according to the present invention has an excellent effect of stabilizing components of the metallic fuel slug and fission products or impurities, because the interdiffusion between the metallic fuel slug and the cladding tube does not occur. Also, since the uniform coating on the surface of the metallic fuel slug may be facilitated and fabrication costs may be significantly reduced in comparison to a typical technique of using a functional material for preventing the interdiffusion at an inner surface of the cladding tube, it may be suitable for fabricating the nuclear fuel rod for fast reactors.
    Type: Application
    Filed: November 14, 2013
    Publication date: July 24, 2014
    Inventors: Chan Bock LEE, Jun Hwan KIM, Jong-Hyuk BAEK, Jin-Sik CHEON, ByoungOon LEE, Ki Hwan KIM, Sung-Ho KIM, Junehyung KIM, Seok-Jin OH, Young-Mo KO, Yoon-Myeong WOO, Seong Woo YANG
  • Patent number: 8699655
    Abstract: The present invention relates to tubular elements, such as fuel assembly tubes, which are designed to be used in high pressure and high temperature water in nuclear reactors, such as pressurized water nuclear reactors. In particular, the present invention relates to a method of improving wear resistance and corrosion resistance by depositing a protective coating having a depth of from about 5 to about 25 ?m on the surface of the tubular elements. The coating is provided by nitriding the tubular element at a temperature of from about 400° C. to about 440° C. The nitridation of the tubular element can be carried out for a duration of from about 12 hours to about 40 hours.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Westinghouse Electric Company, LLC
    Inventor: Nagwa Mahmoud Elshaik
  • Patent number: 8599993
    Abstract: A fuel compact formed by integrally molding coated fuel particles by a press into a cylindrical body and comprising a chamfer having plane or curved surface at its corner to thereby prevent the coated fuel particles from being damaged due to stress on press molding whereby the strength thereof is improved against mechanical contact with a fuel sleeve and a graphite block.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: December 3, 2013
    Assignee: Nuclear Fuel Industries, Ltd.
    Inventors: Masashi Takahashi, Kazutoshi Okubo
  • Publication number: 20130251087
    Abstract: Provided in one embodiment is a method comprising: disposing atoms of at least one non-metal element over a surface of a cladding material of a nuclear fuel element; and forming at least one product comprising the at least one non-metal element in, over, or both, a surface layer of the cladding material; wherein the at least one non-metal element has an electronegativity that is smaller than or equal to that of oxygen. Also provided is a nuclear fuel element comprising a modified surface layer adapted to mitigate formation of Chalk River Unidentified Deposits (CRUD) on the cladding material.
    Type: Application
    Filed: February 15, 2013
    Publication date: September 26, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • Patent number: 8526566
    Abstract: Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: September 3, 2013
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Publication number: 20120207264
    Abstract: A method is described for producing nuclear fuel products, including the steps of receiving metallic or intermetallic uranium-based fuel particle cores, providing at least one physical vapour deposited coating layer surrounding the fuel particle core and embedding the nuclear fuel particles in a matrix so as to form a powder mixture of matrix material and coated fuel particles. The at least one physical vapour deposited coating layer may include inhibitors of inhibiting, stabilizing and/or reducing interaction between metallic and intermetallic uranium-based fuel particles cores and the matrix wherein the fuel particles typically may be embedded. The deposited coating layer may include neutron poisons.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 16, 2012
    Inventors: Sven Van Den Berghe, Ann Leenaers, Christophe Detavernier
  • Publication number: 20120140867
    Abstract: Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Inventors: Francesco Venneri, Yutai Katoh, Lance Lewis Snead
  • Patent number: 8191406
    Abstract: A method for treating or preparing a fuel rod cladding tube in such a way that an influence of iron oxide deposits on its surface can be studied and assessed precisely under virtually operational conditions with as little risk as possible, includes at least partially coating the fuel rod cladding tube with an iron oxide layer by immersing it in an aqueous electrolyte medium which contains iron oxide particles. The iron oxide particles are produced by anodic oxidation of an iron-containing working electrode. A test body and a device for pretreating a fuel rod cladding tube with an electrochemical three-electrode configuration, are also provided.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: June 5, 2012
    Assignee: Areva NP GmbH
    Inventor: Thomas Dorsch
  • Publication number: 20120114091
    Abstract: Disclosed is a zirconium alloy material having high corrosion resistance regardless of thermal history during its manufacturing process. The zirconium alloy material is obtained by providing a zirconium alloy containing on the mass basis: 0.001% to 1.9% of Sn, 0.01% to 0.3% of Fe, 0.01% to 0.3% of Cr, 0.001% to 0.3% of Ni, 0.001% to 3.0% of Nb, 0.027% or less of C, 0.025% or less of N, 4.5% or less of Hf and 0.16% or less of O with the remainder being inevitable impurities and zirconium, being formed of a bulk alloy and a surface layer, in which the surface layer has a plastic strain of 3 or more or a Vickers hardness of 260 HV or more and an arithmetic mean surface roughness Ra of 0.2 ?m or less.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 10, 2012
    Inventors: Ryo ISHIBASHI, Masahisa Inagaki, Hideo Soneda, Naoya Okizaki, Tomomi Nakamura, Yoshikazu Todaka, Hiroaki Azuma, Nozomu Adachi, Minoru Umemoto
  • Patent number: 8155260
    Abstract: Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 10, 2012
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Chan Bock Lee, Jong-Hyuk Baek, Byoung-Oon Lee, Jin-Sik Cheon, Ho Jin Ryu, Jun Hwan Kim, Sung Ho Kim, Tae-Kyu Kim, Woo-Gon Kim, Chong-Tak Lee, Ki-Hwan Kim, Young-Mo Ko, Yoon-Myeong Woo, Seok-Jin Oh, Dohee Hahn
  • Patent number: 8149984
    Abstract: A new nuclear fuel element has been developed to be used in particular in fourth generation gaseous heat exchanger reactors working with a fast neutron flow. With a composite plate structure, the element (1) according to the invention comprises a network of cells (8), more preferably of honeycomb shape, in each of which is placed a nuclear fuel pellet (10). Radial and axial gaps are provided in each cell (8) to compensate for the differential expansion between fissile materials and structural materials inherent in the operation of the plate (1).
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: April 3, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Alain Ravenet
  • Publication number: 20110317794
    Abstract: Various embodiments of a nuclear fuel assembly and related methods for processing and managing spent nuclear fuel are disclosed. According to one exemplary embodiment, a nuclear fuel may include a plurality of first fuel rods having a plurality of first fuel elements and a plurality of second fuel rods having a plurality of second fuel elements. Each of the first fuel elements may include uranium dioxide fuel, and each of the second fuel elements may include a plurality of tristructural isotropic fuel particles embedded in a silicon carbide matrix. The plurality of first fuel rods and the plurality of second fuel rods are arranged in a fuel assembly.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 29, 2011
    Inventors: Francesco VENNERI, Lance Lewis SNEAD
  • Patent number: 7899146
    Abstract: Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: March 1, 2011
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Brian E. Williams, Robert E. Benander
  • Publication number: 20100091933
    Abstract: In a method of producing large-grained nuclear fuel pellet, Cr-compound contained in an uranium oxide green pellet is reduced to Cr phase at 1,470° C. or below and maintained to the Cr phase, and the uranium oxide green pellet containing the Cr-compound is then sintered at 1,650° C.-1,800° C. in a gas atmosphere of oxygen potential at which Cr element in the uranium oxide green pellet becomes liquid phase.
    Type: Application
    Filed: December 16, 2008
    Publication date: April 15, 2010
    Applicants: KOREA ATOMIC ENERGY RESEARCH INSTITUTE, KOREA HYDRO & NUCLEAR POWER CO. LTD.
    Inventors: Kun Woo SONG, Ki Won KANG, Jong Hun KIM, Keon Sik KIM, Jae Ho YANG, Young Woo RHEE
  • Publication number: 20090252279
    Abstract: A fuel pellet for a nuclear reactor contains a matrix made of an oxidic nuclear fuel and a metallic phase that is deposited within or between the fuel grains and is preferably aligned in a radial direction relative to the coating surface of the pellet. A method for producing the fuel pellet includes forming slugs containing a precursor of the metallic phase, which has a melting point lying below the sintering temperature and can be transformed into the metallic phase in sintering conditions, in addition to the oxidic nuclear fuel and other optional additives. The slugs are then sintered. The slugs are heated up so quickly that at least one portion of the precursor is liquefied before being completely transformed into the metallic phase.
    Type: Application
    Filed: December 12, 2008
    Publication date: October 8, 2009
    Applicant: AREVA NP GMBH
    Inventors: Wolfgang Dorr, Volker Lansmann
  • Patent number: 7587018
    Abstract: A nuclear fuel and a method to produce a nuclear fuel wherein a porous uranium dioxide arrangement is provided, the arrangement is infiltrated with a precursor liquid and the arrangement is thermally treated such the porous uranium dioxide arrangement is infiltrated with a precursor liquid, followed by a thermal treating of the porous uranium dioxide arrangement with the infiltrated precursor liquid such that the precursor liquid is converted to a second phase.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: September 8, 2009
    Assignee: Areva NP Inc.
    Inventor: John Kevin McCoy
  • Patent number: 7570728
    Abstract: In a nuclear fuel rod a cladding tube is provided having a closed inner space and manufactured from at least one of the materials in the group zirconium and a zirconium-based alloy, and a pile of nuclear fuel pellets arranged in the inner space in the cladding tube. The nuclear fuel pellets fill part of the inner space. A fill gas is arranged in the closed inner space to fill the rest of the inner space. The internal pressure of the fill gas in the nuclear fuel rod amounts to at least 2 bar (abs) or at least 10 bar (abs). The fill gas contains a proportion of inert gas a proportion of carbon monoxide that is greater than 3 volume percent of the fill gas or greater than 2 volume percent of the fill gas.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: August 4, 2009
    Assignee: Westinghouse Electric Sweden AB
    Inventors: Gunnar Hultquist, Magnus Limbäck, Per Tägtström, Eric Hörnlund
  • Patent number: 7449101
    Abstract: In a method of reducing corrosion of a metal material, a substance such as semiconductor for generating an electric current by thermal excitation is coated or adhered on a metal material surface, to be exposed to a water having a high temperature of 150° C. or more, of a boiler and ducts or pipes, to which hot water heated by the boiler contacts, of a thermal electric power plant or a nuclear reactor structural material or ducts or pipes surrounding the reactor in a nuclear power plant.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: November 11, 2008
    Assignees: Kabushiki Kaisha Toshiba, The Tokyo Electric Power Company, Incorporated, Ishikawajima - Harima Heavy Industries Co., Ltd.
    Inventors: Masato Okamura, Yukio Henmi, Nagayoshi Ichikawa, Tetsuo Oosato, Seiji Yamamoto, Kazuo Murakami, Kenji Yamazaki, Junichi Takagi, Tadasu Yotsuyanagi, Shunichi Suzuki, Kenro Takamori, Mitsuru Sambongi, Yuichi Fukaya, Takasi Hirano
  • Patent number: 7295646
    Abstract: The invention relates to a method for producing a coating for absorption of neutrons produced in nuclear reactions of radioactive material which can be applied in an economically feasible and simple manner, increases the effectivity of absorption, enables greater variability of base material used and variability of shape of said shielding elements and in particular the production of lighter shielding elements with at least the same absorption quality. The invention also relates to a method for producing a coating for absorption of neutrons produced in nuclear reactions of radioactive materials. At least one part of a shielding element consisting of base material is provided at its surface designed therefore with a layer made of an element with a high neutron capture section and a metallic element in a dispersion bath. Said metallic element can be deposited by electrolytic or autocatalytic means.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: November 13, 2007
    Assignees: Metallveredlung GmbH & Co. KG, GNS Gesellschaft fur Nuklear-Service mbH
    Inventors: Klaus-Leo Wilbuer, Rudolf Diersch, Hermann Stelzer, Matthias Patzelt, Dieter Methling
  • Patent number: 6898259
    Abstract: The corrosion of a component in a water-guiding loop of a nuclear facility is reduced. A protective layer is produced with a sol-gel process. Prior to the sol application, water that wettens the component is removed from the conduction system and the component is optionally dried in a separate step. After the sol-gel process has been carried out, the conduction system is again filled with water. A liquid sol film that is produced on the component is dried, especially by means of hot air. A component in the primary system of a boiling water reactor can especially be coated with a highly corrosion-resistant zirconium oxide protective layer according to the sol-gel process.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: May 24, 2005
    Assignee: Framatome ANP GmbH
    Inventors: Bernhard Stellwag, Patricia Vaz
  • Patent number: 6813329
    Abstract: A crud-resistant nuclear fuel element cladding in which the axial locations that experience nucleate boiling during reactor full power operation are highly polished so that the maximum size of any surface defect on the highly polished surface is approximately 0.1 microns. The remainder of the cladding surface remains unpolished so that crud is more evenly redistributed over the entire fuel cladding surface to limit the thickness of the crud that is formed to less than 35 microns.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: November 2, 2004
    Assignee: Westinghouse Electric Copmany LLC
    Inventors: William A. Byers, Dmitry V. Paramonov, Milorad B. Dzodzo, Zeses E. Karoutas, Michael Y. Young
  • Patent number: 6760396
    Abstract: The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.
    Type: Grant
    Filed: February 4, 1946
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Ernest R. Boller, Lowell D. Eubank
  • Patent number: 6512806
    Abstract: A component (1) designed for use in a light water reactor and at least partly comprised by a metal and/or a metal alloy presents a coatings (4, 7) at its outer surface (3) and its inner surface(5). The coating (4 and 7 respectively) has as its task to protect the surface (3 and 5 respectively), against oxidation, corrosion, wear and hydration. The coating (4 and 7 respectively) suitably comprises at least one of zirconium dioxide (ZrO2) and zirconium nitride (ZrN).
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: January 28, 2003
    Assignee: Westinghouse Atom AB
    Inventors: Peter Rudling, Lars Hallstadius, Gunnar Vesterlund
  • Publication number: 20020181642
    Abstract: Method of fabricating a fuel rod, comprising providing an effective amount of a metal oxide in the fuel rod to generate steam and mitigate the tendency for secondary hydriding. Fuel rods fabricated according to the method of the invention are also provided.
    Type: Application
    Filed: June 4, 2001
    Publication date: December 5, 2002
    Inventors: Swaminathan Vaidyanathan, John H. Davies, Steven B. Wisner
  • Patent number: 6415010
    Abstract: A metal cooling tube of a water-cooled nuclear reactor, having an inner surface thereof exposed to an aqueous cooling medium containing hydrogen peroxide. The cooling tube has its inner surface coated with matter selected from the group consisting of the element manganese, molybdenum, zinc, copper, cadmium for absorbing such hydrogen peroxide and then affecting decomposition of the hydrogen peroxide in the aqueous medium. In preferred embodiment such coating is manganese and oxides thereof. A method for lowering the electrochemical corrosion potential of a metal allow cooling tube exposed to an aqueous medium in a water-cooled nuclear reactor is also disclosed. Such method comprises the step of coating an inner surface of such tube with matter selected from the group of elements comprising manganese, molybdenum, zinc, copper, cadmium, so as to permit absorption and hydrogen peroxide in such aqueous medium and effect decomposition of hydrogen peroxide in such aqueous medium.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: July 2, 2002
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Leonard William Niedrach, George Charles Sogoian, Robert Lee Cowan, II
  • Patent number: 6347130
    Abstract: A fuel assembly for a boiling water reactor comprising a plurality of fuel units, stacked on top of each other, each of which comprising a plurality of fuel rods extending vertically between a top tie plate and a bottom tie plate, and means for keeping the fuel elements together. The fuel elements are surrounded by a fuel channel with a substantially square cross section. At least two of the fuel units differ from each other in regard to fuel distribution or free flow area.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: February 12, 2002
    Assignee: Westinghouse Atom AB
    Inventor: Olov Nylund
  • Patent number: 6259758
    Abstract: A metal cooling tube of a water-cooled nuclear reactor, having an inner surface thereof exposed to an aqueous cooling medium containing hydrogen peroxide. The cooling tube has its inner surface coated with matter selected from the group consisting of the element manganese, molybdenum, zinc, copper, cadmium for absorbing such hydrogen peroxide and then affecting decomposition of the hydrogen peroxide in the aqueous medium. In preferred embodiment such coating is manganese and oxides thereof. A method for lowering the electrochemical corrosion potential of a metal allow cooling tube exposed to an aqueous medium in a water-cooled nuclear reactor is also disclosed. Such method comprises the step of coating an inner surface of such tube with matter selected from the group of elements comprising manganese, molybdenum, zinc, copper, cadmium, so as to permit absorption and hydrogen peroxide in such aqueous medium and effect decomposition of hydrogen peroxide in such aqueous medium.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: July 10, 2001
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Leonard William Niedrach, George Charles Sogoian, Robert Lee Cowan, II
  • Patent number: 6233299
    Abstract: A new transmutation assembly permits an efficient transmutation of a long-lived radioactive material (long-lived FP nuclides such as technetium-99 or iodine-129) which was produced in the nuclear reactor. Wire-type members of a long-lived radioactive material comprised of metals, alloys or compounds including long-lived FP nuclides are surrounded by a moderator material and installed in cladding tubes to form FP pins. The FP pins, and nothing else, are housed in a wrapper tube to form a transmutation assembly. The wire-type members can be replaced by thin ring-type members. The transmutation assemblies can be selectively and at least partly loaded into a core region, a blanket region or a shield region of a reactor core in a fast reactor. From a viewpoint of reducing the influence on the reactor core characteristics, it is optimal to load the transmutation assemblies into the blanket region.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: May 15, 2001
    Assignee: Japan Nuclear Cycle Development Institute
    Inventor: Toshio Wakabayashi
  • Patent number: 6226342
    Abstract: A fuel assembly (1) comprising a plurality of elongated elements (3) filled with nuclear fuel and at least one component (5, 6, 7) for retaining the elongated elements (3), wherein the retaining component (5, 6, 7) is completely or partly made of a ceramic material.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: May 1, 2001
    Assignee: ABB Atom AB
    Inventors: Anders Micko, Peter Rudling, Dietmar Wolfram