Abstract: The invention relates to an apparatus for imaging a layer of a body to be examined. The body is irradiated by primary radiation, in response to which the layer emits scattered radiation. The apparatus comprises a diaphragm plate which is disposed outside the primary radiation beam. The diaphragm is rotatable about an axis perpendicular to its major surface, and it has at least one aperture which is disposed off of the axis of rotation. A detector or a superposition device is provided for measuring or superimposing the scattered radiation which passes through the diaphragm plate at different aperture settings. The primary radiation is stopped down to form a flat fan-shaped beam. The diaphragm plate is oriented parallel to the fan-shaped beam. Each aperture corresponds to an associated detector, which follows the rotation of the diaphragm plate. The input face of each detector extends parallel to the diaphragm plate.
Abstract: Devices that measure the electron density in a body by means of radiation scattered from a narrow pencil beam of penetrating radiation directed through the body, produce defective images on reconstruction of the density distribution because of multiple scattering of radiation. This can of course be reduced by scattered ray diaphragms, but cannot be eliminated entirely. The invention therefore provides a means for detecting the size of the multiple scattered radiation component be measurement. For this purpose, the detector array which measures radiation including the single scattered radiation, is screened, at least osscasionally, from the single scattered radiation and the detected intensity values measured by the detector elements when so screened, are used to correct the values generated by measuring the detected radiation including the single scattered radiation.
Abstract: In a device for determining the density distribution on a straight line by means of a narrow penetrating beam, the measuring accuracy for the center of an object to be examined is increased in that the primary beam is not only displaced perpendicularly to its direction, but is also rotated around a point in this center. To this end, a radiation source and a detector device are mounted on a supporting device which can rotate the path of the primary beam around a central point, preferably the center of the object, around an axis which intersects the path of the primary beam at right angles.
Abstract: A scintillator formed of a ZnWO.sub.4 single crystal having an absorption coefficient less than or equal to 1.8 cm.sup.-1 for the light having a wavelength of 520 nm is disclosed which has a luminescence wavelength of 480 nm and therefore can be combined with a photodiode, and which is high in radiation detection sensitivity, short in decay time, and specifically suitable for use in computed tomography.