Computerized Tomography Patents (Class 378/4)
  • Patent number: 11653892
    Abstract: A method and a system for providing calibration for a polychromatic photon counting detector forward counting model. Measurements with multiple materials and known path lengths are used to calibrate the photon counting detector counting response of the forward model. The flux independent weighted bin response function is estimated using the expectation maximization method, and then used to estimate the pileup correction terms at plural tube voltage settings for each detector pixel. The beam hardening corrections are then applied to the measured projection data sinogram, and the corrected sinogram is reconstructed to the counting image at the selected single energy.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: May 23, 2023
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Xiaohui Zhan, Xiaofeng Niu, Ilmar Hein
  • Patent number: 11646979
    Abstract: Systems and methods for packet payload mapping for robust transmission of data are described. For example, methods may include receiving, using a network interface, packets that each respectively include a primary frame and one or more preceding frames from the sequence of frames of data that are separated from the primary frame in the sequence of frames by a respective multiple of a stride parameter; storing the frames of the packets in a buffer with entries that each hold the primary frame and the one or more preceding frames of a packet; reading a first frame from the buffer as the primary frame from one of the entries; determining that a packet with a primary frame that is a next frame in the sequence has been lost; and, responsive to the determination, reading the next frame from the buffer as a preceding frame from one of the entries.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: May 9, 2023
    Assignee: MIXHalo Corp.
    Inventors: Vikram Singh, Michal Pietras
  • Patent number: 11645792
    Abstract: An x-ray microscopy method that obtains a classification of different particles by distinguishing between different material phases through a combination of image processing involving morphological edge enhancement and possibly resolved absorption contrast differences between the phases along with optional wavelet filtering.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 9, 2023
    Assignee: Carl Zeiss X-ray Microscopy, Inc.
    Inventors: Matthew Andrew, Lars Omlor, Hrishikesh Bale, Christoph Graf vom Hagen
  • Patent number: 11641049
    Abstract: A rotary joint includes a first part and a second part configured to rotate around a rotation axis against the first part. The first part has a first magnetic core and a capacitive data link component. The second part has a second magnetic core for coupling power with the a first magnetic core and a second capacitive data link component to transfer data from and/or to the first capacitive data link component. To weaken magnetic stray fields from the magnetic core, a resonant shield is provided outside the airgap between the magnetic cores. The resonant shield comprises an open ring-shaped structure, having two open ends which are connected by a capacitor to form a resonant circuit.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: May 2, 2023
    Assignee: SCHLEIFRING GmbH
    Inventors: Nils Krumme, Ulrich Herrmann
  • Patent number: 11631152
    Abstract: A security inspection system and a method of configuring a security inspection device are provided. In an embodiment, the security inspection system may include: an identity information entry device configured to enter an identification of an inspected person; a parameter determination device configured to determine a parameter for performing a security inspection on the inspected person based on a security factor of the inspected person determined according to user data corresponding to the identification of the inspected person; and a security inspection device configured to perform the security inspection on the inspected person based on the determined parameter. According to embodiments, it is possible to accurately predict the user's behavior and evaluate the risk or potential danger from the user by analyzing and mining the user's comprehensive data, and thus to provide a more accurate security inspection solution.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: April 18, 2023
    Assignee: Nuctech Company Limited
    Inventors: Zhiqiang Chen, Ziran Zhao, Wanlong Wu, Yingkang Jin, Xianli Ding, Jiao Long, Zongjun Shen, Zheng Li
  • Patent number: 11622735
    Abstract: Described herein are systems and methods for performing plural-plane narrow-beam computed tomography.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: April 11, 2023
    Assignee: MALCOVA, INC.
    Inventors: Peymon Mirsaeid Ghazi, Tara Reneé Ghazi
  • Patent number: 11615879
    Abstract: Supervised and unsupervised learning schemes may be used to automatically label medical images for use in deep learning applications. Large labeled datasets may be generated from a small initial training set using an iterative snowball sampling scheme. A machine learning powered automatic organ classifier for imaging datasets, such as CT datasets, with a deep convolutional neural network (CNN) followed by an organ dose calculation is also provided. This technique can be used for patient-specific organ dose estimation since the locations and sizes of organs for each patient can be calculated independently.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 28, 2023
    Assignee: The General Hospital Corporation
    Inventors: Synho Do, Jung Hwan Cho
  • Patent number: 11607276
    Abstract: A method for implementing a dynamic three-dimensional lung map view for navigating a probe inside a patient's lungs includes loading a navigation plan into a navigation system, the navigation plan including a planned pathway shown in a 3D model generated from a plurality of CT images, inserting the probe into a patient's airways, registering a sensed location of the probe with the planned pathway, selecting a target in the navigation plan, presenting a view of the 3D model showing the planned pathway and indicating the sensed location of the probe, navigating the probe through the airways of the patient's lungs toward the target, iteratively adjusting the presented view of the 3D model showing the planned pathway based on the sensed location of the probe, and updating the presented view by removing at least a part of an object forming part of the 3D model.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: March 21, 2023
    Assignee: Covidien LP
    Inventors: Oren P. Weingarten, Ron Barak
  • Patent number: 11607185
    Abstract: A multi-axis imaging system comprising an imaging gantry with an imaging axis extending through a bore of the imaging gantry, a support column that supports the imaging gantry on one side of the gantry in a cantilevered manner, and a base that supports the imaging gantry and the support column. The imaging system including a first drive mechanism that translates the gantry in a vertical direction relative to the support column and the base, a second drive mechanism that rotates the gantry with respect to the support column between a first orientation where the imaging axis of the imaging gantry extends in a vertical direction parallel to the support column and a second orientation where the imaging axis of the gantry extends in a horizontal direction parallel with the base, and a third drive mechanism that translates the support column and the gantry in a horizontal direction along the base.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: March 21, 2023
    Assignee: Mobius Imaging, LLC
    Inventors: Eugene A. Gregerson, Russell Stanton, Michael Connor, Paul Sebring
  • Patent number: 11600386
    Abstract: Medical software tools platforms utilize a surgical display to provide access to specific medical software tools, such as medically-oriented applications or widgets, that can assist surgeons or surgical team in performing various procedures. In particular, an endoscopic camera may register the momentary rise in the optical signature reflected from a tissue surface and in turn transmit it to a medical image processing system which can also receive patient heart rate data and display relevant anomalies. Changes in various spectral components and the speed at which they change in relation to a source of stimulus (heartbeat, breathing, light source modulation, etc.) may indicate the arrival of blood, contrast agents or oxygen absorption. Combinations of these may indicate various states of differing disease or margins of tumors, and so forth. Also, changes in temperatures, physical dimensions, pressures, photoacoustic pressures and the rate of change may indicate tissue anomalies in comparison to historic values.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 7, 2023
    Inventor: Jack Wade
  • Patent number: 11593926
    Abstract: Systems and methods for improving soft tissue contrast, characterizing tissue, classifying phenotype, stratifying risk, and performing multi-scale modeling aided by multiple energy or contrast excitation and evaluation are provided. The systems and methods can include single and multi-phase acquisitions and broad and local spectrum imaging to assess atherosclerotic plaque tissues in the vessel wall and perivascular space.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: February 28, 2023
    Assignee: ELUCID BIOIMAGING INC.
    Inventors: Andrew J. Buckler, Changguo Ji, Murali Ayyapillai
  • Patent number: 11562582
    Abstract: A method for operating a time-of-flight sensor system includes by an array of pixels of a time-of-flight sensor of the time-of-flight sensor system, generating signal data representative of reflected light from an environment; generating an intensity representation of an object in the environment based on the signal data representative of the reflected light from the environment; determining that the intensity representation indicates that an object in the environment includes a target object; and responsive to the determining, generating a three-dimensional representation of the environment based on the data representative of the reflected light.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: January 24, 2023
    Assignee: AMS INTERNATIONAL AG
    Inventors: Miguel Bruno Vaello Paños, Daniele Perenzoni, David Stoppa, Radoslaw Marcin Gancarz
  • Patent number: 11540790
    Abstract: A marker-coordinate detecting unit detects coordinates of a stent marker on a new image when the new image is stored in an image-data storage unit; and then a correction-image creating unit creates a correction image from the new image through, for example, image transformation processing, so as to match up the detected coordinates with reference coordinates that are coordinates of the stent marker already detected by the marker-coordinate detecting unit in a first frame. An image post-processing unit then creates an image for display by performing post-processing on the correction image created by the correction-image creating unit, the post-processing including high-frequency noise reduction filtering-processing, low-frequency component removal filtering-processing, and logarithmic-image creating processing; and then a system control unit performs control of displaying a moving image of an enlarged image of a set region that is set in the image for display, together with an original image.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: January 3, 2023
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Takuya Sakaguchi, Kyojiro Nambu, Hisato Takemoto
  • Patent number: 11534627
    Abstract: System for treatment positioning is provided. The system may include a treatment component, an imaging component, and a couch. The treatment component may include a radiation source that has a radiation isocenter. The couch may be movable between the treatment component and the imaging component, and include a positioning line that has a positioning feature. The system may acquire at least one first image relating to a subject and the positioning line using the radiation source at a set-up position. The system may also acquire at least one second image relating to the subject and the positioning line using the imaging component at an imaging position. The system may further determine a treatment isocenter of a target of the subject based on the at least one second image, and determine a treatment position of the subject based on the first image(s), the second image(s), and the positioning line.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 27, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Jonathan Maltz, Supratik Bose
  • Patent number: 11529196
    Abstract: The invention relates to a medical instrument guiding device comprising the medical instrument, a monitoring device (2) comprising a support (3) and a medical imaging probe (4) which is arranged on the support, a screen (10), and a control unit (11) of the device which is connected to the screen and the probe for generating at least one three-dimensional image, the control unit being configured to generate at least one two-dimensional image on the screen showing a deformation of the instrument from at least the three-dimensional image, the control unit being configured to estimate a virtual path of the instrument from the deformation of the instrument for extending the insertion thereof to a target, and deduce therefrom at least one distance between the virtual path and the target.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: December 20, 2022
    Assignee: KOELIS
    Inventors: Michael Baumann, Eric Gaudard, Antoine Leroy, Paul Mignon, Patrick Henri
  • Patent number: 11531121
    Abstract: A method is provided to reduce the counting times in radiation detection systems using machine learning, wherein the method comprises: receiving output data from a detector which is to detect a target material from a target body; analyzing the output data; identifying a material of interest from the analyzed output data; and controlling a source of the target material to prevent the source from harming the target body. An apparatus is also provided which comprises: a detector to detect radiation and to provide an output data in real-time; and a processor coupled to the detector, wherein the processor is to: receive the output data; analyze the output data; identify a material of interest from the analyzed output data; and control a source of the target material.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: December 20, 2022
    Assignee: Oregon State University
    Inventors: Ophir Frieder, Steven Richard Reese, Jessica Ryan Curtis
  • Patent number: 11504085
    Abstract: A method for calibrating defective channels of a CT device involves in a step S10, acquiring original data collected by the CT device; in a step S20, capturing to-be-recovered areas from the original data, wherein the to-be-recovered areas contain the defective channels of the CT device; in a step S30, inputting data of the to-be-recovered areas to a neural network for training so as to generate training results; and in a step S40, using the training results to repair the to-be-recovered areas. The method eliminates effects of artifacts caused by defective channels on image reconstruction.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: November 22, 2022
    Assignee: MINFOUND MEDICAL SYSTEM CO., LTD.
    Inventors: Aziz Ikhlef, Zheng Chu, Yaofa Wang
  • Patent number: 11506490
    Abstract: A method for filtering a measurement data set usable for specifying and/or verifying an internal feature of a workpiece, the method includes providing a measurement data set comprising a plurality of measurement points of the internal feature; providing an auxiliary feature representing an ideal estimate for the internal feature of the workpiece; mirroring each measurement point of the measurement data set on a boundary element of the auxiliary feature, thereby generating a first modified data set comprising a plurality of first modified measurement points; determining a convex hull of the first modified measurement points and projecting the first modified measurement points onto the determined convex hull, thereby generating a second modified data set comprising a plurality of second modified measurement points; and mirroring each second modified measurement point on the boundary element of the auxiliary feature, thereby generating a filtered measurement data set comprising a plurality of filtered measuremen
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: November 22, 2022
    Assignees: MITUTOYO CORPORATION, MITUTOYO EUROPE GMBH
    Inventor: Till Martin Bruckdorfer
  • Patent number: 11497461
    Abstract: Systems and methods for dose calibration. A dose calibrator may include one or more radiation sources, one or more solid-state detectors and one or more plates positioned between the one or more radiation sources and the one or more solid-state detectors. The one or more solid-state detectors capture one or more images based on emissions received from the one or more radiation sources through the one or more plates for estimating activity of the one or more radiation sources.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: November 15, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Miesher Rodrigues
  • Patent number: 11494957
    Abstract: A computer-implemented method for correction of a voxel representation of metal affected x-ray data. The method comprises a first 3D deep neural network receiving an initial voxel representation of x-ray data at its input and generating a voxel map at its output, the map identifying voxels of the initial voxel representation that belong to a region of voxels that are affected by metal. A second 3D deep neural network receives the initial voxel representation and the map generated by the first 3D deep neural network at its input and generating a corrected voxel representation, the corrected voxel representation including voxel estimations for voxels that are identified by the voxel map as being part of a metal affected region, the first 3D deep neural being trained on the basis of training data and reference data that include voxel representations of clinical x-ray data of a predetermined body part of a patient.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: November 8, 2022
    Assignee: PROMATON HOLDING B.V.
    Inventors: Frank Theodorus Catharina Claessen, Sarah Anne Parinussa, David Anssari Moin
  • Patent number: 11488375
    Abstract: A method for performing illumination color prediction on an image in a neural network model, comprising: inputting an image to the neural network model; extracting a semantic-based illumination color feature of the image and a statistical rule-based illumination color feature of the image; and predicting an illumination color of the image according to the semantic-based illumination color feature and the statistical rule-based illumination color feature.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 1, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Qiao Wang
  • Patent number: 11487029
    Abstract: The present disclosure is related to systems and methods for reconstructing a positron emission tomography (PET) image. The method includes obtaining PET data of a subject. The PET data may correspond to a plurality of voxels in a reconstructed image domain. The method includes obtaining a motion signal of the subject. The method includes obtaining motion amplitude data. The motion amplitude data may indicate a motion range for each voxel of the plurality of voxels. The method includes determining gating data based at least in part on the motion amplitude data. The gating data may include useful percentage counts each of which corresponds to at least one voxel of the plurality of voxels. The method includes gating the PET data based on the gating data and the motion signal. The method includes reconstructing a PET image of the subject based on the gated PET data.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 1, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Tao Feng, Gang Yang, Hao Liu, Yang Lyu
  • Patent number: 11478209
    Abstract: An image acquisition unit acquires two radiographic images based on radiations which are transmitted through a subject containing a plurality of compositions and have energy distributions different from each other. A body thickness derivation unit derives, as a first body thickness and a second body thickness, body thicknesses of the subject for pixels of the two radiographic images. A composition ratio derivation unit derives composition ratios of the subject for the pixels of the radiographic images based on the first body thickness and the second body thickness.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: October 25, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Takahiro Kawamura
  • Patent number: 11475568
    Abstract: A method for controlling display of an abnormality includes obtaining a target chest X-ray image, detecting a structure including a linear structure formed of a first linear area that has been drawn by projecting anatomical structures whose X-ray transmittances are different from each other or a second linear area drawn by projecting an anatomical structure including a wall of a trachea, a wall of a bronchus, or a hair line, calculating an indicator for determining the abnormal state from the structure, comparing the indicator with a reference indicator, and determining whether the structure is in the abnormal state, and displaying, if it is determined that the structure is in the abnormal state, an image of an area of the target chest X-ray image including the structure determined to be in the abnormal state and details of the abnormal state.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: October 18, 2022
    Assignee: PANASONIC HOLDINGS CORPORATION
    Inventors: Kenji Kondo, Jun Ozawa, Hirohiko Kimura, Harumi Itoh, Shinichi Fujimoto
  • Patent number: 11464588
    Abstract: Disclosed is a system and method for assembling instrument sets that include correct instruments with one or more verified states for different procedures. The system may receive a request for a particular instrument, and may determine instrument states defined for the particular instrument or a procedure involving the particular instrument. The system may scan a first instrument using one or more sensors, may verify that the first instrument matches a make, model, or type of the particular instrument based on the scanning data, and may classify the first instrument states with at least a threshold probability based on the scanning data matching characteristics from a probabilistic model. The system may control the distribution of the first instrument to a first destination or a second destination based on whether or not the first instrument states satisfy the instrument states defined for the particular instrument or the procedure.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: October 11, 2022
    Assignee: BH2 INNOVATIONS INC.
    Inventors: Stephen J. Budill, Michael S. Humason, Salmaan Hameed
  • Patent number: 11457884
    Abstract: A Nuclear Medicine (N-M) imaging system including a gantry having a stationary stator and a rotor rotatably mounted on the stator and including detection units. The rotor is driven by a rotor driving assembly including a linear encoder. The detection units mounted on the rotor include scanning columns having one or more Multi-Pixel Photon Counter (MPC) mounted on one or more extendable arm. The gantry also includes flat cables connecting the controller with gantry components, e.g., the scanning column Multi-Pixel Photon Counters (MPC). The scanning columns are pivotably moveable by a scanning column driver system including a rotary encoder.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 4, 2022
    Assignee: Spectrum Dynamics Medical Limited
    Inventors: Yoel Zilberstien, Nathaniel Roth, Idan Fogel, Baha Eldeen Kassem, Sajed Haj-Yahya
  • Patent number: 11455756
    Abstract: The disclosure relates to a system and method for determining and pre-fetching projection data in image reconstruction. The method may include: determining a sequence of a plurality of pixels including a first pixel and a second pixel relating to the first pixel; determining a first geometry calculation used for at least one processor to access a first set of projection data relating to the first pixel from a first storage; determining a second geometry calculation based on the first geometry calculation; determining a first data template relating to the first pixel and a second data template relating to the second pixel based on the second geometry calculation; and pre-fetching a second set of projection data based on the first data template and the second data template, from a storage.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 27, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Mark Magalotti, Patrick Kling
  • Patent number: 11456146
    Abstract: An anode target, a ray light source, a computed tomography device, and an imaging method, which relate to the technical field of ray processing. The anode target comprises a first anode target, a second anode target, and a ceramic plate. The first anode target is used for enabling, by means of a first voltage carried on the first anode target, an electron beam emitted by a cathode to generate a first ray on a target spot of the first anode target. The second anode target is used for enabling, by means of a second voltage carried on the second anode target, an electron beam emitted by the cathode to generate a second tray on a target spot of the second anode. The ceramic plate is used for isolating the first anode target from the second anode target. By means of the anode target, the ray light source, the computed tomography device and the imaging method, dual-energy distributed ray imaging data can be provided and the imaging quality of a ray system can be improved.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: September 27, 2022
    Assignees: Nuctech Company Limited, TSINGHUA UNIVERSITY
    Inventors: Chengjun Tan, Wenhui Huang, Chuanxiang Tang, Qingxiu Jin, Dongsheng Zhang, Qun Luo, Donghai Liu, Luming Zhang, Peidong Wu
  • Patent number: 11448606
    Abstract: An x-ray imaging system, and a corresponding kit and method, includes a movable x-ray imager that includes a first backscatter x-ray detector assembly. The system also includes a second backscatter x-ray detector assembly that is removably attachable with the movable x-ray imager. The movable x-ray imager and the second backscatter x-ray detector include complementary attachment features configured to secure, removably, the second backscatter x-ray detector assembly with the movable x-ray imager to form an attached arrangement having the second and first backscatter x-ray detectors fixedly oriented with respect to each other. The second backscatter x-ray detector assembly forms an outer loop defining an inner opening at which the movable x-ray imager is configured to be received for attachment of the second backscatter x-ray detector assembly with the movable x-ray imager to form the attached arrangement.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: September 20, 2022
    Assignee: Viken Detection Corporation
    Inventors: Peter J. Rothschild, Howard D. Kellogg
  • Patent number: 11450038
    Abstract: A method for reconstructing target cardiac images is provided. The method may include: obtaining projection data, the projection data including a plurality of sub-sets of projection data, each sub-set of projection data corresponding to a cardiac motion phase; obtaining a plurality of sampled cardiac motion phases; generating a plurality of cardiac images of the plurality of sampled cardiac motion phases by reconstructing, based on the one or more sub-sets of projection data corresponding to the each sampled cardiac motion phase, one or more cardiac images of the each sampled cardiac motion phase; determining a plurality of cardiac motion parameters corresponding to the plurality of sampled cardiac motion phases based on the plurality of cardiac images; determining a mean phase based on the plurality of cardiac motion parameters corresponding to the plurality of sampled cardiac motion phases; and reconstructing the one or more target cardiac images of the mean phase.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: September 20, 2022
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Yi Wang
  • Patent number: 11445991
    Abstract: An X-ray device for carrying out X-ray scans is configured for a simplified procedure. The X-ray device has an image receptor which operates in conjunction with an X-ray generator to carry out X-ray scans of a patient, and a patient table. A tabletop of the patient table which is used to position the patient during the X-ray scans, is immovable in the table plane. Instead, the image receptor is disposed in a longitudinally and transversely movable manner relative to the tabletop parallel to the table plane.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 20, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Thomas Dippl, Thomas Schmitt
  • Patent number: 11436721
    Abstract: A medical imaging device, a system, and a method for generating a motion-compensated image are provided. A corresponding method as well as a computer readable storage medium having stored thereon a corresponding computer program are also provided. Image data is captured and acquired while a deformable robotic instrument is in contact with a subject to be imaged. A data processor is configured to compensate for a motion of the subject by processing the image data in dependence on time-resolved motion and/or geometry data of the robotic instrument, and/or by generating a control signal for controlling the robotic instrument to counteract the motion of the subject.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: September 6, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Alois Regensburger, Jessica Magaraggia
  • Patent number: 11424037
    Abstract: A method, system, and computer program product provide disease simulation in synthetic projection imagery. The method obtains first medical imaging data of a first imaging type as source imaging data. A second imaging type to be generated from the source imaging data is identified. The method identifies a parameter set for the second imaging type. Second medical imaging data is modeled from the first medical imaging data based on the parameter set. A set of synthetic images is generated from the first medical imaging data based on the modeled second medical imaging data.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 23, 2022
    Assignee: International Business Machines Corporation
    Inventors: Benedikt Graf, Arkadiusz Sitek, Yiting Xie, Amin Katouzian, Pedro Luis Esquinas Fernandez, Lilla Boroczky, Mark D. Bronkalla
  • Patent number: 11419568
    Abstract: A method is for metal artifact reduction in CT image data, the CT image data including multiple 2D projection images acquired using different projection geometries and suitable to reconstruct a 3D image data set of a volume of an imaged object. In an embodiment, the method includes a metal artifact reduction process including at least, acquiring, using a multi-energy CT technique, energy-resolved CT image data associated with multiple energy ranges. At least one result of the multi-energy technique is used in at least one aspect of the metal artifact reduction process.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: August 23, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Christian Hofmann, Bernhard Schmidt
  • Patent number: 11422438
    Abstract: A three-dimensional human body scanning device includes: a carrier module, moving around a to-be-measured person; a bracket module, installed above the carrier module, where the bracket module includes a plurality of stretchable brackets connected in an enveloping and storage manner, and other brackets are accommodated and assembled inside a sleeve; and a fixed module, installed on the sleeve, where the fixed module is used to hold the scanning device, and drives the scanning device through up-and-down stretch of the bracket module and movement of a slider element to scan a human body.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 23, 2022
    Assignees: SUMMER SMILE INTERNATIONAL CO., INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ting-Hao Lai, Hsiang-Chun Lin
  • Patent number: 11412998
    Abstract: A system for indicating an area of interest on an image, including a source of image data, an image processing unit, a user interface, and a destination, which may be a display. The image data may be ultrasound, X-ray, magnetic resonance imaging, nuclear magnetic resonance imaging, magnetic resonance tomography, computed tomography or surgical image data. The image processing unit may be configured to receive the image data from the source and combine it with a desired overlay pattern selected from a plurality of overlay patterns for indicating an area of interest on the image, which is then displayed on the display. The overlay pattern may include a key with coordinates or labels. Properties of the overlay pattern and the image data may be adjusted independently or automatically.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: August 16, 2022
    Assignee: Karl Storz Imaging, Inc.
    Inventors: Timothy King, Thomas Prescher, Kim Barnhill
  • Patent number: 11406844
    Abstract: A control circuit accesses topograms of a patient that include patient content that is beyond the portion of the patient that appears in the three-dimensional computed tomography (CT) images for that patient. The control circuit uses those topograms to derive a virtual volumetric structure representing at least some of the patient content that is beyond the aforementioned portion of the patient that appears in the 3D CT images. That virtual volumetric structure can then be used to predict potential collisions when assessing a radiation treatment plan for the patient that utilizes the aforementioned radiation treatment platform. By one approach the topograms include at least two substantially orthographic views of the aforementioned patient content.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 9, 2022
    Assignee: Varian Medical Systems International AG
    Inventors: Xinhui Yang, Armel C. Rosselet, Martin Sabel, Janne I. Nord
  • Patent number: 11399795
    Abstract: According to one embodiment, an X-ray computed tomography (CT) apparatus includes an X-ray tube, an area detector, a rotary frame, generation circuitry, processing circuitry, and a controller. The generation circuitry is configured to generate a reference image of the subject based on an output from the area detector that is given in response to radiation of the X-rays from a predetermined position around the rotational axis for a period required to perform on/off control of radiation of the X-rays. The processing circuitry is configured to set, based on the reference image, an imaging condition for use in scanning for the subject. The controller is configured to control the scanning based on the set imaging condition.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: August 2, 2022
    Assignee: Canon Medical Systems Corporation
    Inventors: Masaharu Tsuyuki, Takahiro Yoda
  • Patent number: 11380015
    Abstract: A method for the optical determination of an intensity distribution, includes a) producing a spatially inhomogeneous radiation field of electromagnetic radiation; b) producing a first relative movement between a position-resolving image sensor and the radiation source with the radiation field moving along a first measurement path over a sensor field of the image sensor, so it is scanned by a first measurement path region of the radiation field; c) recording a first image set with position-resolved images of the radiation field during the first movement; d) producing a similar second relative movement between the image sensor and the radiation source, along a second measurement path not parallel to the first movement path; d) similarly recording a second image set during the second relative movement; e) evaluating the position-resolved images of the first and second image sets at least at points of intersection, the locations of which are defined by evaluation lines; and f) determining a relative intensity dis
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: July 5, 2022
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Peter Nitz, Anna Heimsath, Peter Schoettl, Gregor Bern, Moritz Bitterling, Thomas Schmidt
  • Patent number: 11366073
    Abstract: An apparatus (100) for analysing a sample (101) comprising a drill core sample or drill cuttings is provided. The apparatus comprises an X-ray geological structure data unit configured to scan the sample to obtain a data set indicating a volume of the sample, a fluorescence detector (109) configured to measure fluorescent radiation emanating from the sample (101) when irradiated by the X-ray beam, and a weighing unit (105) configured to weigh the sample. The apparatus further comprises a processing unit (104) configured to calculate a density of the sample (101) based on the data set obtained by the X-ray geological structure data unit, the fluorescent radiation measured by the fluorescence detectors, and the weight provided by the weighing unit.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: June 21, 2022
    Assignee: OREXPLORE AB
    Inventors: Alexander Hansson, Mikael Bergqvist
  • Patent number: 11361415
    Abstract: An imaging system (500) includes a data acquisition system (515) configured to produce projection data and at least one memory device with reconstruction algorithms (518) and at least one blending algorithm (524). The imaging system further includes a reconstructor (516) configured to reconstruct the projection data with the reconstruction algorithms and generate at least first spectral volumetric image data corresponding to a first basis material content and second spectral volumetric image data corresponding to a second basis material content, and blend the first spectral volumetric image data and the second spectral volumetric image data with the at least one blending algorithm to produce blended volumetric image data.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: June 14, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sven Prevrhal, Manindranath Vembar
  • Patent number: 11350897
    Abstract: The present invention relates to an apparatus (10) for presentation of dark field information. It is described to provide (210) an X-ray attenuation image of a region of interest of an object. A dark field X-ray image of the region of interest of the object is also provided (220). A plurality of sub-regions of the region of interest are defined (230) based on the X-ray attenuation image of the region of interest or based on the dark field X-ray image of the region of interest. At least one quantitative value is derived (240) for each of the plurality of sub-regions, wherein the at least one quantitative value for a sub-region comprises data derived from the X-ray attenuation image of the sub-region and data derived from the dark field X-ray image of the sub-region. A plurality of figures of merit are assigned (250) to the plurality of sub-regions, wherein a figure of merit for a sub-region is based on the at least one quantitative value for the sub-region.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: June 7, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Andriy Yaroshenko, Karsten Rindt, Jörg Sabczynski, Thomas Koehler, Hanns-Ingo Maack
  • Patent number: 11346975
    Abstract: The present disclosure provides a spiral Computed Tomography (CT) device and a three-dimensional image reconstruction method. The spiral CT device includes: an inspection station operable to carry an object to be inspected and defining an inspection space; a rotational supporting apparatus disposed around the inspection space; a plurality of X-ray sources located on the rotational supporting apparatus; and a plurality of X-ray receiving apparatuses located on the rotational supporting apparatus and opposing to the plurality of X-ray sources respectively, wherein the plurality of X-ray sources and the plurality of X-ray receiving apparatuses are rotational synchronously with the rotational supporting apparatus, wherein the plurality of X-ray sources are closely disposed and fan-shaped X-ray beams provided by the plurality of X-ray sources cover the inspection space with a minimum degree of overlapping.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: May 31, 2022
    Assignee: Nuctech Company Limited
    Inventors: Zhiqiang Chen, Ziran Zhao, Yaohong Liu, Jianping Gu, Qian Yi, Bicheng Liu, Guangming Xu
  • Patent number: 11337666
    Abstract: An X-ray fluoroscopic imaging apparatus includes an operation element that includes a motion axis selection switch and a plurality of direction switches; and a control element that controls a shifting of a relative location between an imaging element and a table relative to a motion-axis by the motion-axis selection switch to a shiftable predetermined motion-axis mode.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: May 24, 2022
    Assignee: SHIMADZU CORPORATION
    Inventors: Koki Yoshida, Daisuke Murakami, Dai Hirose
  • Patent number: 11331064
    Abstract: An apparatus and method are described using a forward model to correct pulse pileup in spectrally resolved X-ray projection data from photon-counting detectors (PCDs). To calibrate the forward model, which represents each order of pileup using a respective pileup response matrix (PRM), an optimization search determines the elements of the PRMs that optimize an objective function measuring agreement between the spectra of recorded counts affected by pulse pileup and the estimated counts generated using forward model of pulse pileup. The spectrum of the recorded counts in the projection data is corrected using the calibrated forward model, by determining an argument value that optimizes the objective function, the argument being either a corrected X-ray spectrum or the projection lengths of a material decomposition. Images for material components of the material decomposition are then reconstructed using the corrected projection data.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 17, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Jian Zhou, Zhou Yu, Yan Liu
  • Patent number: 11328460
    Abstract: An X-ray CT system includes an X-ray tube, an X-ray detector and processing circuitry. The processing circuitry is configured to cyclically change energy of the X-rays during one rotation of the X-ray tube around a subject. The processing circuitry is configured to perform a process including a correcting process addressing a difference in a transmission amount between X-rays having first energy and X-rays having second energy, on at least one selected from between: a plurality of first projection data sets acquired when the X-rays having the first energy were radiated; and a plurality of second projection data sets acquired when the X-rays having the second energy were radiated. The processing circuitry is configured to reconstruct an image on the basis of a combined data set generated on the basis of a plurality of projection data sets including the projection data sets resulting from the process.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 10, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Hiroki Taguchi, Akshay Narayan Prabhu Verleker, Yuki Houno, Satoshi Saito
  • Patent number: 11311346
    Abstract: Disclosed is a system and method for assembling instrument sets that include correct instruments with one or more verified states for different procedures. The system may receive a request for a particular instrument, and may determine instrument states defined for the particular instrument or a procedure involving the particular instrument. The system may scan a first instrument using one or more sensors, may verify that the first instrument matches a make, model, or type of the particular instrument based on the scanning data, and may classify the first instrument states with at least a threshold probability based on the scanning data matching characteristics from a probabilistic model. The system may control the distribution of the first instrument to a first destination or a second destination based on whether or not the first instrument states satisfy the instrument states defined for the particular instrument or the procedure.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: April 26, 2022
    Assignee: BH2 INNOVATIONS INC.
    Inventors: Stephen J. Budill, Michael S. Humason, Salmaan Hameed
  • Patent number: 11300504
    Abstract: A tomography method, system, and apparatus based on time-domain spectroscopy are provided. A light emitter is controlled to emit a pulse beam to scan a cross-section of an object to be measured while using a light receiver to detect the pulse beam passing through the object to be measured, so as to obtain time-domain pulse signals at locations of a scan path. A scan angle is repeatedly changed to perform the scanning and detecting steps, so as to collect the time-domain pulse signals of multiple angles of the cross-section as a time information set. Features are retrieved from the time-domain pulse signals using kernels of a trained machine learning model, which is trained with time information sets and corresponding ground truth images of cross-sections to learn the kernels for retrieving the features. The retrieved features are converted into a spatial domain to reconstruct a cross-sectional image of the object.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: April 12, 2022
    Assignee: National Tsing Hua University
    Inventors: Shang-Hua Yang, Yi-Chun Hung
  • Patent number: 11298089
    Abstract: An x-ray examination arrangement includes an x-ray radiation source arranged at a source position, at least two x-ray detectors having active detector areas and being arranged such that the active detector areas capture different solid angle ranges with respect to x-ray radiation produced by the x-ray radiation source and emanating from the source position, and a control device configured to calculate a projection onto a virtual detector plane based on radiographs respectively captured by the at least two x-ray detectors and spatial poses of the at least two x-ray detectors relative to the source position, and provide a combined radiograph for the virtual detector plane based on the projection. In addition, a method for operating the x-ray examination arrangement and a computed tomography device are provided.
    Type: Grant
    Filed: February 22, 2020
    Date of Patent: April 12, 2022
    Assignee: Carl Zeiss Industrielle Messtechnik GmbH
    Inventors: Marco Erler, Daniel Weiss, Martin Krenkel, Wolfgang Kimmig
  • Patent number: RE49401
    Abstract: A radiation imaging apparatus includes a pixel array having pixels including conversion elements and switching elements, a bias line for supplying a bias potential to the conversion elements; driving lines for supplying a signal to control the switching elements, a driving unit for performing an initialization operation of supplying a driving signal to each driving line group, switching each driving signal from an OFF voltage to an ON voltage, and then returning the driving signal to the OFF voltage; an acquisition unit configured to acquire a plurality of times in each driving cycle a signal value representing a current flowing through the bias line; a calculation unit configured to calculate radiation information based on the signal values; and a determination unit configured to determine whether irradiation of the pixel array with radiation is present based on the radiation information.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: January 31, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsushi Iwashita, Toshio Kameshima, Tomoyuki Yagi, Katsuro Takenaka, Hideyuki Okada, Sho Sato, Eriko Sato, Takuya Ryu