Optical Transmission Cable Patents (Class 385/100)
  • Publication number: 20130261237
    Abstract: A composition includes specific amounts of a poly(arylene ether), an unfunctionalized hydrogenated triblock copolymer, an unfunctionalized polyolefin, and magnesium dihydroxide. The composition is useful for forming insulation and sheath layers of wire and cable.
    Type: Application
    Filed: December 7, 2010
    Publication date: October 3, 2013
    Inventors: Weili Qiu, Xiucuo Li, Wei Shan
  • Patent number: 8548293
    Abstract: A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 1, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20130251320
    Abstract: A multi-core optical fiber according to an embodiment of the present invention is provided with a plurality of core parts, a common cladding, and a coating. Particularly, in order to improve a spectral efficiency per unit sectional area, optical properties typified by the number of core parts, a sectional area of the entire multi-core optical fiber, the sum of power coupling coefficients to a core part n from all the other core parts, and a transmission loss, a non-linear refractive index, an effective area, and a chromatic dispersion of the core part n with the largest crosstalk from other core parts are set so as to satisfy a predetermined relation.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 26, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tetsuya HAYASHI
  • Patent number: 8538216
    Abstract: Fiber optic cables and assemblies for routing optical networks closer to the subscriber. The fiber optic cables have a small-cross section yet robust design that is versatile by allowing use in aerial application with a pressure clamp along with use in buried and/or duct applications. Additionally, the fiber optic cables and assemblies have a relatively large slack storage capacity for excess length. Assemblies include hardened connectors such as plugs and/or receptacles suitable for outdoor plant applications attached to one or more ends of the fiber optic cables for plug and play connectivity.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 17, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: George C. Abernathy, Rodney M. Burns, Michael J. Gimblet, Warren W. McAlpine, Allen M. Miller, David A. Seddon
  • Patent number: 8534931
    Abstract: An active optical cable is provided that incorporates a power management solution. The AOC has plugs that are configured to mate with respective USB sockets. The AOC is used to interconnect a USB host with a USB device. To the USB host and to the USB device, the AOC appears to be a standard USB electrical cable. Each of the plugs of the AOC has an optical-to-electrical and an electrical-to-optical (OE/EO) conversion module that converts electrical USB signals output from the USB host or USB device into optical signals and converts optical signals carried on the optical fibers of the AOC into electrical USB signals. The plugs include controllers that monitor certain conditions of the AOC and that select the power levels to be used in the plugs based on detected conditions.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: September 17, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Frederick W. Miller
  • Publication number: 20130230287
    Abstract: Cables are constructed with embedded discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of polymer material coextruded in the cable jacket.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 5, 2013
    Inventors: George Cornelius Abernathy, David Wesley Chiasson, Randall Dwaine Tuttle
  • Patent number: 8520986
    Abstract: A method for monitoring the operating conditions of an electric generator for mechanical strain and temperature includes means of distributive fiber optic sensors based on both Rayleigh back scattering techniques and Brillouin frequency shift fiber optic sensor analysis as both Rayleigh and Brillouin scans and allow accurate strain and temperature determinations at all points along standard fiber optic cables of considerable length, which effectively yields thousands of sensors throughout the entire standard fiber optic cable. Raman distributive temperature sensing also has a limited application. Single mode and polarizing maintaining fibers can both be analyzed and read with any Rayleigh or Brillouin distributive fiber optic sensor laser system allowing great flexibility in sensor spatial resolution, total sensed length, resolution and other factors.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: August 27, 2013
    Inventor: George Franklin Dailey
  • Patent number: 8520992
    Abstract: An optical fiber cable is comprised of: a slotted core (7) elongated along an axis of the optical fiber cable, the slotted core including a slot (11) running in parallel with the axis and a groove (5) accessible through the slot; one or more optical fibers (3) placed in the groove; a sheath (9) enclosing the slotted core and the optical fibers; a bonding portion (15) where the slotted core is bonded with the sheath; and two or more strength members (17) embedded in the slotted core, the strength member running in parallel with the axis, and being aligned on a plane including the axis.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: August 27, 2013
    Assignee: Fujikura Ltd.
    Inventors: Ken Osato, Naoki Okada, Kouji Tomikawa
  • Publication number: 20130214139
    Abstract: A system for generating and transmitting energy including prisms, lenses, mirrors, optical conduits, heat filters, light filters, and electricity filters. The lenses comprise lens systems to capture electromagnetic signals coming from any source of radiant energy. Upon receiving the electromagnetic signals, the lens system multiplies n times the intensity of the signals by a method of infinitesimal folding of signals, a method basically consisting of an overconcentration of signals folding onto themselves multiple times in order to produce substantially concentrated signals and to project the substantially concentrated signals into one single optical cable. These substantially concentrated signals are transmitted long distances as they are reflected through the interior of these optical conduits (in a conceptual manner similar to signal reflection in Tiber optics cables). At the distal ends of the optical cable three filters will extract heat, white light and electricity.
    Type: Application
    Filed: March 19, 2013
    Publication date: August 22, 2013
    Inventor: Aluizio M. Cruz
  • Publication number: 20130216192
    Abstract: Cables are constructed with discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of material in the cable jacket. The discontinuities allow a section of the cable jacket to be pulled away from a remainder of the jacket using a relatively low peel force.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Applicant: Corning Cable Systems LLC
    Inventor: Corning Cable Systems LLC
  • Patent number: 8511401
    Abstract: Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: August 20, 2013
    Assignee: Foro Energy, Inc.
    Inventors: Mark S. Zediker, Charles C. Rinzler, Brian O. Faircloth, Yeshaya Koblick, Joel F. Moxley
  • Patent number: 8515229
    Abstract: A method of producing an elastomeric optical conductor fiber composed of plastic includes drawing a fiber composed of a high-viscosity liquid reactive starting material. The starting material is added by way of a nozzle to a reaction apparatus, to which a liquid, which is inert towards the starting material, has been charged. At least partial crosslinking of the starting material takes place in the reaction apparatus. The elastomeric plastic of the optical conductor fiber is in particular a three-dimensionally crosslinked polyurethane.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 20, 2013
    Assignee: Leoni Bordnetz-Systeme GmbH
    Inventors: Gerhard Reichinger, Simone Streit, Markus Stallwitz, Stefan Schipke
  • Patent number: 8515236
    Abstract: A fiber optic drop cable assemblies and methods for deploying the same on a wall of a building are disclosed. The assembly includes a messenger member and a plurality of fiber optic cables each having a length, a connectorized end, and containing at least one optical fiber, the fiber optic cables being removably secured to the messenger member at a plurality of locations. The fiber optic cables are secured to the messenger member at a plurality of locations that correspond to select building locations, such as windows, through which the cable can be fed into the building.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: August 20, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: George C. Abernathy, Daniel A. Cassell, Gerry J. Harvey, Jimmy E. Lail, Kenneth D. Temple, Jr.
  • Patent number: 8515234
    Abstract: The present disclosure relates to a fiber optic network including a fiber distribution hub having a cabinet, an optical splitter within the cabinet, a hub termination region within the cabinet, a signal input location and an output cable connection location. The fiber optic network also includes a fiber distribution terminal including a terminal housing, a terminal termination region and a terminal spool. The fiber optic network further includes a wall box having a wall box enclosure, a fiber optic adapter positioned at the wall box enclosure and a wall box spool. A first fiber optic cable is wrapped around the terminal spool. The first fiber optic cable interconnects the fiber distribution terminal to the output cable connection location of the fiber distribution hub. The terminal spool rotates about a first axis to allow the first fiber optic cable to be dispensed from the terminal spool. A second fiber optic cable is wrapped around the wall box spool.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 20, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Thomas G. LeBlanc, Trevor D. Smith, Thomas Marcouiller, Ronald J. Kleckowski
  • Publication number: 20130208283
    Abstract: Variable Sensitivity optical sensors can have a respective actual sensitivity of one or more portions of the sensor corresponding, at least in part, to a selected environment of each respective sensor portion. Some disclosed sensors have a plurality of optical conduits extending longitudinally of the sensors. At least one of the optical conduits can have at least one longitudinally extending segment having one or more optical and/or mechanical properties that differs from the optical properties of an adjacent longitudinally extending segment, providing the conduit with longitudinally varying signal propagation characteristics. An optical sensor having such optical conduits can exhibit a longitudinally varying actual sensitivity. Nonetheless, such a sensor can exhibit a substantially constant apparent sensitivity, e.g., when each respective portion of the sensor exhibits an actual sensitivity corresponding to a selected environment.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 15, 2013
    Applicant: FIBER SENSYS, INC.
    Inventor: Edward Tapanes
  • Patent number: 8506179
    Abstract: Radially symmetric splicer joint and locking assemblies and connectors for optical fibers are provided. The assemblies use splicer joints formed from a slightly deformable plastic material. The splicer joints contain an axial bore having a diameter slightly less then the diameter of the stripped ends the optical fibers inserted into the axial bore. When a stripped fiber is inserted into the axial bore of the splicer joint, the bore expands slightly to frictionally receive the stripped end. The assemblies and connectors use radially symmetric locking to secure the fibers therein. The radially symmetric locking and the surface tension provided by the axial bore against the stripped ends of the fibers minimizes the occurrence of mis-alignment and reduces insertion and return losses.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: August 13, 2013
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Kenichiro Takeuchi, Haiguang Lu
  • Patent number: 8506178
    Abstract: The invention provides and apparatus for mechanically splicing fiber optic cables and method for performing the process. The apparatus comprises an inventive segmented track with a middle track segment containing a splicer mount, and first and second rotating track segments on opposed sides of a middle segment, the rotating segments moving from a cleaving orientation wherein the rotating track segments align with a respective flat edge angled cleaver and a rounded edge angled cleaver, to a splicing orientation wherein the rotating track segments align with the middle track segment. First and second fiber key holders securely holding partially stripped fiber optic cables move along the respective first and second track segment for cleaving by the cleavers and then toward the middle track segment where their cleaved tips come into controlled aligned contact within a splicer joint contained in the splicer joint mount.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: August 13, 2013
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Kenichiro Takeuchi, Haiguang Lu
  • Publication number: 20130202258
    Abstract: An optical fiber with a resilient jacket is disclosed. The optical fiber includes a cushion layer overlying the optical fiber in which the cushion layer is formed from a plurality of cushion members. The cushion members can be tubes that are hollow or that are partially or completely filled with a soft thermoplastic material. A polymeric sleeve overlies the cushion layer.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 8, 2013
    Applicant: TYCO ELECTRONICS CORPORATION
    Inventor: TYCO ELECTRONICS CORPORATION
  • Patent number: 8498509
    Abstract: The invention relates to a flat telecommunication cable in which optical fibers are positioned within micromodules. The micromodules are coupled to a surrounding, ribbon-like cable jacket, thereby preventing the micromodules from sagging within the cable during vertical installations. The invention also relates to a method of extracting optical fibers from such a cable.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: July 30, 2013
    Assignee: Draka Comteq B.V.
    Inventor: Olivier Tatat
  • Patent number: 8494324
    Abstract: A wire or optical fiber cable configured for electronic devices, including at least one wire or optical fiber; at least one inner layer surrounding a portion of the at least one wire or optical fiber; at least one outer layer surrounding a portion of the at least one inner layer; and at least one internal sipe separating at least a part of one outer layer and at least a part of one inner layer. The internal sipe is formed by at least a portion of an inner surface of the outer layer and at least a portion of an outer surface of the inner layer; and the inner and outer surface portions forming the internal sipe oppose each other and can move relative to each other in a sliding motion.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 23, 2013
    Inventor: Frampton E. Ellis
  • Publication number: 20130183012
    Abstract: A furcation system of an optical fiber assembly includes a fan-out and a transition tube. The fan-out includes a surface and stations. The surface is flexible such that the surface is configured to be changed from flat to curved. The stations are coupled to one side of the surface and are configured to receive and hold sub-units of an optical fiber cable, while allowing the sub-units to project from the stations. The stations are spaced apart from one another such that the stations provide separation between the sub-units received by the stations. Bending of the surface moves the stations from a planar arrangement to a three-dimensional arrangement such that the sub-units may project from the stations of the fan-out in planar and three-dimensional arrays.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 18, 2013
    Inventors: Alma Delia Cabanne Lopez, Terry L. Cooke, Christopher S. Houser, Diego Maldonalo Jimenez, Matthew W. Smith, James M. Wilson
  • Patent number: 8488929
    Abstract: Robust fiber optic cables and assemblies having low attenuation multimode optical fibers. The cables have low attenuation in tensile and mandrel wrap tests, and can have thermoplastic urethane jackets coextruded over tensile strength members that allow the cables to be pulled by the jackets. The cables have relatively small cross-sections yet have sufficient robustness to be deployed in extreme environments such as cellular tower applications.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 16, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: William C. Hurley
  • Publication number: 20130170800
    Abstract: A fire resistant optical cable includes: a plurality of optical fibers; at least one tubular layer of a ceramifiable material surrounding the plurality of optical fibers; and at least one flame shielding layer surrounding the tubular layer. The tubular layer of the ceramifiable material is able to mechanically protect the optical fibers not only during heating but also when the fire is extinguished, since it forms a sufficiently robust layer to withstand the mechanical stresses caused by the collapsing of the materials still surrounding the cable, especially in the transition portions between hot and cold zones. The tubular layer of the ceramifiable material is protected by means of at least one flame shielding layer which prevents the flames from directly acting on the ceramifiable material.
    Type: Application
    Filed: September 10, 2010
    Publication date: July 4, 2013
    Inventors: Enrico Consonni, Luigi Caimi, Davide Ceschiat
  • Patent number: 8478095
    Abstract: This optical fiber cable is provided with a covering resin including an outermost layer. The outermost layer is formed by a resin composition including: (a) a base resin prepared by adding at least one copolymer selected from an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer to a high density polyethylene; (b) 25 to 90 parts by weight of a phosphate salt with respect to 100 parts by weight of the base resin; and (c) 0.75 to 15 parts by weight of either a silicone dispersed polyethylene or a silicone grafted polyethylene with respect to 100 parts by weight of the base resin.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 2, 2013
    Assignees: Fujikura Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Daiki Takeda, Naoki Okada, Satoru Shiobara, Tadayoshi Sayama, Shimei Tanaka, Katsuyoshi Endoh, Keiichiro Sugimoto, Shinichi Niwa
  • Patent number: 8475083
    Abstract: An umbilical comprising a side-emitting optical fiber or optical fiber-bundle for providing a distributed source of light along part or the whole of the length of the umbilical.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 2, 2013
    Assignee: University Court of The University of St. Andrews
    Inventors: Malcolm Harry Dunn, Donald Walker
  • Patent number: 8478096
    Abstract: The present application is directed towards systems and methods for efficient installation of optical and electrical cable in watercraft. A manufacturer may terminate one end of a cable in a location removed from the watercraft, allowing use of automated cable termination machines for efficiency and consistency of terminations. The single-terminated cable may then be brought to the watercraft and installed by pulling or routing the unterminated end through ductwork and pipes, watertight bulkhead throughways, and cable trays and ladders as necessary, prior to termination. Accordingly, more difficult and expensive on-site labor is reduced, and reliability is greatly increased. Furthermore, many cable tests that require termination but cannot be executed post-installation can be performed prior to installation, to ensure that at least the first termination, performed off-site, is error-free, reducing later troubleshooting and further increasing installation efficiency.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 2, 2013
    Assignee: kSARIA Corporation
    Inventors: Sebastian J. Sicari, Anthony J. Christopher, Stavros Dariotis, Bruce S. Belanger
  • Publication number: 20130163932
    Abstract: An optical fiber cable includes a jacket and modules including optical fibers. The jacket has an interior that forms an elongate conduit between proximal and distal ends. The modules extend lengthwise through the conduit without being bound together in a pattern of twisting or wound together in a pattern of stranding. Also, the jacket and modules are sized such that free space is provided within the conduit between the modules and the jacket. The jacket is at least ten meters long, and the orientation, alignment, and size of the modules allow individual modules to slide lengthwise relative to one another through the conduit. Pulling one of the modules from the proximal end of the jacket while holding the other modules fixed at the distal end of the jacket draws the one module further into the jacket on the distal end of the jacket.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 27, 2013
    Inventors: Terry L. Cooke, Christopher S. Houser, William c. Hurley, Samuel D. Navé, James M. Wilson
  • Publication number: 20130154632
    Abstract: There is provided a system (100) for magnetic field detection, comprising a fibre optic interrogator (104) adapted to interrogate a first length of optical fibre (102) with interrogating radiation, detect radiation backscattered from said optical fibre and analyse said detected radiation to provide distributed sensing indicative of mechanical disturbances of said optical, wherein the optic fibre is mechanically coupled to a material whose dimensions vary dependant on applied magnetic field. Changes in dimensions of the optic fibre as can be detected by virtue of changes in back-scattering of light from said fibre using the principles of fibre optic distributed acoustic sensing.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 20, 2013
    Applicant: OPTASENSE HOLDINGS LIMITED
    Inventors: Magnus McEwen-King, David John Hill, Alastair Godfrey
  • Patent number: 8467650
    Abstract: Disclosed is an improved optical fiber possessing a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The secondary coating provides improved ribbon characteristics for structures that are robust, yet easily entered (i.e., separated and stripped). The optical fibers in accordance in the present invention may be incorporated into a reduced-diameter optical-fiber cable that possesses a high fiber count and a high cable fiber density.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 18, 2013
    Assignee: Draka Comteq, B.V.
    Inventors: Bob J. Overton, Olivier Tatat, Jean-Marc Testu
  • Publication number: 20130148932
    Abstract: A casing mixture for a cable is provided having chloroprene with fillers and additives, particularly processing aids and softeners, as well as a cross-linking system, adhesion promoters, stabilizers, anti-aging agents, optionally coloring agents, which results after cross-linking in cold resistant and cold elastic vulcanizates which are suitable for extra heavy duty applications, for example, according to CSA Standard C22.2 No. 96-09 for moving lines for energy supply.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 13, 2013
    Inventors: Christian Cornelissen, Armin Niehaus
  • Patent number: 8463096
    Abstract: Described are track-resistant all dielectric self-supporting (TR-ADSS) cables with improved cable jackets. A typical TR-ADSS optical fiber cable comprises an optical fiber sub-assembly, and a cable jacket system. The cable jacket system comprises an inner jacket, an aramid strength layer and an outer jacket. The improvement in the cable jacket system results from the addition of a friction layer between the aramid strength layer and the outer jacket. The friction layer prevents unwanted slippage of the outer jacket with respect to the inner portions of the cable.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: June 11, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Peter A. Weimann, Robert Arthur Williams
  • Patent number: 8463095
    Abstract: Cables have dielectric armor with an armor profile that resembles conventional metal armored cable. The dielectric armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 11, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Gregory B. Bohler, Julian L. Greenwood, III, Keith A. Greer, Wesley B. Nicholson, James A. Register, III, Kimberly D. Slan
  • Publication number: 20130142491
    Abstract: A method for detecting faulty laying down of an optical cable exhibiting a measured cut-off wavelength includes providing an optical cable for transmitting optical signals including at least one single-mode optical fibre having an attenuation equal to or larger than a first threshold value as measured when wound for one turn around a bending radius equal to or smaller than 5 mm at at least one predetermined test wavelength, the test wavelength being smaller than the measured cut-off wavelength, and an attenuation smaller than a second threshold value as measured when wound for one turn around a bending radius equal to at least a minimum bending radius at an operative wavelength equal to or larger than the measured cut-off wavelength; laying the optical cable; and measuring the attenuation in the at least one optical fibre at the predetermined test wavelength.
    Type: Application
    Filed: May 7, 2010
    Publication date: June 6, 2013
    Inventors: Marco Ruzzier, Susanna Cattelan, Andrea Macchetta, Antonio Collaro, Valeria Caronna
  • Publication number: 20130142480
    Abstract: In various embodiments, an optical fiber module including an optical fiber having a first end, a second end, and a twisted portion between the first and second ends to enable the optical fiber to provide two orthogonal transverse bending degrees of freedom. The twisted portion induces an optical distortion. The module further includes a distortion compensation arrangement that is configured to at least partially compensate for the optical distortion and a housing that is configured to house at least a portion of the optical fiber including the twisted portion.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Applicant: RAYTHEON COMPANY
    Inventors: Ray E. MCVEY, David A. ROCKWELL
  • Publication number: 20130125924
    Abstract: An optical fiber includes an optically transmissive element; at least one curable colored layer surrounding the optically transmissive element; and an additional removable colored layer surrounding and homogeneously covering the curable colored layer. The presence of the additional removable colored layer improves identifiability of the fiber, especially when the latter is included in an optical cable together with other fibers.
    Type: Application
    Filed: December 18, 2012
    Publication date: May 23, 2013
    Applicant: Prysmian S.p.A.
    Inventor: Prysmian S.p.A.
  • Patent number: 8447154
    Abstract: A fiber optic cable having optical fibers such as a microstructured bend performance optical fibers disposed within a protective covering. The protective covering is highly flexible and the fiber optic cable has extremely low delta attenuation when aggressively bent compared with the conventional fiber optic cable designs. Other variations of the present invention include a connector attached to the fiber optic cable.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 21, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Cory Guenter, James Register, III, Todd Rhyne
  • Publication number: 20130121654
    Abstract: A fiber optic cable includes first and second optical fibers. A fiber section surrounds the fibers and is formed of a first material. First and second strength members are adjacent to the fiber section on opposite sides thereof. A jacket surrounds the first and second strength members and fiber section. The jacket is formed of a second material, stronger than the first material and which does not adhere to the first material. The jacket may be manually torn open to access the fiber section. The fiber section may be manually pinched and stripped cleanly from the fibers. The fiber section acts as a cocoon to protect the fibers when the jacket is opened and cleanly pulls off of the fibers by manual force.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 16, 2013
    Applicant: COMMSCOPE, INC. OF NORTH CAROLINA
    Inventor: CommScope, Inc. of North Carolina
  • Patent number: 8442370
    Abstract: An optical fiber cable is comprised of: a slotted core elongated along an axis of the optical fiber cable, the slotted core including a slot running in parallel with the axis and a groove accessible through the slot; one or more optical fibers placed in the groove; a sheath enclosing the slotted core and the optical fibers; a bonding portion where the slotted core is bonded with the sheath; a first strength member embedded in the slotted core and running in parallel with the axis; and a second strength member embedded in the sheath and running in parallel with the axis, wherein the first and second strength members are aligned on a plane including the axis.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: May 14, 2013
    Assignee: Fujikura Ltd.
    Inventors: Ken Osato, Naoki Okada, Kouji Tomikawa
  • Publication number: 20130108226
    Abstract: Cables jacket are formed by extruding discontinuities in a main cable jacket portion. The discontinuities allow the jacket to be torn to provide access to the cable core. The armor cables have an armor layer with armor access features arranged to work in combination with the discontinuities in the cable jacket to facilitate access to the cable core.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 2, 2013
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III
  • Patent number: 8433166
    Abstract: A multi-core optical fiber 1A in which a plurality of cores can easily be identified even in the case where they are symmetrically arranged in its section has seven cores 10 to 16, a visual recognition marker 20, and a shared cladding 30 enclosing the seven cores 10 to 16 and the visual recognition marker 20. The cores 10 to 16 and the visual recognition marker 20 extend along the fiber-axis direction. The respective refractive index of the cores 10 to 16 is higher than the refractive index of the cladding 30. The refractive index of the visual recognition marker 20 differs from that of the cladding 30. In the cross-section perpendicular to the fiber-axis, the cores 10 to 16 are arranged such that they have 6-fold rotational symmetry and line symmetry. The visual recognition marker 20 is arranged at a position which breaks such symmetry.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 30, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Nagashima, Toshiki Taru, Takashi Sasaki
  • Publication number: 20130101260
    Abstract: Embodiments of the present invention generally relate to a cable assembly for adapting to a premise wiring system, whereby the cables utilized therewith comprise quick-locking connectors thereon. In one embodiment of the present invention, a cable assembly comprises a first cable having a cable portion and a connector on a first end of the first cable, the connector comprising an interface and a locking means for securely engaging a second cable; a housing comprising a body having an aperture therethrough for receiving the first cable, the housing having a panel locking means for engaging a panel from a rear surface thereof, and the panel for securing to a substantially rigid structure, having at least one port therethrough; wherein when the housing engages the panel, the interface of the connector of the first cable is accessible from the front surface side of the panel.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: Archtech Electronics Corporation
    Inventor: PAUL FOUNG
  • Patent number: 8428407
    Abstract: A fiber optic jumper cable having a central axis includes a bend-resistant multimode optical fiber generally arranged along the central axis. A tensile-strength layer surrounds the bend-resistant optical fiber. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 1.6 mm?DO?4 mm.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: April 23, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: James A. Register, III
  • Publication number: 20130094821
    Abstract: A fiber optic cable includes a jacket, strength members, armor, and a tear feature. The jacket is formed from a first polymeric material and defines an exterior of the cable. The jacket further forms an interior cavity configured to support an optical fiber. The strength members are each surrounded by the jacket, with the cavity separating the strength members from one another. The armor extends above the cavity and at least partially above the strength members, and has greater tensile strength than the first polymeric material. The tear feature is located beneath the armor and is formed from a second polymeric material co-extrudable with the first polymeric material. The tear feature forms a discontinuity of material within the jacket. At least one of the second polymeric material and the interface between the first and second polymeric materials yields at a lesser tearing force than the first polymeric material.
    Type: Application
    Filed: April 12, 2012
    Publication date: April 18, 2013
    Inventor: Eric R. Logan
  • Patent number: 8422843
    Abstract: A multi-fiber cable assembly includes a plurality of optical fibers and at least two fiber grouping members disposed in a reverse double helical configuration about the plurality of optical fibers. An outer jacket surrounds the fiber grouping members and the plurality of optical fibers.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 16, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8413964
    Abstract: An optical fiber installation device may include a housing having a drop receiving channel extending therethrough. A drive wheel may be rotatably positioned in the housing and configured to rotatably engage a fiber optic drop provided in the drop receiving channel. The housing may include an air pathway for applying a first flow of pressurized air from an air source to the drive wheel. The first flow of pressurized air may cause the drive wheel to rotate and propel the fiber optic drop through the drop receiving channel.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 9, 2013
    Assignees: Verizon Patent and Licensing Inc., Verizon Pennsylvania LLC
    Inventors: Patrick Allen Weaver, Jeffrey M. Conkel
  • Patent number: 8412011
    Abstract: It is an object of the present invention to provide an optical fiber cable which can reliably prevent increased transmission loss due to damage of the optical fiber as a result of the egg-laying behavior of cicadas. The cable includes at least an optical fiber 1, tension members 6 and a sheath 3. The sheath 3 has a shore D hardness of 55 or more and a minimum distance L from a surface of the optical fiber 1 to an outer surface of the sheath 3 of greater than 0.3 mm. Further, in the cable, the surface of sheath 3 has a coefficient of friction of 0.45 or less and the sheath 3 has a shore D hardness of 57 or more. In addition, the cable is made by using a specific flame retardant composition (P) as the sheath material.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 2, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Tetsuya Yasutomi, Masayoshi Tsukamoto, Mitsuru Iwano, Yoshihisa Rintsu, Masanobu Aragaki, Masaki Nishiguchi
  • Patent number: 8412016
    Abstract: A waterproof communication cable connection box includes a protective cover, a cable pass-through end surface, a hollow cylindrical pipe formed on the cable pass-through end surface, an elastic rubber shrinking pipe, and a flexible hard plastic strip provided on the inner wall of the elastic rubber shrinking pipe. The plastic strip will be removed after a cable passes through the cable connection box so that the elastic rubber shrinking pipe closely covers the hollow cylindrical pipe and the cable part exposing outside of the hollow cylindrical pipe.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 2, 2013
    Inventor: Chihkuang Hsing
  • Patent number: 8412013
    Abstract: An optical fiber cable includes an elongated optical element portion having an optical fiber, a pair of tensile strength members and an outer jacket. The optical fiber is composed of one or more plastic coated optical fibers, tight-buffered optical fibers or optical ribbon fibers. The pair of tensile strength members is arranged in parallel at both sides of the optical fiber in a width direction of the optical fiber. The outer jacket covers outer circumferences of the optical fiber and the pair of tensile strength members. A frictional coefficient of the outer jacket is equal to or less than 0.20. Shore D hardness of the outer jacket is equal to or more than 60.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 2, 2013
    Assignees: Fujikura Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Satoru Shiobara, Shimei Tanaka, Tadayoshi Sayama, Daiki Takeda, Masashi Ohno, Naoki Okada, Keiichiro Sugimoto, Shinichi Niwa
  • Patent number: 8412012
    Abstract: An optical fiber cable includes an unbuffered optical fiber, a tensile reinforcement member surrounding the unbuffered optical fiber, and a jacket surrounding the tensile reinforcement member. The jacket is suitable for outside plant environment. A water blocking material is placed between the unbuffered fiber and the jacket. The unbuffered optical fiber comprises an ultra bend-insensitive fiber that meets the requirements of ITU-T G.657.B3 and exhibits an additional loss of less than approximately 0.2 dB/turn when the fiber is wrapped around a 5 mm bend radius mandrel. The optical fiber cable also exhibits an additional loss of less than approximately 0.4 dB/km at 1550 nm when the cable is subjected to ?20° C. outside plant environment.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 2, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Stefan Jost, Elmar Staudinger, Peter A. Weimann
  • Patent number: 8412014
    Abstract: An optical fiber ribbon is capable of branching by means of any tool. The optical fiber ribbon is comprised of a plurality of optical fibers running in parallel, each of the optical fibers having an allowable radius of curvature; a blanket sheath totally covering the plurality of the optical fibers; one or more concavities formed at any one or more intermediates among the optical fibers; and slits respectively arranged in series at a regular interval along the concavities, the slits penetrating the blanket sheath and allowing the tool to be inserted and the blanket sheath to split by means of movement of the tool along the concavities. The length of each slit prior to insertion of the tool is so determined that flexures of the optical fibers induced by the tool widening the slits do not exceed the allowable radius of curvature.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: April 2, 2013
    Assignee: Fujikura Ltd.
    Inventors: Yukiko Sato, Keiko Sano, Naoki Okada