With Electrical Conductor In The Same Cable Patents (Class 385/101)
  • Patent number: 7406231
    Abstract: The present invention provides an interconnect cable having an electroluminescent element disposed therein in order to facilitate locating the interconnect cable. The electroluminescent element is activated by a driver that may be selectively applied to specified driver ports located on end connectors of the cable. The electroluminescent element may be incorporated within the entire length of the cable, or only along selected sections of the cable.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: July 29, 2008
    Assignee: Avaya Technology Corp.
    Inventors: Alexander John Gray Beck, Jonathan R. Yee-Hang Choy, Alexander Martin Scholte, David Preshan Thambiratnam
  • Patent number: 7397990
    Abstract: A cable (302) has (8) fibers (304) are encapsulated by a UV curable layer (306) having a diameter of approximately (1010) microns, and (16) outer fibers (316) arranged in a circular formation around the inner fibers (304). The optical fibers (304) are held in position by means of the UV curable layer (306) so that the UV curable material of the layer (306) does not penetrate into the gaps between the optical fibers (304) and the outermost optical fibers (304) are restrained by the layer from moving axially. It is found that such an arrangement provides surprisingly favorable bending properties, making the cable particularly suitable for installation in a tube by means of blowing.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 8, 2008
    Assignee: Emtelle (UK) Limited
    Inventors: George Henry Platt Brown, David John Stockton, Kevin Thomas Cockburn, Greig Iain McIlwraith
  • Publication number: 20080152286
    Abstract: An optoelectric composite wiring module includes: a pair of optical circuit sections, each including an optical element that performs photoelectric conversion and that receives or outputs an optical signal; an optical wiring section including an optical wiring that transmit the optical signal between the pair of optical circuit sections; and an electric wiring section including an electric wiring that transmits an electric power or electric signal that is not related to the photoelectric conversion, the electric wiring section including a first portion being stacked above the optical wiring section and a second portion being separated from and not stacked above each of the pair of optical circuit sections.
    Type: Application
    Filed: May 23, 2007
    Publication date: June 26, 2008
    Inventors: Osamu Ueno, Kazuhiro Sakai, Shinya Kyozuka, Osamu Ohtani, Akira Tateishi
  • Publication number: 20080131063
    Abstract: A technique enables the reduction or prevention of galvanic action by electrically insulating components of a system. Fiber optic systems can be protected with the technique by preventing the formation of hydrogen ions through galvanic action that otherwise contribute to hydrogen darkening of optical fibers.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Scott Rubinstein, Ram Meyyappan
  • Publication number: 20080124034
    Abstract: A coaxial cable includes: a metallic inner conductor formed of a first material and having a first thickness; a dielectric layer circumferentially surrounding the inner conductor formed of a second material and having a second thickness; a metallic outer conductor circumferentially surrounding the dielectric layer formed of a third material and having a third thickness; and a polymeric jacket circumferentially surrounding the outer conductor formed of a fourth material and having a fourth thickness.
    Type: Application
    Filed: January 30, 2008
    Publication date: May 29, 2008
    Inventors: Frank B. Wyatt, Robert A. Wessels, Christopher Alan Story, Douglas J. Blew, Michael Gialenios
  • Publication number: 20080118209
    Abstract: Slickline cables and methods for preparing such cables are disclosed. A slickline cable includes a pre-manufactured polymer composite rod having a channel therein; an optical fiber disposed in the channel; a fastener securing the optical fiber in the channel, wherein the fastener is selected from the group comprising a polymer tape, a polymer layer, and a combination thereof, and an outer tube disposed outside the polymer composite rod having the optical fiber therein. A method for manufacturing a slickline cable includes preparing a polymer composite rod having at least one channel therein; placing at least one optical fiber in the at least one channel in the polymer composite rod; securing the at least one optical fiber in the at least one channel using a polymer tape, a polymer layer, or a combination of a polymer tape and a polymer layer; disposing an outer tube over the polymer composite rod.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 22, 2008
    Inventors: Joseph Varkey, Anil Singh, Byong Jun Kim, Vladimir Hernandez, Shannon Nimchan, Dan Tabalan
  • Patent number: 7373056
    Abstract: A high-voltage component, having a first end and a second end, whereby the first end is on a high-voltage potential with respect to the second end. An insulating part, is arranged between the first end and the second end, and an optical fiber is integrated in the high-voltage component and extends from the first end to the second end. A capillary extends from the first end to the second end and is arranged within the insulating part. The inside diameter of the capillary exceeds the outside diameter of the fiber, and the fiber is arranged within the capillary. The capillary includes a protective medium to achieve a dielectric strength in the capillary, which dielectric strength is suitable for the operating conditions.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: May 13, 2008
    Assignee: ABB Research Ltd
    Inventors: Klaus Bohnert, Philippe Gabus, Hubert Brändle
  • Patent number: 7367715
    Abstract: A structure that possesses the combined properties of carrying signals through the provision of a series of electrical conductors, and by optical signals through the intermediary of a series of optical waveguides. This imparts a particular advantage thereto for the fabrication of optical data links, providing a convenient, compact method of interconnecting electrical paths to transducer chips and to waveguide structures. This approach solves the problem of connecting polymer waveguides to VCSEL (Vertical-Cavity-Surface-Emitting Laser) arrays, thereby avoiding the problem of damaging fragile wire bonds. A method is also provided which utilizes the foregoing structure.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: May 6, 2008
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Punit P. Chiniwalla, Derek B. Dove, James L. Sanford
  • Patent number: 7352936
    Abstract: An optical aerial line has an optical cable extending parallel to an aerial electrical conductor and lashed to the electrical conductor by means of securing elements, wherein the securing elements have at least two binders helically wound onto the electrical conductor and the optical cable, and wherein the number of said binders, the tension of application of said binders, and the lashing pitch are selected so as to have a binding force of at least 5 kg/m, so as to avoid lateral displacements of the optical cable.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: April 1, 2008
    Assignee: Prysmian Cables y Sistemas, S.L.
    Inventor: Lluis Sales I Casals
  • Patent number: 7352937
    Abstract: Exemplary embodiments of the present invention provide for methods to launch data signals from single mode fiber optic cable into legacy multimode fiber optic cable. In one exemplary embodiment, a single mode fiber is offset slightly from the axis of a multimode fiber, thus only exciting the outer mode of the multimode fiber. In an alternate exemplary embodiment, a core portion of the single mode fiber is exposed, heated, and fused with a cladding portion of the multimode fiber. In yet another alternate exemplary embodiment, various lenses can be used to collimate and focus light signals from single mode fibers into multimode fibers, and vice versa. In these exemplary embodiments, the transmitted light signals can be in the range of from 1470 to about 1610 nm with, for example, a 20 nm channel separation. Other wavelengths and channel separations are also possible.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: April 1, 2008
    Assignee: Finisar Corporation
    Inventors: Johnny Zhong, Steve Wang, Yin Zhang
  • Patent number: 7343078
    Abstract: A patch panel configured for mounting to a network rack, includes: a frame including mounting features at opposite lateral ends for mounting the patch panel to the network rack; a bezel mounted to the patch panel, the bezel including a plurality of outlet apertures, and a plurality of communication outlets mounted in respective ones of the outlet apertures. Each of the outlets includes a plurality of electrical contacts within a plug aperture configured to receive a mating plug. The plug aperture has a generally horizontal axis for receiving the mating plug and further includes a plug latch recess. The outlets are oriented such that the plug latch recess is positioned on one side edge of the plug aperture.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: March 11, 2008
    Assignee: Commscope Solutions Properties, LLC
    Inventors: Gordon Spisany, Stanley Wright, Brian Fitzpatrick, Thomas J. Boucino
  • Patent number: 7327919
    Abstract: A signal transmission media for transmission of signals such as audio and/or video from a transmission apparatus to a receiving apparatus. The signal transmission media has a first connector in contact with the transmission apparatus to receive the signal and is communication with a first signal converter to acquire the signal and then convert the signal to a modulated light signal which is transferred from the first signal converter to a fiber optic cable for transmission. A second signal converter receives the modulated light signal from the fiber optic cable and re-converts the modulated light signal to the signal, which is then transferred to a second connector. The second connector is in contact with the receiving apparatus to transfer the re-converted signal to the receiving apparatus. A power amplifier may be placed between the second signal converter and the second connector to amplify the reconverted signals for reproduction.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: February 5, 2008
    Inventor: Jimmy Ko
  • Patent number: 7324730
    Abstract: A cable which includes conductor bundles prepared from at least one optical fiber positioned either centrally or helically about the center axis of the bundle, metallic conductors helically positioned around the bundles center axis, and a polymeric insulation material. A method of making a cable including forming a conductor bundle by placing helically positioned conductors and optical fibers about the periphery of a central optical fiber or metallic conductor, encasing the conductors, optical fibers, in a polymeric insulation material, and grouping the conductor bundles together.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: January 29, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Joseph Varkey, Ravicharan Mydur, Noor Sait, Willem Wijnberg, Sumitra Kunathikom, Monica Darpi
  • Patent number: 7306380
    Abstract: This invention solves this problem by including an optical transmitter module and optical receiver module inside the connector so as to carry out spatial optical transmitting of optical signal obtained by conversion with the optical transmitter module for optical transmitting between the optical transmitter module and the optical receiver module opposing each other across space.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: December 11, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Tomohiro Yamazaki
  • Publication number: 20070280610
    Abstract: Hybrid cables for communication networks are disclosed. An example cable includes a plurality of electrical conductors disposed along a central axis of the cable. The plurality of electrical conductors includes a first twisted pair cable in a twisted configuration with a second twisted pair cable. The cable also includes a first jacket surrounding the plurality of electrical conductors and a plurality of optical fibers adjacent to an outer surface of the first jacket.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Inventors: Arvind R. Mallya, Jack K. Swalley
  • Patent number: 7302145
    Abstract: Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 27, 2007
    Assignee: University of Vermont and State Agricultural College
    Inventors: Dryver Huston, Brian Esser
  • Patent number: 7295734
    Abstract: The invention provides techniques for drawing fibers that include conducting, semiconducting, and insulating materials in intimate contact and prescribed geometries. The resulting fiber exhibits engineered electrical and optical functionalities along extended fiber lengths. The invention provides corresponding processes for producing such fibers, including assembling a fiber preform of a plurality of distinct materials, e.g., of conducting, semiconducting, and insulating materials, and drawing the preform into a fiber.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: November 13, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Mehmet Bayindir, Fabien Sorin, Dursen Saygin Hinczewski, Shandon D. Hart, Yoel Fink, John D. Joannopoulos
  • Patent number: 7292758
    Abstract: The invention provides an optical fiber photodetector including a photoconductive element, such as a semiconducting element, having a fiber length. The semiconducting element is characterized as a non-composite material in at least one fiber direction. At least one pair of conducting electrodes is in contact with the semiconducting element along the fiber length, and an insulator is provided along the fiber length. An optical resonator can be disposed along the fiber length and along a path of illumination to the semiconducting element. The resonator is dimensioned to substantially reflect all illumination wavelengths except for a prescribed range of wavelengths transmitted to the semiconducting element. The fiber photodetector can be arranged in a photodetecting fiber grid, photodetecting fiber fabric, or other configuration for detecting incident illumination.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: November 6, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Mehmet Bayindir, Fabien Sorin, Ayman F. Abouraddy, Dursen Saygin Hinczewski, Ofer Shapira, Jerimy Arnold, Jean F. Viens, Yoel Fink, John D. Joannopoulos
  • Patent number: 7290945
    Abstract: According to one embodiment of the invention, a system comprising a housing including an opening to receive an optical connector, and an electromagnetic inductive (EMI) shield independent of the optical connector to cover a portion of the opening to reduce emissions of EMI radiation generated by the optical connector from the transceiver housing. According to another embodiment of the invention, a method comprising connecting an optical connecter to an optical port of a housing in an optical module, the housing comprising an opening to receive to the optical connector; and shielding a portion of an opening in the housing to reduce emissions of EMI radiation generated by the optical connector from the housing.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 6, 2007
    Assignee: Intel Corporation
    Inventors: Michael E. Ahrens, Roger Viet
  • Patent number: 7290601
    Abstract: A product consisting of a plurality of thermocouple cables braided or wound and covered with protective armour, thereby forming a braided bundle. The product is used in accordance with a method involving a further step of inserting the braided bundle into a well.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: November 6, 2007
    Assignee: Petrospec Engineering Ltd.
    Inventors: Gerald V Chalifoux, Robert B Logan
  • Patent number: 7289705
    Abstract: An optical imaging system with a flexible cable having a first end and a second end. The cable has a central core element including a flexible optical conduit, with a number of wires surrounding the core element to form a tube concentric with an axis defined by the center of the core. The cable has a conductive shield layer surrounding the wires and uniformly spaced apart from the wires. An electronic instrument is connected to the first end of the cable and has an illuminator coupled with the optical conduit and a display device connected to the wires. An image transducer is connected to the second end of the cable and is connected to the wires. The wires may be twisted pairs evenly spaced apart from each other, and evenly spaced apart from an axis defined by the core.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: October 30, 2007
    Assignee: Ludlow Company LP
    Inventors: Eric Eichelberger, Theron V. Page, Jr., Chanramany Riel, Kristin Ngo
  • Patent number: 7272281
    Abstract: An optical fiber for information transmission contains a glass tube core wrapped in a sheath of conductive material attachable to a power source such as a battery or generator to transmit power via the conductive sheath of the fiber. Methods to transmit power via an optical fiber, together with fiber optic networks are described.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 18, 2007
    Assignee: SBC Knowledge Ventures, L.P.
    Inventors: Chuck Stahulak, Bruce Barnes, Wayne Heinmiller, Shadi Khoshaba, Nikhil Marathe, Henry Towster
  • Patent number: 7272282
    Abstract: Fiber optic cables and assemblies useful for distribution of the optical fibers to a network are disclosed. The fiber optic cables include a first strength component and a second strength component with a cable jacket generally surrounding the first and second strength components. One or more compartments are defined between the first and second strength components for housing one or more optical fibers. The optical fibers of the fiber optic cable are easily accessible by the craft for distribution to the network, thereby allowing the construction of assemblies that are suitable for distribution of the optical fibers to the network.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 18, 2007
    Assignee: Corning Cable Systems. LLC.
    Inventors: David Alan Seddon, Warren W. McAlpine
  • Patent number: 7239781
    Abstract: The present inventions relate generally to umbilicals comprising at least one inner tube and at least one composite fiber element to provide greater resistance to radial compressive forces. Such umbilicals may be used in subsea hydrocarbon production applications.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 3, 2007
    Assignee: Oceaneering International, Inc.
    Inventors: Andre Chartier, Paul Gahm
  • Patent number: 7213975
    Abstract: A junction box and hybrid fiber optic cable connector which permit repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire cable assembly or retermination of the cable. A method of repairing a hybrid fiber/copper cable and connector.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 8, 2007
    Assignee: ADC Telecommunications, Inc.
    Inventors: M'hamed Anis Khemakhem, Dean Michael Rosenthal, Duane Sand, Jeffery Louis Peters, Joy K. McKnight, Ross Heggestad, Patrick Jude Nault, Foad Abdulkadir Mohamed Ahmed
  • Patent number: 7208855
    Abstract: Apparatus, systems and methods are provided for transmission of optical signals through a wellbore whereby optic fibers are protected from exposure to harsh downhole fluids and conditions. The system comprises a power cable assembly running down hole from the surface and comprising both electrical leads and at least one fiber-optic lead, an electric submersible motor apparatus having optic fibers and optic fiber leads as an integral part of the motor and internal to the motor casing, and a connection(s) between the optic fibers internal to the motor casing and downhole sensors and other equipment requiring optical communication.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: April 24, 2007
    Assignee: Wood Group ESP, Inc.
    Inventor: Raymond E. Floyd
  • Patent number: 7200305
    Abstract: An electro-optical cable (38) which includes an optical element (48) having an elongated glass fiber core (50), a medial cushioning layer (54) concentrically surrounding the glass fiber core, and an outer hard shell (56) material surrounding the medial cushioning layer. The cable also includes at least one electrically conductive element (40) comprising an elongated conductive core (42) and a dielectric layer (44) concentrically surrounding the electrically conductive element.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: April 3, 2007
    Assignee: BAE Systems Information And Electronic Systems Integration Inc.
    Inventors: John Dion, Mark A. Carlson
  • Patent number: 7189312
    Abstract: An earthing electrode assembly and method for providing a submerged electrical apparatus with an earth path, the electrode assembly having an earthing electrode, an attachment device for attaching the electrode assembly to a cable, and an insulated electrical connection for connecting the earthing electrode to the submerged electrical apparatus. The connection is formed to be of sufficient length for the submerged electrical apparatus to be protected from electrochemical effects resulting from operation of the earthing electrode.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: March 13, 2007
    Assignee: Alcatel
    Inventors: Ian Gerard Watson, Philip Andrew Norman, David Lancelot Walters, Peter Worthington
  • Patent number: 7186033
    Abstract: An apparatus includes a housing, a first connection interface and an optical amplifier. The housing receives a fiber optic line and an electrical line. The first connection interface is located at least partially inside the housing and is exposed outside of the housing to couple the fiber optic line and the electrical line to a second connection interface. The optical amplifier is located inside the housing and is coupled to the fiber optic line. The optical amplifier receives power from the electrical line.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: March 6, 2007
    Assignee: Schlumberger Technology Corporation
    Inventor: Gregor Deans
  • Patent number: 7174075
    Abstract: An electrical conductor and in particular a conductor bar of an electrical machine, particularly a generator or transformer, in which an optical measuring device can be integrally arranged. A measuring unit includes an electrical conductor and an optical measuring device arranged in the conductor, and a production method for producing such an electrical conductor is described. The electrical conductor (10), having a conductor cross section and also an extent in the conductor longitudinal direction, includes a recess (11, 12, 13) in the conductor longitudinal direction at least along a section of the conductor, for integrated arrangement of a signal conductor, in particular an optical waveguide.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: February 6, 2007
    Assignee: Alstom Technology Ltd.
    Inventors: Oliver Drubel, Alberto Izquierdo, Gunter Scherf
  • Patent number: 7162128
    Abstract: A method of installing a cable including at least one communication element, such as an optical fiber, disposed in a buffer tube and a surrounding jacket. The method includes the steps of exposing a portion of the buffer tube over a predetermined length and forming the exposed portion of the buffer tube into a coupling coil having at least one loop. The cable installation method prevents fiber retraction in cable terminations by utilizing at least one coupling coil formed from the exposed buffer tube and advantageously yields coupling coil terminations with small diameter coils, requiring less cable for more efficient installation, and further provides for the coupling coil to be located within a splice closure for more visually pleasing terminations. Preferably, coupling coils are formed at each end of the cable and located in splice enclosures.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: January 9, 2007
    Assignee: Drake Comteq B.V.
    Inventors: Ray Lovie, Olaf Storaasli
  • Patent number: 7160032
    Abstract: The electro-optical composite connector comprises an electro-optical composite plug and an electro-optical receptacle. The electro-optical composite plug or electro-optical composite receptacle converts an optical signal from an optical fiber to an electric signal and transmits to the opposing electro-optical receptacle or electro-optical composite plug through a power connecting metal or power connecting metal receiver. The opposing electro-optical composite receptacle or electro-optical composite plug converts the electric signal to the optical signal and transmits to the optical fiber.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: January 9, 2007
    Assignee: Sony Corporation
    Inventors: Zenya Nagashima, Hiroki Kanehira, Yoshiaki Watanabe
  • Patent number: 7158703
    Abstract: A subsea umbilical includes electrically insulated power conductors, fiber optic elements, electrical signal cables, and fillers within a common outer cover. At least one of the electrical signal cables is enclosed within a dedicated metal tube, and the umbilical is hung off on an offshore platform or the like and the metal tube containing the electrical signal cable is hung off separately from the umbilical.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: January 2, 2007
    Assignee: Nexans
    Inventor: Einar Mjelstad
  • Patent number: 7130511
    Abstract: A flexible active signal cable (100, 200) includes a flexible printed circuit substrate (105), two electrical connectors (110), at least two metal conductors (115), at least one flexible optical waveguide (120), an optical transmitter (125), and an optical receiver (130). In some embodiments, the flexible active signal cable is less than 0.5 meters long and is capable of being wrapped and unwrapped from a 5 millimeter diameter mandrel 10,000 times with a low probability of failure at a test temperature, while supporting data rates greater than 25 megabits per second.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 31, 2006
    Assignee: Motorola, Inc.
    Inventors: Markus Riester, Zhiming Zhuang, J. Yu Huinan, Nasir Irfan, Aroon V. Tungare
  • Patent number: 7127144
    Abstract: Disclosed is an optical fiber composite power cable having a loose-tube-type optical fiber impregnated therein, wherein the optical fibers are installed in a loose tube made of metal to prevent lateral pressure from being imposed on the optical fibers by the metal conductors, even when tensile force or bending force is applied to the cable.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: October 24, 2006
    Assignee: LG Cable Ltd.
    Inventor: Su-kil Lee
  • Patent number: 7113678
    Abstract: The detector comprises a loopback unit 10 which is connected to a connector formed at one end of an optical camera cable, an optical loop fiber 11 connecting a first optical fiber 31 and a second optical fiber 32, and a short-circuit wiring 12 which short-circuits plural electric lines of the optical camera cable. The detector also comprises a measuring unit 40 comprising a transmission loss measuring part which is connected to a connector formed at the other end of the optical camera cable and measures transmission loss between the first optical fiber and the second optical fiber, a resistivity measuring part which measures resistivity between electric lines, a disconnection detecting part which detects connection or disconnection of electric lines by using measured resistivity, and a display part, which displays the result of transmission loss measured by the transmission loss measuring part and connection or disconnection detected by the disconnection detecting part.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: September 26, 2006
    Assignee: Canare Electric Co., Ltd.
    Inventor: Satoru Onishi
  • Patent number: 7106931
    Abstract: An optical fibre drop cable for suspension installation includes sheathing having a first portion containing a strengthening arrangement for supporting the cable in a suspension installation and a second portion that is separable from the first portion. The second sheathing portion contains a plurality of electrical conductors. The first sheathing portion defines at least one passage for optical fibers.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: September 12, 2006
    Assignee: Pirelli General Plc
    Inventors: Ralph Sutehall, Martin Vincent Davies
  • Patent number: 7085457
    Abstract: An electrical cable having a holding member arranged within the cable for an optic fiber, which can be used for temperature sensing and/or communications. The holding member can replace one or more strands of the cable, be placed inside an interstice of the cable, be placed in between various layers of the cable, or placed in the jacket of the cable. At least one strength member may be adjacent to and/or attached to the holding member to provide additional protection for the optic fiber.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: August 1, 2006
    Assignee: Southwire Company
    Inventors: Mark Lancaster, Thomas Wilki, Eugene T. Sanders, Kasi Hajra
  • Patent number: 7082240
    Abstract: A home and building information system comprises at least one electrical mains supply, which is connected to an electrical power lead, and comprises a local optical information network for exchanging information and for supplying, controlling and monitoring peripheral devices and terminals. The electrical conductor of the mains supply and at least one optical fiber of an optical passive information network are integrated in all components while running parallel to one another. These components comprise, on one side, permanently installed installation lines with plug sockets and variable installations with flexible network cables and plugs on the other.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: July 25, 2006
    Inventor: Michael Oetliker
  • Patent number: 7079733
    Abstract: An optical communication apparatus is connected to the other communication apparatus by an optical fiber. The optical fiber cable comprises conducting wires. By interconnecting an output-side conducting circuit provided to the optical communication apparatus and an input-side conducting circuit provided to the other communication apparatus, a detection circuit is constituted. The optical communication apparatus comprises a monitor for monitoring a state of conduction of the detection circuit and an output control portion for controlling a laser diode. When the optical fiber cable is extracted from the optical communication apparatus, it is extracted from the other communication apparatus, and it is broken, the output-side and input-side conducting circuits are cut off. The monitor monitors a change in the state of conduction. If the monitor detects a change in the state of conduction, the output control portion stops emission of light from the laser diode.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: July 18, 2006
    Assignee: Sony Corporation
    Inventors: Yoichi Toriumi, Nobuhiko Tsukahara
  • Patent number: 7068893
    Abstract: An underground power cable having an optical fiber sensor for measuring temperature distribution is disclosed. In the power cable, an optical fiber for measuring temperature distribution is received in a stainless steel tube having excellent strength, and this optical tube is interposed between a core and a sheath of the power cable. When arranging the optical tube in the power cable, a supporting material having a relatively low strength than the optical tube is arranged in the cable together in order to prevent the optical fiber from being damaged by external force and prevent the inner insulation layer from being broken down by the optical tube. In addition, a fixing tape for fixing the optical tube in contact with the core may be added to prevent the optical tube from being bent seriously or inclined to one side when the cable is bent.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: June 27, 2006
    Assignee: LG Cable Ltd.
    Inventors: Duk-Jin Oh, Young-Gug Kwun, In-Ho Lee, Seok-Hyun Nam, Su-Kil Lee, Jae-Yong Jung, Hye-Won Lee
  • Patent number: 7035510
    Abstract: A cable breakout assembly comprising: a cable furcation device joining a cable including an outer jacket and an inner optical fiber, to an upjacket. The upjacket includes an inner tube for receiving the optical fiber, a stranded strength member outside the inner tube, and an outer tube outside of the strength member. The cable furcation device includes a first end disposed around the end of the outer jacket of the cable. The second end has a projecting tube for receiving the outer tube of the upjacket, the first tube having an inner diameter receiving the inner tube and the optical fiber. The device has an outer crimp surface, and a crimp ring crimps the strength member to the crimp surface. A heat shrunk tube is positioned around a portion of the upjacket, the cable furcation device, and a portion of the cable.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: April 25, 2006
    Assignee: ADC Telecommunications, Inc.
    Inventors: Steven C. Zimmel, Michael J. Shorter
  • Patent number: 7035512
    Abstract: A system and method for the transmission of optical signals via optical fibers in a building provided with a system of conduits for electric wires. The optical fibers are ducted through the same conduits as the electric wires. The optical fibers are fitted to the same wall or ceiling terminals as the electric wires. The terminals can comprise connectors to which the optical fibers are fitted, or optical transceivers. The terminals can also comprise electrically supplied modules for amplifying, processing, routing or converting the optical signals. Monitoring, controlling, processing etc. of the optical signals can be done in a central element, in the proximity of a central module for monitoring etc. the electric energy in the building.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 25, 2006
    Assignee: Koninklijke KPN N.V.
    Inventor: Cornelis Casparus Van Bijsterveld
  • Patent number: 7018331
    Abstract: An endoscope assembly consisting of an endoscope 622, a light source, 626 and a camera 552 with display 558. The endoscope contains a memory 670 with data that describes the endoscope and its operating characteristics. When the light source is connected to the endoscope with a fiber optic cable 628, the data in the memory are read into a control processor 538a internal to the light source. The control processor, based on the endoscope data configures the light source so that it emits an appropriate amount of light for that endoscope. The light source also sends a control unit 556 of the camera data indicating the type of endoscope to which the camera is attached. Based on this endoscope type data, the control unit processes the image signals generated by the camera head in an appropriate form for the attached endoscope so as to produce appropriate signals for presenting an image on the display.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: March 28, 2006
    Assignee: Stryker Corporation
    Inventors: Huei Liang Chang, Richard A. Beutter
  • Patent number: 7016577
    Abstract: The present invention relates to an electroluminescent filament capable of emitting a plurality of colors and a method for manufacturing the same. Said electroluminescent filament of the present application comprises: A metal conductive wire as core wire; A medium insulating layer coated on the core wire; A light emitting layer coated on the medium insulating layer; A conductive layer coated on the light emitting layer; At least one or more transmission conductive wires wound at interval on the outside of the conductive layer; The transparent polymer casing tube covering the transmission conductive wires and the outer side of the surface of conductive layer not covered by transmission conductive wires; The polymer casing tube of at least 2 to 8 colors covering the outer layer of transparent polymer casing tube and forming light emitting filament with helical or sectional colors combination.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: March 21, 2006
    Inventor: Wenzheng He
  • Patent number: 6990280
    Abstract: A method of forming an optical communication path includes forming an optical path for carrying optical communications. An electrically conductive cladding is formed along the optical path for carrying at least one of electrical power, control, and data along the optical path.
    Type: Grant
    Filed: August 23, 2003
    Date of Patent: January 24, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James J. deBlanc, Andrew Michael Cherniski, Herbert J. Tanzer
  • Patent number: 6987902
    Abstract: A branching unit integrated into a submarine telecommunication system comprising three cables having optical and electrical transmission members comprises three terminals connected to the electrical transmission members of the cables, three input points, and three electrical contacts each between one of the terminals and one of the input points. In an operating configuration, and at a given time, a first terminal and a second terminal are electrically connected together and form a trunk segment adapted to convey a trunk current, and a third terminal is electrically connected to a submarine ground to form a branch segment adapted to convey a branch current. The branching unit carries out reconfiguration by controlling switching of the electrical contacts. A voltage indicating the potential at a point on the trunk segment is measured. Because an optical reconfiguration request is made by means of an optical reconfiguration signal the unit is able to receive and process optical reconfiguration signals.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: January 17, 2006
    Assignee: Alcatel
    Inventors: Thierry Verhaege, Alain Cordier, Patrick Mejasson
  • Patent number: 6980708
    Abstract: The invention relates to a device for fiber optic temperature measurement with an optical fiber having a radiation coupling in area and a detector-associated radiation coupling out area. Such a device is characterized in that the optical fiber is constructed with high transmission in the infrared (IR) spectral range, particularly in the range from approximately 2 ?m to approximately 20 ?m.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: December 27, 2005
    Assignee: Bartec GmbH
    Inventors: Reinhold A. Barlian, Alfred Boehm
  • Patent number: 6974239
    Abstract: A compound optical and electrical conductor includes a fiberoptic light transmitting element (multiple fibers or single solid rod) with at least one solar cell with LED therewith. The electrical conductor or conductors may be imbedded or otherwise secured within the optically conducting element or its surrounding jacket or sheath, or may be contained in a separate elongate retainer which may be provided to hold the optically conducting element in place as desired. The conductors may include a jacket or retainer which is optically open along one side thereof, allowing the optical conductor to emit light laterally therefrom subtending an angle defined by the optical gap in the jacket or retainer. One or more compound connectors may be provided, for linking two or more such compound conductors together as desired. The connectors provide for both the concentric alignment of the optical conductors, and also the electrical connection of the electrical conductors of the compound devices.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: December 13, 2005
    Inventors: Robert M. Currie, Jonas J. Robertson
  • Patent number: 6973244
    Abstract: The invention relates to a cable comprising at least two elongated elements chosen from a group consisting of steel tubes (1, 2), optical fibre cables (3), electrical cables (4), and combinations thereof, arranged side by side within a common outer cover (5) along the length of the line and where at least one of the elongated elements (1, 2) has a passive metal outer surface, said outer cover (5) allowing entrance of corrosive agent to the interstices between elements, characterized in that at least one of the elements (1,2) with passive metal outer surface is provided with an outer layer (1A, 2A) formed of a material with open structure for water passage and having controlled thickness.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: December 6, 2005
    Assignee: Nexans
    Inventor: Stian Karlsen