Loose Tube Type Patents (Class 385/109)
  • Patent number: 8180190
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber disposed within a tube and/or cavity along with a powder or powder blend that is at least partially mechanically attached thereto. In one embodiment, the powder or powder blend includes a water-swellable component that is mechanically attached to about 30 percent or less of the surface area of the tube wall while still effectively blocking the migration of water along the tube. Other embodiments may have the powder or power blend mechanically attached to the tube, cavity, or the like at relatively high percentage levels of the total powder or powder blend within the assembly, thereby inhibiting unintentional migration along the tube, cavity, or the like. Other embodiments may use powder or powder blends that may or may not include a water-swellable powder to provide other desired characteristics.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: May 15, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Rodney M. Burns, John A. Rowe, Catharina L. Tedder, Brian S. Witz
  • Patent number: 8150226
    Abstract: A method and apparatus for manufacturing an optical cable comprising at least one metal tube housing at least one optical fiber and having a predetermined excess fiber length (EFL) is described. In this method the metal tube is plastically deformed and shortened by a predetermined amount (St) greater than the predetermined EFL and is plastically deformed after shortening to provide a controlled elongation thereof so as to reach the predetermined excess fiber length. An optical cable so manufactured has a local excess fiber length (EFL) varying of or less than 0.2 % along the longitudinal extension of the cable with respect to an average EFL of the cable.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 3, 2012
    Assignee: Prysmian Cavi e Sistemi Energia S.r.l.
    Inventors: Luis Sales Casals, Flavio Sangalli, Francesco Della Corte, Alessandro Ginocchio
  • Publication number: 20120076464
    Abstract: Purging interior regions of a cable reduces or prevents hydrogen darkening of an optical fiber located in the cable. While hydrogen may permeate through an outer surface of the cable, fluid circulating through the cable purges the hydrogen from within the cable. This circulation of the fluid occurs between an inner tube containing the fiber and an outer tube surrounding the inner tube.
    Type: Application
    Filed: December 12, 2011
    Publication date: March 29, 2012
    Inventors: Edward M. Dowd, John J. Grunbeck
  • Patent number: 8145021
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Patent number: 8111960
    Abstract: Purging interior regions of a cable reduces or prevents hydrogen darkening of an optical fiber located in the cable. While hydrogen may permeate through an outer surface of the cable, fluid circulating through the cable purges the hydrogen from within the cable. This circulation of the fluid occurs between an inner tube containing the fiber and an outer tube surrounding the inner tube.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 7, 2012
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Edward M. Dowd, John J. Grunbeck
  • Patent number: 8107781
    Abstract: A fiber optic cable assembly includes an optical fiber, a strength layer surrounding the optical fiber and an outer jacket surrounding the strength layer. The outer jacket includes a base material having a Shore D Hardness of at least 85 and liquid crystal polymer embedded in the base material. The liquid crystal polymer constitutes less than 2% of the outer jacket by weight.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 31, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Publication number: 20120020631
    Abstract: There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Inventors: Charles C. Rinzler, Mark S. Zediker
  • Publication number: 20120014651
    Abstract: The invention relates to a microdistribution cable (1) for optical telecommunications engineering, comprising a loose tube cable (10), at least two wires (14) being guided in the loose tube cable (10), the wires (14) of the loose tube cable (10) having been prefabricated with plugs (33) at at least one end, the microdistribution cable (1) comprising a splitting element (20), which has a first region (22), in which a portion of the loose tube cable (10) is guided, and a second region (23), in which the wires (14) are guided, the second region (23) having means for fixing tubes (12) or individual loose tube cables (47), in which the wires (14) are guided to the plugs (33), and to a method for producing a microdistribution cable (1).
    Type: Application
    Filed: November 9, 2009
    Publication date: January 19, 2012
    Applicant: ADC GmbH
    Inventors: Ferenc Nad, Ulrich Hetzer
  • Publication number: 20110293230
    Abstract: An optical fiber cable includes at least one buffer tube that includes a plurality of water-blocking plugs and an optical fiber. The water-blocking plugs can be spaced along the buffer tubes, substantially filling the cross-sectional space within the buffer tube not already filled by the optical fiber. The water-blocking plugs can provide a stronger bond between the optical fibers and the inner tube. This is reflected by a high normalized pullout force for the optical fiber, such as, above 5.0 N/m. Yet, the resulting fiber optic cable does not suffer from problems associated with a higher pullout force, such as attenuation.
    Type: Application
    Filed: December 9, 2008
    Publication date: December 1, 2011
    Inventors: Ben Wells, John Sach, Martin Hanchard, Grant Davidson
  • Patent number: 8059929
    Abstract: Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. Specifically, the methods include presenting a length of distribution optical fiber outward of the protective covering that is longer than the opening at access location. After the opening is made in the protective covering at the access location, the optical fibers for distribution are selected. Then a tool according to the present invention is positioned about the optical fibers selected for distribution and slid within the protective covering of the fiber optic distribution cable until it reaches a cutting location within the fiber optic distribution cable. Consequently, the tool is positioned for cutting the distribution optical fiber at a cutting location within the fiber optic distribution cable at a downstream location.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 15, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher Paul Lewallen, James P. Luther
  • Publication number: 20110262086
    Abstract: Disclosed is an extensible optical signal transmission cable having an extensity of 10% or more and an optical transmission loss of less than 20 dB/m when the cable is loosened. The cable comprises an elastic cylinder having the extensity of 10% or more and at least one optical fiber wound around the elastic cylinder. The optical fiber has a bending diameter (R) which is not smaller than the bending limit diameter (Re). The extensible optical signal transmission cable is compliant with shape deformation, can transmit an optical signal when the cable is extended or contracted, and can be used in repetitive extension and contraction.
    Type: Application
    Filed: December 25, 2009
    Publication date: October 27, 2011
    Inventors: Shunji Tatsumi, Hiroyuki Makino
  • Patent number: 8041166
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 18, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8041167
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The improved coating system provides optical fibers that are useful in buffer tubes and cables having relatively high filling coefficients and fiber counts.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 18, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Patent number: 8041162
    Abstract: Techniques, apparatus and systems that use an optical probe head to deliver light to a target and to collect light from the target for imaging, monitoring, medical diagnostics and medical treatment applications.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 18, 2011
    Assignee: Tomophase Corporation
    Inventors: Feiling Wang, Andrey Vertikov
  • Patent number: 8041168
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The secondary coating provides improved ribbon characteristics for structures that are robust, yet easily entered (i.e., separated and stripped). The optional dual coating is specifically balanced for superior heat stripping in fiber ribbons, with virtually no residue left behind on the glass. This facilitates fast splicing and terminations.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Patent number: 8036510
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Don Parris
  • Patent number: 8036509
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn
  • Publication number: 20110235984
    Abstract: Embodiments of the present invention provide methods and apparatus for cables having one or more fibers that may function as a sensing device within a wellbore, wherein the fibers do not adhere to each other or to an inner wall of the cable during a high temperature operation, such as in a thermal recovery operation that may last over 30 days.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 29, 2011
    Inventors: EDWARD M. DOWD, John J. Grunbeck, Domino Tavemer
  • Patent number: 8023787
    Abstract: An optical drop cable includes optical fiber cores, tension-resistant members, and a single-material outer sheath covering the cores and the tension-resistant members. The bark of a young tree has elasticity, so that if cicadas lay eggs in the bark, the holes in which eggs are laid close and the eggs will not hatch. Cicadas cannot stick their ovipositors into bark having abrasion resistance. Thus, the outer sheath is made of polyurethane resin having rebound resilience equivalent to that of the bark of a young tree, and having high abrasion resistance. By making the outer sheath from such resin having elasticity and abrasion resistance, holes in which eggs are laid close, thus making hatching of the eggs impossible, or cicadas cannot stick their ovipositors into the outer sheaths. Black cicadas will therefore not lay eggs in the outer sheath, preventing damage to or breakage of the optical fiber.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 20, 2011
    Assignee: Tatsuta Electric Wire & Cable Co., Ltd.
    Inventors: Toshiaki Katsuya, Masaji Asano, Kiyotaka Urashita, Daisuke Yoshimura
  • Patent number: 8023786
    Abstract: In order to improve a cable, comprising an inner cable body, in which at least one conductor strand of an optical and/or electrical conductor runs in the longitudinal direction of the cable, an outer cable sheath, enclosing the inner cable body and lying between an outer sheath surface of the cable and the inner cable body, and at least one information carrier unit, disposed within the outer sheath surface of the cable such that the cable also comprises a shielding, the invention proposes that the information carrier unit having an antenna unit lying in an antenna surface running approximately parallel to the longitudinal direction of the cable, by the antenna surface running at a distance from an electrical shielding of the cable and by providing, between the antenna surface and the shielding, a spacing layer, in which the electromagnetic field that couples to the antenna unit and passes through the antenna surface can extend between the antenna unit and the shielding.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lapp Engineering & Co.
    Inventor: Siegbert Lapp
  • Publication number: 20110217010
    Abstract: A fiber optic cable assembly includes an outer jacket defining a first passage and a second passage disposed adjacent to the first passage. The outer jacket includes a wall disposed between an outer surface of the outer jacket and the first passage. A plurality of optical fibers is disposed in the first passage. A reinforcing member is disposed in the second passage. An access member is disposed in the wall of the outer jacket.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 8, 2011
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventor: Wayne M. Kachmar
  • Patent number: 8000573
    Abstract: Generic tow lead-in for streamers providing communication between the seismic systems and the streamers, consisting of at least four wire power quad, at least four multimode optical fibers and at least one signal pair, where the at least one signal line do not utilize a screen.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 16, 2011
    Inventor: Phil Roscoe
  • Publication number: 20110194825
    Abstract: A method of forming an optical fiber buffer tube including the steps of providing a length of pre-shrunk tape having a predetermined width and thickness, forming the tape into a tube around at least one optical fiber, coating the formed tube with a molten material to close the tube, and cooling the molten material to maintain the shape of the tube. The method further includes calibrating the outer diameter of the coated tube during the cooling step by restraining the coated tube against outward radial expansion. An optical fiber buffer tube constructed according to the method is further provided.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 11, 2011
    Inventor: Donald Ray Parris
  • Patent number: 7995886
    Abstract: A method for manufacturing an optical cable for communication includes at least one micromodule, said micromodule being blocked with respect to the propagation of water. The method includes the steps of providing at least one optical fiber; embedding the at least one optical fiber in a pseudoplastic filling compound having a viscosity of 3 Pa·s to 30 Pa·s, preferably 7 Pa·s to 25 Pa·s at a shear rate of 10 s?1 and at a temperature of 100° C., and a cross-over lower than 30 Hz, preferably 5 Hz to 25 Hz, at a temperature of 100° C.; and extruding a retaining element made of a thermoplastic polymeric composition around the at least one optical fiber so embedded in the filling compound to obtain a micromodule.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 9, 2011
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Massimiliano Pavan, Davide Ceschiat
  • Publication number: 20110188821
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber disposed within a tube and/or cavity along with a powder or powder blend that is at least partially mechanically attached thereto. In one embodiment, the powder or powder blend includes a water-swellable component that is mechanically attached to about 30 percent or less of the surface area of the tube wall while still effectively blocking the migration of water along the tube. Other embodiments may have the powder or power blend mechanically attached to the tube, cavity, or the like at relatively high percentage levels of the total powder or powder blend within the assembly, thereby inhibiting unintentional migration along the tube, cavity, or the like. Other embodiments may use powder or powder blends that may or may not include a water-swellable powder to provide other desired characteristics.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 4, 2011
    Inventors: Anne G. Bringuier, Rodney M. Burns, John A. Rowe, Catharina L. Tedder, Brian S. Witz
  • Patent number: 7991256
    Abstract: Disclosed is an optical fiber cable that includes a main tube. A guide tube, which includes at least one optical element, is positioned within the main tube's central space. A compressible element is also positioned within the main tube's central space. To reduce the adverse effects of ice formation within the optical fiber cable, the compressible element more readily deforms than do the guide tube and main tube. Also disclosed is a method for modifying a conventional optical fiber cable with a compressible element according to the present invention.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 2, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Willem Griffioen, Klaus Nothofer
  • Publication number: 20110176782
    Abstract: The present invention provides optical-fiber communication cables with an improved water-blocking element that reduces or eliminates microbending caused by water-swellable particulate powders. In one embodiment, such water-swellable powders may be employed in conjunction with a smooth water-soluble carrier tape. In another embodiment, such water-swellable powders may embedded within a water-soluble binder. The water-blocking element is deployed within optical-fiber buffer tubes to water-block the buffer tubes and to minimize microbending that can occur when water-swellable particulate powders press against optical fibers.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 21, 2011
    Applicant: DRAKA COMTEQ, B.V.
    Inventor: Don Parris
  • Patent number: 7983520
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber and a water-swellable powder within a tube and/or cavity and methods for making the same. Fiber optic assemblies of the present invention use relatively low-levels of water-swellable powder while still effectively blocking the migration of tap water and/or saline solutions of 3% by weight along the tube and/or cavity. Furthermore, cleaning of the optical fibers is not necessary before connectorization like with conventional fiber optic cables that use a gel or grease. Generally speaking, at least some of the water-swellable powder is transferred to the inside surface of the tube, cavity, optical fiber or the like; rather, than being a loose powder that is able to migrate within the tube or cavity. Moreover, the existence of water-swellable powder within the fiber optic assembly or cable is nearly transparent to the craft since relatively low-levels are possible.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 19, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Warren W. McAlpine, Christopher M. Quinn, John A. Rowe, Dave A. Seddon, Catharina L. Tedder, Gilbert D. Tugman, Brian S. Witz, George Ndayizeye
  • Patent number: 7974507
    Abstract: Disclosed is a fiber-optic cable that possesses a high cable filling coefficient (and/or a high cable fiber density) yet ensures that its enclosed optical fibers demonstrate improved attenuation performance when subjected to temperature variations between about ?40° C. and 70° C. The fiber-optic cable is suitable for efficient installation into ducts, such as via blowing.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 5, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Ray Lovie, Jeffrey Scott Barker, William Mark Smartt, Bob J. Overton
  • Patent number: 7970247
    Abstract: Disclosed is a buffer tube that possesses a higher buffer-tube filling coefficient. Optical fibers enclosed within the buffer tube demonstrate improved attenuation performance when subjected to temperature variations between about ?40° C. and 70° C. The buffer tube is suitable for deployments requiring mid-span access.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 28, 2011
    Assignee: Draka Comteq B.V.
    Inventor: Jeffrey Scott Barker
  • Publication number: 20110116753
    Abstract: An optical-fiber cable includes an adhesive material that adhesively couples a water-swellable element to a plurality of optical fibers.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Bob J. Overton, Wayne Cheatle, Greg DeChristopher
  • Patent number: 7933481
    Abstract: The present invention relates to an optical cable comprising one or more optical waveguides, which one or more optical waveguides are provided with a protective layer, a buffer tube surrounding said one or more optical waveguides, which buffer tube is surrounded by an outer sheath, while a radial interspace is present between said outer sheath and said buffer tube, which radial interspace is filled with a filler.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: April 26, 2011
    Assignee: Draka Comteq B.V.
    Inventors: Kees Van Trigt, Arnoldus Gertrudis Wilhelmus Berkers, Mijndert Doorn, Erik Versteeg
  • Patent number: 7916989
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber disposed within a tube and/or cavity along with a powder or powder blend that is at least partially mechanically attached thereto. In one embodiment, the powder or powder blend includes a water-swellable component that is mechanically attached to about 30 percent or less of the surface area of the tube wall while still effectively blocking the migration of water along the tube. Other embodiments may have the powder or power blend mechanically attached to the tube, cavity, or the like at relatively high percentage levels of the total powder or powder blend within the assembly, thereby inhibiting unintentional migration along the tube, cavity, or the like. Other embodiments may use powder or powder blends that may or may not include a water-swellable powder to provide other desired characteristics.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 29, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Rodney M. Burns, John A. Rowe, Catharina L. Tedder, Brian S. Witz
  • Patent number: 7837396
    Abstract: This disclosure describes techniques for attaching a connector to a fiber optic cable. As described herein, lengthwise slits are made into the jacket and the buffer tube of a fiber optic cable, thereby exposing interior segments of the optical fibers of the fiber optic cable. A loop is then made in the fiber optic cable at the slits. The ends of the optical fibers can then telescopically slide out the end of the fiber optic cable. When this happens, the exposed interior segments of the optical fibers slide out of the buffer tube and the jacket through the slits, forming a smaller loop within the loop. A connector may then be attached to the exposed ends of the optical fibers. When the fiber optic cable is unlooped, the exposed interior segments of the optical fibers slide back into the buffer tube and jacket. The jacket may then be resealed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: November 23, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventor: Thomas Marcouiller
  • Patent number: 7822306
    Abstract: A robust fiber optic cable is well suited for harsh environments, such as undersea environments, as a communication link to a mobile undersea vehicle. In preferred embodiments, the fiber optic cable is constructed to have neutral buoyancy in salt water. The fiber optic cable may include one single mode optical fiber. A suspension fluid, such as light mineral oil surrounds the optical fiber. In an optional embodiment, a plurality of strength members also surrounds the optical fiber and these elements are surrounded by an outer jacket. In another optional embodiment, the optical fiber and suspension fluid may be loosely surrounded by an inner containment tube, a plurality of strength members surrounds the inner containment tube, and these elements are surrounded by an outer jacket, which may be bonded to the inner containment tube.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: October 26, 2010
    Assignee: Commscope, Inc. of North Carolina
    Inventors: Jarrett Shinoski, Kevin Sigmon
  • Patent number: 7817891
    Abstract: Disclosed is a method accessing one or more optical fibers in a telecommunication cable in a way that considerably reduces the risk of damaging the optical fibers. To avoid inadvertent damage caused by a cutting tool, the method includes moving optical fibers and/or micromodules away from the area on the cable that is to be cut.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: October 19, 2010
    Assignee: Draka Comteq, B.V.
    Inventors: Alain Lavenne, Olivier Tatat, Jean-Pierre Bonicel
  • Patent number: 7813605
    Abstract: A data communication cable can comprise multiple pairs of twisted conductors. A jacket that extends along the outside surface of the cable can define a longitudinal core, internal to the cable. The conductor pairs can be disposed in the core of the cable along with a foam matrix or a porous filler, with the matrix and the conductors occupying essentially all of the volume of the core. The foam matrix can hold each conductor pair in a respective location within the cable core to control signal crosstalk on each pair. A co-extrusion process can produce the cable via simultaneously extruding the foam matrix and the jacket. A pulling apparatus can feed the conductor pairs though respective ports of an extrusion head-and-die assembly. As one extruder encases the moving conductor pairs in the foam matrix, another extruder forms the jacket over the matrix and the embedded conductors.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: October 12, 2010
    Assignee: Superior Essex Communications, LP
    Inventor: Jeffrey H. Mumm
  • Patent number: 7813606
    Abstract: It is an object of the present invention to provide an optical fiber cable which can reliably prevent increased transmission loss due to damage of the optical fiber as a result of the egg-laying behavior of cicadas. The cable includes at least an optical fiber 1, tension members 6 and a sheath 3. The sheath 3 has a shore D hardness of 55 or more and a minimum distance L from a surface of the optical fiber 1 to an outer surface of the sheath 3 of greater than 0.3 mm. Further, in the cable, the surface of sheath 3 has a coefficient of friction of 0.45 or less and the sheath 3 has a shore D hardness of 57 or more. In addition, the cable is made by using a specific flame retardant composition (P) as the sheath material.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 12, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Tetsuya Yasutomi, Masayoshi Tsukamoto, Mitsuru Iwano, Yoshihisa Rintsu, Masanobu Aragaki, Masaki Nishiguchi
  • Publication number: 20100247045
    Abstract: An extrusion-molding apparatus for a loose tube includes: an extrusion head that includes a tip and a die concentrically arranged therewithin and extrudes a tube between the tip and the die; a needle that feeds at least one optical fiber and filler to be filled around the optical fiber into the tube being extrusion-molded; and a cylindrical bundling member provided within the needle. The bundling member has a bundling hole being smaller than an inner diameter of the tube at a center thereof and into which the optical fiber can pass through, and a flow pass penetrating along a feeding direction of the filler between the bundling hole and an inner circumferential surface of the needle. In an extrusion molding method using the extrusion-molding apparatus, the optical fiber is passed through a bundling hole to be bundled at an almost center of the tube. In addition, filler is passed through a flow path to be filled around the optical fiber.
    Type: Application
    Filed: October 29, 2008
    Publication date: September 30, 2010
    Inventors: Naoki Okada, Yoshio Hashimoto, Masayuki Ishioka
  • Publication number: 20100232753
    Abstract: The present invention relates to a novel coupling composition that is used within optical fiber cables to protect optical fibers and to couple the optical fibers and the surrounding buffer tube casing. The present invention also relates to optical fiber cables that use the novel coupling composition.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn, Boyce Lookadoo
  • Patent number: 7758257
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: July 20, 2010
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 7742667
    Abstract: A loose tube optical fiber cable includes at least one cable unit. Each cable unit includes a plurality of loose, non-buffered optical fibers, a strength yarn at least partially surrounding the non-buffered optical fibers, and a jacket surrounding the strength yarn and the non-buffered optical fibers.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: June 22, 2010
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Kevin Paschal, Nathan Hatch
  • Patent number: 7742668
    Abstract: Disclosed is a dry, semi-tight optical fiber unit that includes one or more optical fibers positioned within a buffer tube. A protective coating is provided upon the surface of the optical fibers, and an anti-adhesive coating is substantially bonded to the protective coating. One or more of these optical fiber units may be included in an optical cable. Also disclosed is a method for efficiently producing such an optical fiber unit.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 22, 2010
    Assignee: Draka Comteq B.V.
    Inventors: Klaus Nothofer, Dick Huijsman, Arnoldus Gertrudis Wilhelmus Marie Berkers
  • Publication number: 20100150505
    Abstract: A buffered optical fiber structure includes an optical fiber, a mechanical reinforcement member extending along the optical fiber, a protective sheath having a cavity containing the optical fiber and the mechanical reinforcement member, and an intermediate material contacting the protective sheath and surrounding the optical fiber and the mechanical reinforcement member.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Applicant: DRAKA COMTEQ, B.V.
    Inventors: Jean-Marc Testu, Olivier Tatat
  • Publication number: 20100142903
    Abstract: Purging interior regions of a cable reduces or prevents hydrogen darkening of an optical fiber located in the cable. While hydrogen may permeate through an outer surface of the cable, fluid circulating through the cable purges the hydrogen from within the cable. This circulation of the fluid occurs between an inner tube containing the fiber and an outer tube surrounding the inner tube.
    Type: Application
    Filed: January 12, 2010
    Publication date: June 10, 2010
    Inventors: EDWARD M. DOWD, John J. Grunbeck
  • Patent number: 7729583
    Abstract: Flexible closures and other flexible optical assemblies that are installed within a factory, or in the field, and then deployed using cable installation methods, wherein the flexible closures and assemblies have the ability to bend and twist without incurring physical damage to their structure, optical fibers and splices disposed within, and without significant attenuation in the optical fibers when exposed to conventional installation stresses. Flexible closures that replace conventional substantially rigid closures in order to facilitate pre-engineered and assembled distribution cable installation within an optical network, and the physical, bending and material properties of such closures, and methods of manufacturing and installing the same.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 1, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, Lars K. Nielsen, James P. Luther, Thomas Theuerkorn
  • Patent number: 7715672
    Abstract: Various embodiments described include optical fiber designs and fabrication processes for ultra high numerical aperture optical fibers (UHNAF) having a numerical aperture (NA) of about 1. Various embodiments of UHNAF may have an NA greater than about 0.7, greater than about 0.8, greater than about 0.9, or greater than about 0.95. Embodiments of UHNAF may have a small core diameter and may have low transmission loss. Embodiments of UHNAF having a sufficiently small core diameter provide single mode operation. Some embodiments have a low V number, for example, less than 2.4 and large dispersion. Some embodiments of UHNAF have extremely large negative dispersion, for example, less than about ?300 ps/nm/km in some embodiments. Systems and apparatus using UHNAF are also disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 11, 2010
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Xiang Peng, Brian K. Thomas
  • Patent number: 7706640
    Abstract: A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 27, 2010
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Mauro Maritano
  • Patent number: 7706646
    Abstract: Techniques, apparatus and systems that use an optical probe head to deliver light to a target and to collect light from the target for imaging, monitoring, medical diagnostics and medical treatment applications.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: April 27, 2010
    Assignee: Tomophase Corporation
    Inventors: Feiling Wang, Andrey Vertikov
  • Publication number: 20100092140
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The improved coating system provides optical fibers that are useful in buffer tubes and cables having relatively high filling coefficients and fiber counts.
    Type: Application
    Filed: November 9, 2009
    Publication date: April 15, 2010
    Applicant: DRAKA COMTEQ, B.V.
    Inventor: Bob J. Overton