Loose Tube Type Patents (Class 385/109)
  • Patent number: 8317410
    Abstract: This disclosure describes techniques for attaching a connector to a fiber optic cable. As described herein, lengthwise slits are made into the jacket and the buffer tube of a fiber optic cable, thereby exposing interior segments of the optical fibers of the fiber optic cable. A loop is then made in the fiber optic cable at the slits. The ends of the optical fibers can then telescopically slide out the end of the fiber optic cable. When this happens, the exposed interior segments of the optical fibers slide out of the buffer tube and the jacket through the slits, forming a smaller loop within the loop. A connector may then be attached to the exposed ends of the optical fibers. When the fiber optic cable is unlooped, the exposed interior segments of the optical fibers slide back into the buffer tube and jacket. The jacket may then be resealed.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: November 27, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Thomas Marcouiller
  • Patent number: 8306377
    Abstract: A loose tube fiber optic cable having at least one optical fiber, a loose tube surrounding the fiber, with the tube having an irregular inner surface. A water swellable powder is provided around the fiber and inside the tube, where the particles of the water swellable powder rest in the irregular inner surface of the tube.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: November 6, 2012
    Assignee: Nexans
    Inventors: David Keller, Jeff Rosenquist, Robert Pruitt, Allen L. Jones
  • Patent number: 8295665
    Abstract: Provided is a method of manufacturing a downhole cable, the method including, forming a helical shape in an outer circumferential surface of a metal tube, the metal tube having a fiber element housed therein, and stranding a copper element in a helical space formed by the metallic tube. Also provided is a downhole cable including, a metallic tube having a helical space in an outer circumferential surface thereof, wherein the metallic tube has a fiber element housed therein, and a copper element disposed in a helical space formed by the steel tube. Double-tube and multi-tube configurations of the downhole cable are also provided.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: October 23, 2012
    Assignee: AFL Telecommunications LLC
    Inventor: Brian Herbst
  • Patent number: 8290320
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: October 16, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20120257863
    Abstract: A non-kink, non-hockling optical cable comprising an optical fiber capable of propagating light along its longitudinal axis. A buffer layer made of a soft plastic material surrounds the silica core and cladding, and a supplemental layer surrounds the buffer layer. The supplemental layer consists essentially of a liquid crystal polymer (LCP) material to enhance the tensile strength of the optical fiber. Finally, an encasing polymer layer with a breaking strain greater than 30%, surrounds the supplemental layer, to increase the flexibility of the optical cable.
    Type: Application
    Filed: March 20, 2012
    Publication date: October 11, 2012
    Inventors: Stephen M. O'RIORDEN, Amaresh MAHAPATRA
  • Publication number: 20120257864
    Abstract: It is disclosed an optical cable for communications including at least one micromodule, the micromodule including a retaining element and number N of optical fibers housed in said retaining element. The diameter of a circumference encircling the number N of optical fibers is typically 90% to 95% of an inner diameter of the retaining element. The retaining element consists essentially of a film grade polymeric material having an elongation at break equal to or higher than 500%, a melt flow index (MFI) lower than 3 g/10 min, and a density lower than 1 g/cm3.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 11, 2012
    Applicant: PRYSMIAN S.P.A.
    Inventors: Enrico Consonni, Davide Ceschiat, Silvio Frigerio, Flavio Tridello
  • Patent number: 8285094
    Abstract: The multicore fiber comprises 7 or more cores, wherein diameters of the adjacent cores differ from one another, wherein each of the cores performs single-mode propagation, wherein a relative refractive index difference of each of the cores is less than 1.4%, wherein a distance between the adjacent cores is less than 50 ?m, wherein, in a case where a transmission wavelength of each of the cores is ?, the distance between the adjacent cores is , a mode field diameter of each of the cores is MFD, and a theoretical cutoff wavelength of each of the cores is ?c, (/MFD)·(2?c/(?c+?))?3.95 is satisfied, and wherein a distance between the outer circumference of the coreand an outer circumference of the clad is 2.5 or higher times as long as the mode field diameter of each of the cores.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 9, 2012
    Assignee: Fujikura Ltd.
    Inventors: Katsuhiro Takenaga, Ning Guan, Syouji Tanigawa
  • Publication number: 20120243841
    Abstract: Micromodule subunit cables are constructed to allow for ease of identification between optical fibers in differing groups of optical fibers. In one cable, a first group of fibers is located within a first subunit while a second group of fibers is located within a second subunit, both subunits being enclosed in a cable jacket.
    Type: Application
    Filed: June 7, 2012
    Publication date: September 27, 2012
    Inventors: William C. Hurley, Samuel D. Navé
  • Publication number: 20120243881
    Abstract: A fiber optic cable for use in a downhole environment is disclosed. The fiber optic cable includes a tube having an interior region; an optical fiber disposed in the interior region of the tube; a gas in the interior region; and a gel in the interior region, wherein the gel is configured to reduce stress on the optical fiber in the presence of the gas at a temperature substantially near the flashpoint of the gel. One or more seals can be used to seal the gel and the inert gas in the interior region. In various aspects, the fiber optic cable can be used in a downhole environment.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel S. Homa, Robert M. Harman, Christopher H. Lambert
  • Publication number: 20120243840
    Abstract: An optical fiber unit (1) includes a tube (2) having stretchability in the axial direction, an optical fiber (4) movably housed in the tube (2), and a linear body (3) formed of a material having less stretchability than the tube (2). Both ends of the linear body (3) are fixed to both end portions of the tube (2) in a state where the tube (2) has been previously shrunk in the axial direction.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Applicant: MORI SEIKI CO., LTD.
    Inventor: Masayuki NIIYA
  • Publication number: 20120213483
    Abstract: An optical-fiber interconnect cable includes one or more optical fibers and one or more electrical conductors surrounded by an outer jacket. The optical fibers, such a multimode optical fibers, are typically enclosed within a flexible polymeric tube to form a flexible subunit.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 23, 2012
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Brian G. Risch, John C. Rosko, Olivier Tatat
  • Patent number: 8238706
    Abstract: An example fiber optic cable includes an outer jacket having an elongated transverse cross-sectional profile defining a bowtie shape. The outer jacket defines at least first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The fiber optic cable includes a plurality of optical fibers positioned within the first passage and a tensile strength member positioned within the second passage. The tensile strength member has a highly flexible construction and a transverse cross-sectional profile that is elongated in the orientation extending along the major axis.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 7, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20120195559
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber disposed within a tube and/or cavity along with a powder or powder blend that is at least partially mechanically attached thereto. In one embodiment, the powder or powder blend includes a water-swellable component that is mechanically attached to about 30 percent or less of the surface area of the tube wall while still effectively blocking the migration of water along the tube. Other embodiments may have the powder or power blend mechanically attached to the tube, cavity, or the like at relatively high percentage levels of the total powder or powder blend within the assembly, thereby inhibiting unintentional migration along the tube, cavity, or the like. Other embodiments may use powder or powder blends that may or may not include a water-swellable powder to provide other desired characteristics.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Inventors: Anne G. Bringuier, Rodney M. Burns, John A. Rowe, Catharina L. Tedder, Brian S. Witz
  • Patent number: 8229263
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: July 24, 2012
    Assignee: Draka Comiteq, B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn
  • Patent number: 8213756
    Abstract: A breathable downhole fiber optic cable is provided having an outer protective tube; a fiber optic tube having a plurality of optical fibers contained therein; at least one annulus disposed between the outer protective tube and the fiber optic tube; and at least one path, extending through the length of the fiber optic cable, which provides a channel for a purge gas to flow for removing a second gas, such as hydrogen, from the fiber optic cable.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 3, 2012
    Assignee: AFL Telecommunications LLC
    Inventor: Brian Herbst
  • Patent number: 8208773
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 26, 2012
    Assignee: Draka Comteq, B.V.
    Inventor: Don Parris
  • Patent number: 8189974
    Abstract: An optical fiber cable 1 includes: a cable core 9 formed by stranding a plurality of loose tubes 7, each housing at least one optical fiber 5, on the periphery of a centered tension member 3; and a sheath 11 disposed on the outer periphery of the cable core 9. The sheath 11 includes: a first sheath portion 13 in which the sheath is embedded in between each of the loose tubes 7; and a second sheath portion 15, in which the sheath 11 is circumscribed around the cable core 9, to be thereby formed in a pipe shape. The first sheath portion 13 and the second sheath portion 15 are alternately positioned over the entire length of the cable core 9.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: May 29, 2012
    Assignee: Fujikura Ltd.
    Inventors: Yoshio Hashimoto, Naoki Okada
  • Patent number: 8184934
    Abstract: A fiber optic cable having a jacket, at least one tube and at least two fibers within the tube in a loose tube arrangement. The fibers within the tube have a fiber length differential substantially in the range of 0.01%-0.04%.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: May 22, 2012
    Assignee: Nexans
    Inventors: David Keller, Norman Andrew Punch, Jr., Jerry Freeman, Bulent Kose, Jeff Rosenquist, Lisa Huff, Alfred Flores
  • Patent number: 8184935
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first, second and third separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The third passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The first, second and third passages are generally aligned along the major axis with the third passage being positioned between the first and second passages.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: May 22, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8180190
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber disposed within a tube and/or cavity along with a powder or powder blend that is at least partially mechanically attached thereto. In one embodiment, the powder or powder blend includes a water-swellable component that is mechanically attached to about 30 percent or less of the surface area of the tube wall while still effectively blocking the migration of water along the tube. Other embodiments may have the powder or power blend mechanically attached to the tube, cavity, or the like at relatively high percentage levels of the total powder or powder blend within the assembly, thereby inhibiting unintentional migration along the tube, cavity, or the like. Other embodiments may use powder or powder blends that may or may not include a water-swellable powder to provide other desired characteristics.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: May 15, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Rodney M. Burns, John A. Rowe, Catharina L. Tedder, Brian S. Witz
  • Patent number: 8150226
    Abstract: A method and apparatus for manufacturing an optical cable comprising at least one metal tube housing at least one optical fiber and having a predetermined excess fiber length (EFL) is described. In this method the metal tube is plastically deformed and shortened by a predetermined amount (St) greater than the predetermined EFL and is plastically deformed after shortening to provide a controlled elongation thereof so as to reach the predetermined excess fiber length. An optical cable so manufactured has a local excess fiber length (EFL) varying of or less than 0.2 % along the longitudinal extension of the cable with respect to an average EFL of the cable.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 3, 2012
    Assignee: Prysmian Cavi e Sistemi Energia S.r.l.
    Inventors: Luis Sales Casals, Flavio Sangalli, Francesco Della Corte, Alessandro Ginocchio
  • Publication number: 20120076464
    Abstract: Purging interior regions of a cable reduces or prevents hydrogen darkening of an optical fiber located in the cable. While hydrogen may permeate through an outer surface of the cable, fluid circulating through the cable purges the hydrogen from within the cable. This circulation of the fluid occurs between an inner tube containing the fiber and an outer tube surrounding the inner tube.
    Type: Application
    Filed: December 12, 2011
    Publication date: March 29, 2012
    Inventors: Edward M. Dowd, John J. Grunbeck
  • Patent number: 8145021
    Abstract: Disclosed is a cable for use in a concentrating photovoltaic module. The cable includes at least one strand wrapped with an optically pervious or reflective sheath. The pervious sheath is made of a material that exhibits a penetration rate of 90% and survives a temperature of at least 140 degrees Celsius. The reflective sheath is made of a material that exhibits a reflection rate of 95% and survives a temperature of at least 140 degrees Celsius. The cable is used to connect an anode of the concentrating photovoltaic module to a cathode of the same. The material of the reflective sheath may be isolating.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Yi-Ping Liang, Kuo-Hsin Lin, Hwen-Fen Hong, Hwa-Yuh Shin, Cherng-Tsong Kuo
  • Patent number: 8111960
    Abstract: Purging interior regions of a cable reduces or prevents hydrogen darkening of an optical fiber located in the cable. While hydrogen may permeate through an outer surface of the cable, fluid circulating through the cable purges the hydrogen from within the cable. This circulation of the fluid occurs between an inner tube containing the fiber and an outer tube surrounding the inner tube.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 7, 2012
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Edward M. Dowd, John J. Grunbeck
  • Patent number: 8107781
    Abstract: A fiber optic cable assembly includes an optical fiber, a strength layer surrounding the optical fiber and an outer jacket surrounding the strength layer. The outer jacket includes a base material having a Shore D Hardness of at least 85 and liquid crystal polymer embedded in the base material. The liquid crystal polymer constitutes less than 2% of the outer jacket by weight.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 31, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Publication number: 20120020631
    Abstract: There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Inventors: Charles C. Rinzler, Mark S. Zediker
  • Publication number: 20120014651
    Abstract: The invention relates to a microdistribution cable (1) for optical telecommunications engineering, comprising a loose tube cable (10), at least two wires (14) being guided in the loose tube cable (10), the wires (14) of the loose tube cable (10) having been prefabricated with plugs (33) at at least one end, the microdistribution cable (1) comprising a splitting element (20), which has a first region (22), in which a portion of the loose tube cable (10) is guided, and a second region (23), in which the wires (14) are guided, the second region (23) having means for fixing tubes (12) or individual loose tube cables (47), in which the wires (14) are guided to the plugs (33), and to a method for producing a microdistribution cable (1).
    Type: Application
    Filed: November 9, 2009
    Publication date: January 19, 2012
    Applicant: ADC GmbH
    Inventors: Ferenc Nad, Ulrich Hetzer
  • Publication number: 20110293230
    Abstract: An optical fiber cable includes at least one buffer tube that includes a plurality of water-blocking plugs and an optical fiber. The water-blocking plugs can be spaced along the buffer tubes, substantially filling the cross-sectional space within the buffer tube not already filled by the optical fiber. The water-blocking plugs can provide a stronger bond between the optical fibers and the inner tube. This is reflected by a high normalized pullout force for the optical fiber, such as, above 5.0 N/m. Yet, the resulting fiber optic cable does not suffer from problems associated with a higher pullout force, such as attenuation.
    Type: Application
    Filed: December 9, 2008
    Publication date: December 1, 2011
    Inventors: Ben Wells, John Sach, Martin Hanchard, Grant Davidson
  • Patent number: 8059929
    Abstract: Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. Specifically, the methods include presenting a length of distribution optical fiber outward of the protective covering that is longer than the opening at access location. After the opening is made in the protective covering at the access location, the optical fibers for distribution are selected. Then a tool according to the present invention is positioned about the optical fibers selected for distribution and slid within the protective covering of the fiber optic distribution cable until it reaches a cutting location within the fiber optic distribution cable. Consequently, the tool is positioned for cutting the distribution optical fiber at a cutting location within the fiber optic distribution cable at a downstream location.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 15, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher Paul Lewallen, James P. Luther
  • Publication number: 20110262086
    Abstract: Disclosed is an extensible optical signal transmission cable having an extensity of 10% or more and an optical transmission loss of less than 20 dB/m when the cable is loosened. The cable comprises an elastic cylinder having the extensity of 10% or more and at least one optical fiber wound around the elastic cylinder. The optical fiber has a bending diameter (R) which is not smaller than the bending limit diameter (Re). The extensible optical signal transmission cable is compliant with shape deformation, can transmit an optical signal when the cable is extended or contracted, and can be used in repetitive extension and contraction.
    Type: Application
    Filed: December 25, 2009
    Publication date: October 27, 2011
    Inventors: Shunji Tatsumi, Hiroyuki Makino
  • Patent number: 8041168
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The secondary coating provides improved ribbon characteristics for structures that are robust, yet easily entered (i.e., separated and stripped). The optional dual coating is specifically balanced for superior heat stripping in fiber ribbons, with virtually no residue left behind on the glass. This facilitates fast splicing and terminations.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Patent number: 8041167
    Abstract: Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses. The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness. The improved coating system provides optical fibers that are useful in buffer tubes and cables having relatively high filling coefficients and fiber counts.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 18, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Bob J. Overton
  • Patent number: 8041166
    Abstract: The present disclosure relates to a fiber optic cable including an outer jacket having an elongated transverse cross-sectional profile defining a major axis and a minor axis. The transverse cross-sectional profile has a maximum width that extends along the major axis and a maximum thickness that extends along the minor axis. The maximum width of the transverse cross-sectional profile is longer than the maximum thickness of the transverse cross-sectional profile. The outer jacket also defines first and second separate passages that extend through the outer jacket along a lengthwise axis of the outer jacket. The second passage has a transverse cross-sectional profile that is elongated in an orientation extending along the major axis of the outer jacket. The fiber optic cable also includes a plurality of optical fibers positioned within the first passage a tensile strength member positioned within the second passage.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 18, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8041162
    Abstract: Techniques, apparatus and systems that use an optical probe head to deliver light to a target and to collect light from the target for imaging, monitoring, medical diagnostics and medical treatment applications.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 18, 2011
    Assignee: Tomophase Corporation
    Inventors: Feiling Wang, Andrey Vertikov
  • Patent number: 8036509
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Don Parris, Greg DeChristopher, Justin Elisha Quinn
  • Patent number: 8036510
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Draka Comteq, B.V.
    Inventor: Don Parris
  • Publication number: 20110235984
    Abstract: Embodiments of the present invention provide methods and apparatus for cables having one or more fibers that may function as a sensing device within a wellbore, wherein the fibers do not adhere to each other or to an inner wall of the cable during a high temperature operation, such as in a thermal recovery operation that may last over 30 days.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 29, 2011
    Inventors: EDWARD M. DOWD, John J. Grunbeck, Domino Tavemer
  • Patent number: 8023786
    Abstract: In order to improve a cable, comprising an inner cable body, in which at least one conductor strand of an optical and/or electrical conductor runs in the longitudinal direction of the cable, an outer cable sheath, enclosing the inner cable body and lying between an outer sheath surface of the cable and the inner cable body, and at least one information carrier unit, disposed within the outer sheath surface of the cable such that the cable also comprises a shielding, the invention proposes that the information carrier unit having an antenna unit lying in an antenna surface running approximately parallel to the longitudinal direction of the cable, by the antenna surface running at a distance from an electrical shielding of the cable and by providing, between the antenna surface and the shielding, a spacing layer, in which the electromagnetic field that couples to the antenna unit and passes through the antenna surface can extend between the antenna unit and the shielding.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Lapp Engineering & Co.
    Inventor: Siegbert Lapp
  • Patent number: 8023787
    Abstract: An optical drop cable includes optical fiber cores, tension-resistant members, and a single-material outer sheath covering the cores and the tension-resistant members. The bark of a young tree has elasticity, so that if cicadas lay eggs in the bark, the holes in which eggs are laid close and the eggs will not hatch. Cicadas cannot stick their ovipositors into bark having abrasion resistance. Thus, the outer sheath is made of polyurethane resin having rebound resilience equivalent to that of the bark of a young tree, and having high abrasion resistance. By making the outer sheath from such resin having elasticity and abrasion resistance, holes in which eggs are laid close, thus making hatching of the eggs impossible, or cicadas cannot stick their ovipositors into the outer sheaths. Black cicadas will therefore not lay eggs in the outer sheath, preventing damage to or breakage of the optical fiber.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 20, 2011
    Assignee: Tatsuta Electric Wire & Cable Co., Ltd.
    Inventors: Toshiaki Katsuya, Masaji Asano, Kiyotaka Urashita, Daisuke Yoshimura
  • Publication number: 20110217010
    Abstract: A fiber optic cable assembly includes an outer jacket defining a first passage and a second passage disposed adjacent to the first passage. The outer jacket includes a wall disposed between an outer surface of the outer jacket and the first passage. A plurality of optical fibers is disposed in the first passage. A reinforcing member is disposed in the second passage. An access member is disposed in the wall of the outer jacket.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 8, 2011
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventor: Wayne M. Kachmar
  • Patent number: 8000573
    Abstract: Generic tow lead-in for streamers providing communication between the seismic systems and the streamers, consisting of at least four wire power quad, at least four multimode optical fibers and at least one signal pair, where the at least one signal line do not utilize a screen.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 16, 2011
    Inventor: Phil Roscoe
  • Publication number: 20110194825
    Abstract: A method of forming an optical fiber buffer tube including the steps of providing a length of pre-shrunk tape having a predetermined width and thickness, forming the tape into a tube around at least one optical fiber, coating the formed tube with a molten material to close the tube, and cooling the molten material to maintain the shape of the tube. The method further includes calibrating the outer diameter of the coated tube during the cooling step by restraining the coated tube against outward radial expansion. An optical fiber buffer tube constructed according to the method is further provided.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 11, 2011
    Inventor: Donald Ray Parris
  • Patent number: 7995886
    Abstract: A method for manufacturing an optical cable for communication includes at least one micromodule, said micromodule being blocked with respect to the propagation of water. The method includes the steps of providing at least one optical fiber; embedding the at least one optical fiber in a pseudoplastic filling compound having a viscosity of 3 Pa·s to 30 Pa·s, preferably 7 Pa·s to 25 Pa·s at a shear rate of 10 s?1 and at a temperature of 100° C., and a cross-over lower than 30 Hz, preferably 5 Hz to 25 Hz, at a temperature of 100° C.; and extruding a retaining element made of a thermoplastic polymeric composition around the at least one optical fiber so embedded in the filling compound to obtain a micromodule.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 9, 2011
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Massimiliano Pavan, Davide Ceschiat
  • Publication number: 20110188821
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber disposed within a tube and/or cavity along with a powder or powder blend that is at least partially mechanically attached thereto. In one embodiment, the powder or powder blend includes a water-swellable component that is mechanically attached to about 30 percent or less of the surface area of the tube wall while still effectively blocking the migration of water along the tube. Other embodiments may have the powder or power blend mechanically attached to the tube, cavity, or the like at relatively high percentage levels of the total powder or powder blend within the assembly, thereby inhibiting unintentional migration along the tube, cavity, or the like. Other embodiments may use powder or powder blends that may or may not include a water-swellable powder to provide other desired characteristics.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 4, 2011
    Inventors: Anne G. Bringuier, Rodney M. Burns, John A. Rowe, Catharina L. Tedder, Brian S. Witz
  • Patent number: 7991256
    Abstract: Disclosed is an optical fiber cable that includes a main tube. A guide tube, which includes at least one optical element, is positioned within the main tube's central space. A compressible element is also positioned within the main tube's central space. To reduce the adverse effects of ice formation within the optical fiber cable, the compressible element more readily deforms than do the guide tube and main tube. Also disclosed is a method for modifying a conventional optical fiber cable with a compressible element according to the present invention.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 2, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Willem Griffioen, Klaus Nothofer
  • Publication number: 20110176782
    Abstract: The present invention provides optical-fiber communication cables with an improved water-blocking element that reduces or eliminates microbending caused by water-swellable particulate powders. In one embodiment, such water-swellable powders may be employed in conjunction with a smooth water-soluble carrier tape. In another embodiment, such water-swellable powders may embedded within a water-soluble binder. The water-blocking element is deployed within optical-fiber buffer tubes to water-block the buffer tubes and to minimize microbending that can occur when water-swellable particulate powders press against optical fibers.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 21, 2011
    Applicant: DRAKA COMTEQ, B.V.
    Inventor: Don Parris
  • Patent number: 7983520
    Abstract: Disclosed are fiber optic assemblies having at least one optical fiber and a water-swellable powder within a tube and/or cavity and methods for making the same. Fiber optic assemblies of the present invention use relatively low-levels of water-swellable powder while still effectively blocking the migration of tap water and/or saline solutions of 3% by weight along the tube and/or cavity. Furthermore, cleaning of the optical fibers is not necessary before connectorization like with conventional fiber optic cables that use a gel or grease. Generally speaking, at least some of the water-swellable powder is transferred to the inside surface of the tube, cavity, optical fiber or the like; rather, than being a loose powder that is able to migrate within the tube or cavity. Moreover, the existence of water-swellable powder within the fiber optic assembly or cable is nearly transparent to the craft since relatively low-levels are possible.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 19, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Anne G. Bringuier, Warren W. McAlpine, Christopher M. Quinn, John A. Rowe, Dave A. Seddon, Catharina L. Tedder, Gilbert D. Tugman, Brian S. Witz, George Ndayizeye
  • Patent number: 7974507
    Abstract: Disclosed is a fiber-optic cable that possesses a high cable filling coefficient (and/or a high cable fiber density) yet ensures that its enclosed optical fibers demonstrate improved attenuation performance when subjected to temperature variations between about ?40° C. and 70° C. The fiber-optic cable is suitable for efficient installation into ducts, such as via blowing.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 5, 2011
    Assignee: Draka Comteq, B.V.
    Inventors: Ray Lovie, Jeffrey Scott Barker, William Mark Smartt, Bob J. Overton
  • Patent number: 7970247
    Abstract: Disclosed is a buffer tube that possesses a higher buffer-tube filling coefficient. Optical fibers enclosed within the buffer tube demonstrate improved attenuation performance when subjected to temperature variations between about ?40° C. and 70° C. The buffer tube is suitable for deployments requiring mid-span access.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 28, 2011
    Assignee: Draka Comteq B.V.
    Inventor: Jeffrey Scott Barker
  • Publication number: 20110116753
    Abstract: An optical-fiber cable includes an adhesive material that adhesively couples a water-swellable element to a plurality of optical fibers.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Bob J. Overton, Wayne Cheatle, Greg DeChristopher