Channel Waveguide Patents (Class 385/132)
  • Patent number: 7529456
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: May 5, 2009
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7529454
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 5, 2009
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7529460
    Abstract: The present disclosure includes methods, devices, and systems having zinc oxide waveguides for optical signal interconnections. One optical signal interconnect system includes an oxide layer on a semiconductor substrate. A ZnO waveguide can be provided in the oxide layer and connected to a silicon detector to receive optical signals having a wavelength, for example, between 500 and 375 nanometers (nm).
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7520050
    Abstract: An apparatus and method for an inexpensive, simple to make, self-aligning molded waveguide made of an optically transparent material and that can be used to generate a grid or lamina of light for use with touch screen displays. The molded waveguide substrate includes a plurality of lenses and a plurality of waveguide grooves corresponding to the plurality of integral lenses respectively. After the substrate is molded, the grooves are filled with an optically transparent material to optically couple and align the plurality of lenses and the plurality of grooves respectively. In one application, the molded waveguide substrate is positioned adjacent a touch screen device. A light transmitter and an imaging device are optically coupled to the molded waveguide substrate, and a processing device is coupled to the imaging device.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: April 21, 2009
    Assignee: PoaSana Liquidating Trust
    Inventor: David S. Graham
  • Patent number: 7522803
    Abstract: The present invention provides a method of producing an optical element without the need for high vacuum, unlike the thin film deposition methods, and without using a molten salt. More specifically, the invention provides a method of producing an optical element comprising applying a paste containing at least one compound selected from lithium compounds, potassium compounds, rubidium compounds, cesium compounds, silver compounds, and thallium compounds, an organic resin, and an organic solvent to a glass substrate containing an alkali metal component as a glass component and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 21, 2009
    Assignees: Isuzu Glass Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Tatsuya Suetsugu, Norimasa Kominami, Takeshi Ohtani, Naoko Kaga, Hiroaki Yokoi, Minoru Takada, Takashi Tarumi, Toshihiko Einishi, Kohei Kadono
  • Publication number: 20090097812
    Abstract: Optical waveguide device has waveguide strip-shaped in the depth direction of the drawing and protruding from peripheral portion. A core (not illustrated) is disposed inside waveguide. Wall to be cut is integrated with waveguide to form one core layer. No unevenness occurs in a cutting line of wall indicated with broken line. Accordingly, high-precision cutting is enabled by cutting wall along the cutting line.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 16, 2009
    Inventor: Toro Kaneko
  • Patent number: 7519257
    Abstract: A high-index-contrast waveguide structure material used to guide light through a low-refractive-index material. In one embodiment, the waveguide structures are capable of guiding and confining light in such a way that very high optical intensity is obtained in a small cross-sectional area or gap filled with any material with sufficiently low refractive index, relative to the remainder of the structure. The structure may be used to form resonators, optical couplers, directional optical couplers and other optical devices. Structures may be formed consistent with integrated circuit forming processes.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: April 14, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Michal Lipson, Carlos Angulo Barrios, Vilson Rosa de Almeida, Roberto R. Panepucci, Qianfan Xu
  • Publication number: 20090092355
    Abstract: A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: September 5, 2008
    Publication date: April 9, 2009
    Inventors: Mark D. Feuer, Nicholas J. Frigo
  • Publication number: 20090080832
    Abstract: In some embodiments a channel is formed in printed circuit board material, the formed channel is plated to form at least two side walls of a quasi-waveguide, and printed circuit board material is laminated to the plated channel using thermoset adhesive. Other embodiments are described and claimed.
    Type: Application
    Filed: November 18, 2008
    Publication date: March 26, 2009
    Inventors: Bryce D. Horine, Gary A. Brist, Stephen H. Hall
  • Patent number: 7509014
    Abstract: The present invention intends to provide a two-dimensional photonic crystal having a high level of mechanical strength and functioning as a high-efficiency resonator. The two-dimensional photonic crystal according to the present invention includes a slab layer 31 under which a clad layer 32 is located. In the slab layer 31, areas 35 having a refractive index different from that of the slab layer 31 are cyclically arranged to create a two-dimensional photonic crystal. A portion of the cyclic arrangement of the areas 35 are omitted to form a point-like defect 36. This defect 36 functions as a resonator at which a specific wavelength of light resonates. An air-bridge cavity 37 facing the point-like defect 36 is formed over a predetermined range of the clad layer 32. In this construction, the clad layer 32 supports the slab layer 31 except for the range over which the air-bridge space 37 is formed. Therefore, the two-dimensional photonic crystal has a high level of mechanical strength.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 24, 2009
    Assignees: Kyoto University, TDK Corporation
    Inventors: Ranko Hatsuda, Susumu Noda, Takashi Asano, Yoshinori Tanaka, Eiji Miyai
  • Patent number: 7502541
    Abstract: A resonator is provided which is produced by a defect formed in a three-dimensional photonic crystal. The three-dimensional photonic crystal can include layers containing a plurality of columnar structures with discrete structures in sublayers.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: March 10, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akinari Takagi, Hikaru Hoshi, Kiyokatsu Ikemoto
  • Publication number: 20090060414
    Abstract: An optical waveguide device includes: a channel waveguide which is positioned at a predetermined height relative to a bottom surface of a substrate; and a slab waveguide having a cross-sectional shape wider than that of the channel waveguide, being positioned at a predetermined height relative to the channel waveguide. Initially, an input end face of the optical waveguide device is vertically scanned with a light beam to achieve optical coupling with the slab waveguide, followed by transversely scanning to achieve optical coupling with the channel waveguide, hence, alignment of an optical axis with a minute channel waveguide can be effected easily and quickly.
    Type: Application
    Filed: March 19, 2008
    Publication date: March 5, 2009
    Applicant: Konica Minolta Opto, Inc.
    Inventors: Kazuhiro SHIBATANI, Yukinobu Nakabayashi
  • Patent number: 7499614
    Abstract: A method of producing opto-electronic cards and printed circuit boards which are adapted to provide for passive alignment of VCSELs to waveguides. Also provided are opto-electronic cards and printed circuit boards which incorporate structure providing for the passive alignment of VCSELs to waveguides.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: March 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Eric A. Johnson, David V. Caletka
  • Patent number: 7494228
    Abstract: For mixing different light colors from different LEDs or energized phosphors, an elongated mixing tunnel is used having a reflective inner surface. LEDs of different colors are optically coupled along the length of the mixing tunnel and at a first end of the tunnel. Light coupled along the length of the tunnel is reflected by an angled dichroic mirror that selectively reflects the incoming color light towards a single output port of the mixing tunnel. The dichroic mirror passes all other colors of light being transmitted towards the output port of the tunnel. Two, three, or more colors of LEDs can be used. Efficient and compact ways to energize phosphors are also described. Other optical techniques are also described.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: February 24, 2009
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Gerard Harbers, Laurie Scheffel, Matthijs H. Keuper, Robert H. Holman
  • Patent number: 7496264
    Abstract: An optical waveguide includes a linear metallic thin film having a light delivering unit coupled to one end thereof, through which light is incident; and at least more than two dielectric layers surrounding the metallic thin film. In the optical waveguide, an effective refractive index and a propagation loss in the metallic thin film is reduced so that long-range light transmission is realized. Further, a loss of light caused by the coupling to optical fiber, which is coupled to one end of the metallic thin film, is simultaneously reduced.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: February 24, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Gwan-Su Lee, Soo-Jin Jung, Dong-Ho Shin, Won-Hoe Koo, Il-Kweon Joung
  • Patent number: 7496266
    Abstract: A method of manufacturing a film waveguide includes supplying a precursor consisting of monomer or oligomer of an elastomer having a flexural modulus after curing smaller than or equal to 1,000 MPa to a substrate; pressing a stamper on the precursor of the elastomer, applying pressure to the precursor of the elastomer by the stamper and thinning a film thickness of the precursor of the elastomer; forming a lower clad layer by curing the precursor of the elastomer; forming a core on the lower clad layer; and forming an upper clad layer on the lower clad layer and the core. A film waveguide has at least one of a lower clad layer or an upper clad layer formed by an elastomer having a flexural modulus smaller than or equal to 1,000 MPa. A sum of film thicknesses of the clad layers is less than or equal to 300 mm.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: February 24, 2009
    Assignee: OMRON Corporation
    Inventors: Akira Enami, Yoshihisa Ishida, Tamio Fujisaki, Hayami Hosokawa
  • Patent number: 7496267
    Abstract: A photosensitive sol-gel film containing an organometallic photosensitizer is deposited on the oxide containing surface layer of a silicon substrate. A pattern of white or ultra violet light incident to the photosensitive sol-gel film results in the unbinding of the photosensitizer from the exposed regions of the sol-gel film. A subsequent succession of first and second heating steps results in, first, the removal of the photo sensitizer constituents from the exposed regions of the sol-gel film and, second, the removal of the organic constituents from the exposed regions, resulting in regions doped with a metal oxide with non linear optical properties, such as semicondutive, etc. properties. Optical switches, couplers, waveguides, splitters, interferometers wavelength division multiplexer, Bragg gratings and more can be fabricated. A glass substrate also may be employed, instead of a silicon, in which case a separate silicon oxide surface layer is unnecessary.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: February 24, 2009
    Inventors: Edgar A. Mendoza, Lothar U. Kempen, Robert A. Lieberman
  • Patent number: 7492977
    Abstract: Embodiments of the present invention provide a current sensing device. The current sensing device includes, inter alia, a three-by-three (3×3) optical coupler made of polarization-maintaining (PM) fibers and thus being a PM fiber coupler; a light source and at least one photon-detector connected to a first side of the 3×3 PM fiber coupler; and a fiber coil connected to a second side of the 3×3 PM fiber coupler. The 3×3 PM fiber coupler is adapted to split an input light from the light source into first and second optical signals while maintaining their respective polarization directions; and is adapted to cause coherent interference of third and fourth optical signals, related respectively to the first and second optical signals and received from the fiber coil.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 17, 2009
    Inventor: Yong Huang
  • Patent number: 7489846
    Abstract: Photonic crystal sensors may be created from two and three dimensional photonic crystals by introducing defects. The localization of the optical field in the defect region affords the ability to sense small volumes of analyte.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: February 10, 2009
    Assignee: Agilent Technologies, Inc.
    Inventors: Annette Grot, Kai-Cheung Chow, Laura Wills Mirkarimi, Mihail M. Sigalas
  • Patent number: 7483616
    Abstract: Disclosed herein is an optical waveguide comprising a core layer to be an optical transmission region, an upper clad layer and a lower clad layer covering the core layer, in which the core layer, the upper clad layer and the lower clad layer are formed from resin materials, characterized in that a microlens made of a material having a higher refractive index than that of a material constituting said core layer is disposed in the vicinity of an end face of said core layer.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: January 27, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Nobuhiko Hayashi, Keiichi Kuramoto, Youhei Nakagawa, Mitsuaki Matsumoto, Hitoshi Hirano
  • Publication number: 20090022466
    Abstract: A film-shaped optical waveguide production method which ensures easy production of individual film-shaped optical waveguides without the need for cutting and stamping. A plurality of film-shaped optical waveguide formation regions are defined on a substrate (1). Then, film-shaped optical waveguides (W) are produced in the respective film-shaped optical waveguide formation regions by forming under-cladding layers (2) in the respective regions and forming cores (3) on the respective under-cladding layers (2). Subsequently, the film-shaped optical waveguides (W) are separated from the substrate (1).
    Type: Application
    Filed: July 15, 2008
    Publication date: January 22, 2009
    Applicant: NITTO DENKO CORPORATION
    Inventor: Sazzadur Rahman Khan
  • Patent number: 7480434
    Abstract: A silicon based source for radiation in the 0.5-14 Terahertz regime. This new class of devices will permit continuously tunable, milli-Watt scale, continuous-wave, room temperature operation, a substantial advance over currently available technologies. The Silicon Terahertz Generator (STG) employs a silicon waveguide for near infrared radiation, situated within a metal waveguide for Terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference frequency generation produces Terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect Terahertz radiation.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 20, 2009
    Assignee: California Institute of Technology
    Inventors: Michael J. Hochberg, Tom Baehr-Jones
  • Publication number: 20090016672
    Abstract: Fluidic waveguides have inward surfaces or areas that face each other, separated by a channel region that can be covered. For example, an integrally formed channel component can include two walls parts and a connecting part, with inward surfaces on the wall parts and, extending between them, a base surface; a covering component's lower surface can also extend between the inward surfaces, bounding the channel region; other fluidic, electrical, and optical components can also be attached. In a stack, the covering component can cover the first channel component, and the lower base surface of each preceding channel component can cover the following channel component. An integrally formed body of light-transmissive material can have a surface that includes a waveguide's inward areas and a base area between them; a covering component can be mounted on areas adjacent the inward areas, providing an enclosed channel region.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: Oliver Schmidt, Michael Bassler, Peter Kiesel
  • Patent number: 7477819
    Abstract: A two-dimensional photonic crystal, wherein on a plane in which four adjoining unit lattices L are arranged so as to have one angle in common with the unit lattice L being a rectangle whose shorter side X1 has a length of x1 and whose longer side Y1 has a length of y1, columnar first dielectric regions each having a rectangular cross section whose shorter side X2 has a length of x2 and whose longer side Y2 has a length of y2 are arranged on shorter sides X1 and longer sides Y1 of each rectangular unit lattice L. In this two-dimensional photonic crystal, the first dielectric region is arranged so that the midpoint of the shorter side X1 and the midpoint of the longer side Y1 and the center of the rectangular cross section substantially coincide, and longer sides Y2 of each first dielectric region are substantially parallel to each other.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: January 13, 2009
    Assignee: TDK Corporation
    Inventors: Yasushi Enokido, Isao Nakahata
  • Patent number: 7477823
    Abstract: Optical waveguide device has waveguide strip-shaped in the depth direction of the drawing and protruding from peripheral portion. A core (not illustrated) is disposed inside waveguide. Wall to be cut is integrated with waveguide to form one core layer. No unevenness occurs in a cutting line of wall indicated with broken line. Accordingly, high-precision cutting is enabled by cutting wall along the cutting line.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: January 13, 2009
    Assignee: NEC Corporation
    Inventor: Taro Kaneko
  • Patent number: 7477809
    Abstract: A photonic guiding device and methods of making and using are disclosed. The photonic guiding device comprises a large core hollow waveguide configured to interconnect electronic circuitry on a circuit board. A reflective coating covers an interior of the hollow waveguide to provide a high reflectivity to enable light to be reflected from a surface of the reflective coating. A collimator is configured to collimate multi-mode coherent light directed into the hollow waveguide.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 13, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, Alexandre M. Bratkovski, Shih-Yuan (SY) Wang
  • Patent number: 7470053
    Abstract: Several optical mechanism designs for making luminance of the outer portion of a back light module of edge lighting type to become higher than luminance of the inner portion of the back light module are disclosed in accordance with the present invention. The disclosed optical mechanism designs can cooperate with each other to enhance the optical effect of the back light module. Additionally, the back light modules of the present invention are feasible for use in various scanners or liquid crystal displays.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: December 30, 2008
    Assignee: Lite-On Technology Corp.
    Inventor: Shih-Yuan Kuo
  • Patent number: 7471866
    Abstract: The invention provides a method for fabricating planar waveguiding structures with embedded microchannels. The method includes the step of depositing, over a planar template having at least one indented feature comprising a ridge of a first optical material and a narrow trench adjacent thereto, a second optical material, and the step of subsequent annealing thereof, so that an embedded hollow microchannel forms within the trench. The method provides planar structures wherein the ridge and the embedded microchannel cooperate to form an optical waveguiding structure having a waveguiding direction collinear with the embedded microchannel. Embodiments of the method for forming microfluidic devices integrating ridge waveguides with hollow microchannels having surface access points for fluid delivery, and for forming photonic crystals, are disclosed together with corresponding device embodiments.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: December 30, 2008
    Assignee: Her Majesty the Queen in Right of Canada as Represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Patrick Dumais, Chris Ledderhof, Claire Callender, Chantal Blanchetiere, Julian Noad, Glendon Lovell
  • Patent number: 7471865
    Abstract: An apparatus and method for an inexpensive, simple to make, self-aligning molded waveguide made of an optically transparent material and that can be used to generate a grid or lamina of light for use with touch screen displays. The molded waveguide substrate includes a plurality of lenses and a plurality of waveguide grooves corresponding to the plurality of integral lenses respectively. After the substrate is molded, the grooves are filled with an optically transparent material to optically couple and align the plurality of lenses and the plurality of grooves respectively. In one application, the molded waveguide substrate is positioned adjacent a touch screen device. A light transmitter and an imaging device are optically coupled to the molded waveguide substrate, and a processing device is coupled to the imaging device.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: December 30, 2008
    Assignee: Poa Sana Liquidating Trust
    Inventor: David S. Graham
  • Publication number: 20080317423
    Abstract: Waveguide(s) (130) including at least partially buried channels) (120) within substrate(s) (100) having at least one substantially planar surface (110) are disclosed. According to some embodiments at least part of the channel (120) is located beneath at least a portion of the substrate (100). According to some embodiments the waveguide channel (120) includes a substantially transparent core (140) and optional cladding (160) extending through the channel (120). Alternately, an inner surface of the channel (120) is highly reflective. Furthermore, structures for use as waveguides (130) and/or as microchannels for fluid flow are disclosed herein. Also disclosed are production methods for such waveguides and said structures (130) and said structures, and methods of using such waveguides (130).
    Type: Application
    Filed: September 4, 2005
    Publication date: December 25, 2008
    Applicant: RAMOT AT TEL AVIV UNIVERSITY LTD.
    Inventors: Stanislav Stepanov, Shlomo Ruschin
  • Publication number: 20080317424
    Abstract: The invention relates to an optical device which can increase the spread of a beam diameter in the depthwise direction by a simple configuration in comparison with that by prior art devices. The optical device includes a substrate, an optical path formed on the substrate, and a diffraction propagation region, provided between the optical path and an end face of the substrate, for propagating light emitted from the optical path with diffraction. The diffraction propagation region includes a first groove, formed therein, adapted to block part of components of the propagated light in a depthwise direction of the substrate.
    Type: Application
    Filed: May 23, 2008
    Publication date: December 25, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Masaharu DOI, Tetsu Hasegawa
  • Patent number: 7468237
    Abstract: A plurality of mask images defines an optical circuit image in photoresist. Each of the mask images comprises parts of the optical circuit and the totality of all mask images together defines an optical circuit. The optical circuit is thus made up of plural optical elements some of which may be positioned in drop-in locations within the boundary of another optical circuit element. A photolithography system globally aligns and exposes the mask images in photoresist. The resultant composite image is substantially indistinguishable from a single image of the entire optical circuit. Different images for each of the mask image parts can be substituted with other images or image parts and thereby exponentially increasing the number of circuit permutations from a predetermined number of available mask images. A unique optical circuit, for example, can be generated from a pre-existing library of reticle images. The images are printed in predetermined locations on a substrate to define the desired optical circuit.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: December 23, 2008
    Assignee: Infinera Corporation
    Inventors: Brent E. Little, John V. Hryniewicz, David M. Gill, Roy Davidson, Philippe P. Absil
  • Patent number: 7466889
    Abstract: An optical device includes a waveguide and a microdisk that is optically coupled to the waveguide. The gap between the microdisk and the waveguide is between 0.3 microns and 0.7 microns. The diameter of the microdisk is between 15 microns and 50 microns. The quality factor of the microdisk is at least 105. The microdisk is tuned optoelectrically or piezoelectrically.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: December 16, 2008
    Assignee: Ben Gurion University of the Neger Research and Development Authority
    Inventors: Michael Rosenblit, Ron Folman
  • Patent number: 7466881
    Abstract: An optical switch includes an optical source; a plurality of tunable optical resonators or tunable waveguides in optical communication with the optical source; and a tuning device configured to selectively route an optical beam from the optical source to at least one optical destination by tuning at least one of the optical resonators or tunable waveguides, in optical communication with at least one optical destination, to a wavelength characteristic of the optical beam.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: December 16, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David A. Fattal, Jong-Souk Yoo
  • Patent number: 7463808
    Abstract: An optical waveguide is formed by diffusing a second impurity to form a second diffusion area having a large refractive index on a substrate. A groove is formed at a portion of the substrate corresponding to an outside of a bend of a bent portion along the second diffusion area. A first diffusion area is formed by diffusing a first impurity from a bottom of the groove to reduce a refractive index of the substrate.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: December 9, 2008
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 7456039
    Abstract: An SiO2 film is formed on a semiconductor layer stack, the SiO2 film having a thickness da and an etch rate Ra in buffered (BHF). A waveguide ridge with the SiO2 film thereon is formed using a resist pattern 76. An SiN film is formed on top and both sides of the waveguide ridge, while leaving the resist pattern in place, the SiN film having a thickness db and an etch rate Rb in BHF, where 1<(db/Rb)/(da/Ra). Then the resist pattern and the overlying portion of the SiN film are removed by lift-off to form an opening in the SiN film. Wet etching for a predetermined period of time with BHF removes the SiO2 film from the waveguide ridge, while leaving the SiN film in place.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 25, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazushige Kawasaki, Takafumi Oka, Katsuomi Shiozawa
  • Patent number: 7457492
    Abstract: A multichannel optical communication module includes: a board, and a signal-converting element having optical-action points aligned with a first pitch to emit and receive signal light. The element performs conversion between an optical signal and an electric signal at each of the optical-action points. The module further includes an optical waveguide that includes optical waveguide cores each having a first and a second optical-signal ends that are opposed to each other. The first optical-signal ends are aligned with the first pitch and optically connected to the respective optical-action points, while the second optical-signal ends are aligned with a second pitch longer than the first pitch. The module further includes a coupling component fixed on the board and coupling, to the module, an optical connector that holds ends of optical fibers aligned with a pitch equal to the second pitch, thereby optically connecting the second optical-signal ends to the optical fibers.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: November 25, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Tomoki Umezawa
  • Publication number: 20080278710
    Abstract: An optical waveguide is provided comprising a non-solid core layer surrounded by a solid-state material, wherein light can be transmitted with low loss through the non-solid core layer. A vapor reservoir is in communication with the optical waveguide. One implementation of the invention employs a monolithically integrated vapor cell, e.g., an alkali vapor cell, using anti-resonant reflecting optical waveguides, or ARROW waveguides, on a substrate.
    Type: Application
    Filed: April 2, 2008
    Publication date: November 13, 2008
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BRIGHAM YOUNG UNIVERSITY
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 7450803
    Abstract: The invention is directed to an optical waveguide that reduces an excess loss caused in a curved waveguide region by a deviation of the center axis of a beam propagating mode from the center axis of the optical waveguide. The optical waveguide has its part curved, and assuming that the shortest distance from a certain point of a convex edge of the curved portion to a concave edge is a waveguide width at that point, the optical waveguide has its width progressively reduced from the maximum waveguide width in the midst of the curved portion toward the opposite ends of the curved portion.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 11, 2008
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7450810
    Abstract: In 2D photonic crystals, cavities having a heightened Q factor are made available, wherein combining the high Q cavities with waveguides affords channel add/drop filters having high resolution. In a cavity constituted by a point defect within a 2D photonic crystal, the 2D photonic crystal is configured by an arrangement, in a two-dimensional lattice of points defined in a slab (1), of low-refractive-index substances (2) having a low refractive index relative to the slab (1) and being of identical dimension and shape. The point defect (4) contains a plurality of three or more lattice points that neighbor one another, and in these lattice points no low-refractive-index substances (2) are arranged; therein the dimension of the low-refractive-index substance (2) that should be arranged to correspond to at least one of the lattice points nearest the point defect (4) is dimensionally altered from a predetermined dimension.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: November 11, 2008
    Assignees: President, Kyoto University, Sumitomo Electric Industries, Ltd.
    Inventors: Susumu Noda, Takashi Asano, Yoshihiro Akahane
  • Patent number: 7450796
    Abstract: An apparatus and system includes a radiation generation device for generating radiation and a radiation detection device. A first radiation channel is optically-coupled on a first end to the radiation generation device and configured to direct the radiation generated by the radiation generation device to a second end of the first radiation channel. A second radiation channel is optically-coupled on a first end to the radiation detection device and configured to direct radiation from a second end of the second radiation channel to the radiation detection device. An optical switch is configured to selectively interrupt the transmission of radiation from the second end of the first radiation channel to the second end of the second radiation channel.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 11, 2008
    Assignee: Intel Corporation
    Inventors: Edoardo Campini, Steven DeNies, William Handley, Lawson Guthrie
  • Patent number: 7450788
    Abstract: An optical splitter/coupler has: a multimode waveguide having an electrooptic effect, and propagating light in a multimode; one incident waveguide propagating light in a single mode, and inputting the light to the multimode waveguide; one pair of emitting waveguides guiding-out, in a single mode, lights which have propagated-in through the multimode waveguide; at least one pair of individual electrodes provided so as to be positioned in vicinities of respective side edges on one surface of the multimode waveguide; and a ground electrode provided on another surface, wherein the multimode waveguide has a length such that 3(n+1) bright spots arise at a central portion and at both side edge portions due to incident light, the individual electrodes are provided at positions corresponding to an upstream-most one pair of the bright spots, and the emitting waveguides are connected to positions corresponding to a downstream-most one pair of the bright spots.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: November 11, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Roshan Thapliya, Takashi Kikuchi, Shigetoshi Nakamura
  • Patent number: 7444045
    Abstract: Microresonators, such as a microsphere resonators and planar microresonators, are optically coupled to waveguides for input and output of light. It is important that the relative positions of the microresonator and the waveguide are maintained stable, while still maintaining high cavity Q and ease of launching and extracting the optical beams. Structures are provided on a substrate that are useful for maintaining the position of the microresonator relative to the waveguide. The structures provide for vertical or horizontal coupling between the waveguide and the microresonator.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: October 28, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Xudong Fan, John E. Potts, Terry L. Smith, Robert W. Wilson
  • Patent number: 7444050
    Abstract: The present invention relates to a curved optical waveguide which is free of any axis-deviation structure in the middle of the waveguide and which has a sigmoidal core shape, wherein the curvature thereof at one end is zero and the curvature thereof at the other end is finite (>0) and the use of such a curved optical waveguide permits the reduction of optical loss at the connected portions to the lowest possible level even when it is applied to, for instance, an optical splitter or a directional coupler and the curved optical waveguide of the present invention can provide an optical waveguide which never requires the use of any offset.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: October 28, 2008
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7440653
    Abstract: A method of simultaneously defining a waveguide and grating in a sample of photosensitive material comprises providing a sample of material (24) having a region which is photosensitive to light of a specific wavelength, generating a spot of light (22) at the specific wavelength, the spot having a periodic intensity pattern of high and low intensity fringes, and a width which is related to the width of the channel, positioning the spot within the photosensitive region and causing relative movement between the sample and the light spot along the desired path of the waveguide/grating define a channel of altered refractive index by exposing parts of the photosensitive region to the light spot. Modulation of the light spot to produce multiple exposures produces a grating, while continuous exposure results in a uniform waveguide. These structures can be written in straight lines or around curves, and can be accurately overwritten, so that complex optical devices can be produced in a single fabrication step.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: October 21, 2008
    Assignee: University of Southampton
    Inventors: Peter George Robin Smith, Richard Bird Williams, Vassilios Albanis, Corin Barry Edmund Gawith, Samuel Paul Watts, Gregory Daniel Emmerson
  • Publication number: 20080253728
    Abstract: The invention provides a waveguide with a waveguide core having longitudinal sidewall surfaces, a longitudinal top surface, and a longitudinal bottom surface that is disposed on a substrate. An interface layer is disposed on at least one longitudinal sidewall surface of the waveguide core. A waveguide cladding layer is disposed on at least the waveguide core sidewall and top surfaces, over the interface layer. The waveguide of the invention can be produced by forming a waveguide undercladding layer on a substrate, and then forming a waveguide core on the undercladding layer. An interface layer is then formed on at least a longitudinal sidewall surface of the waveguide core, and an upper cladding layer is formed on a longitudinal top surface and on longitudinal sidewall surfaces of the waveguide core, over the interface layer.
    Type: Application
    Filed: September 5, 2007
    Publication date: October 16, 2008
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel K. Sparacin, Anuradha M. Agarwal, Pradip K. Roy, Lionel C. Kimerling
  • Patent number: 7433550
    Abstract: A Mach-Zehnder optical modulator capable of feed-back compensating a change due to an optical coupling loss, and the characteristic change peculiar to functional devices, and a control method therefore, are provided. A control method for a semiconductor Mach-Zehnder optical modulator using a laser device as a light source includes modulating light emitted from the laser device, and extracting the light as output light; detecting monitor light separate from the output light, among the optically modulated light; and feed-back controlling an optical output intensity of the laser device based on the monitor light.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: October 7, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Tokihiro Terashima, Hiroshi Wada
  • Patent number: 7433554
    Abstract: An optical wiring board by which an optical waveguide can be easily aligned with a light emitting element and a light detecting element. The optical wiring board (1) is provided with a substrate (10). On the substrate (10), a plurality of recessed parts (12) are formed, and the optical waveguide (13) is formed between the recessed parts (12). In the recessed part (12), a light receiving/emitting member (30), which is mounted on an inserting part (22) on a base member (20), is arranged. In the inserting member (22), reflecting planes (26, 27) are formed on inclined planes, and an optical path of the optical waveguide (13) matches with that of a light detecting part (34) and a light emitting part (37) in the light receiving/emitting member (30) via the reflecting planes (26, 27).
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: October 7, 2008
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshihisa Warashina, Yasuji Hoshino, Hajime Takeyama, Masaaki Muto
  • Patent number: 7430356
    Abstract: A method of fabricating an optical waveguide (18) comprises providing a sample of lithium niobate (10) that has one or more periodically poled gratings made by electric field poling, applying a patterned surface layer of metallic zinc (16) to a z-face of the sample so that the layer (16) has a pattern corresponding to an intended pattern of waveguides (18) to be written int lithium niobate, and heating the sample to diffuse the metallic zinc (16) into the lithium niobate so as to form an optical waveguiding structure (18) within the sample.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: September 30, 2008
    Assignee: University of Southampton
    Inventors: Peter George Robin Smith, Corin Barry Edmund Gawith, Lu Ming
  • Patent number: 7428362
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: September 23, 2008
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold